numerical solution of the schrödinger equation on...

48
Numerical solution of the Schrödinger equation on unbounded domains Maike Schulte Institute for Numerical and Applied Mathematics Westfälische Wilhelms-Universität Münster Cetraro, September 2006 1

Upload: lenga

Post on 15-Feb-2019

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Numerical solution of the Schrödinger

equation on unbounded domains

Maike Schulte

Institute for Numerical and Applied Mathematics

Westfälische Wilhelms-Universität Münster

Cetraro, September 2006

1

Page 2: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

OUTLINE 2

Page 3: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

Analytical transparent boundary conditions for the Schrödinger

equation

OUTLINE 2-A

Page 4: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

Analytical transparent boundary conditions for the Schrödinger

equation

Derivation of discrete transparent boundary conditions (DTBC) for theSchrödinger equation for a higher order compact 9-point scheme

OUTLINE 2-B

Page 5: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

Analytical transparent boundary conditions for the Schrödinger

equation

Derivation of discrete transparent boundary conditions (DTBC) for theSchrödinger equation for a higher order compact 9-point scheme

Approximation of DTBC

OUTLINE 2-C

Page 6: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

Analytical transparent boundary conditions for the Schrödinger

equation

Derivation of discrete transparent boundary conditions (DTBC) for theSchrödinger equation for a higher order compact 9-point scheme

Approximation of DTBC

Simulation of quantum wave guides

OUTLINE 2-D

Page 7: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

Analytical transparent boundary conditions for the Schrödinger

equation

Derivation of discrete transparent boundary conditions (DTBC) for theSchrödinger equation for a higher order compact 9-point scheme

Approximation of DTBC

Simulation of quantum wave guides

Extension of the DTBC to (nearly) arbitrary potentials

OUTLINE 2-E

Page 8: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

Analytical transparent boundary conditions for the Schrödinger

equation

Derivation of discrete transparent boundary conditions (DTBC) for theSchrödinger equation for a higher order compact 9-point scheme

Approximation of DTBC

Simulation of quantum wave guides

Extension of the DTBC to (nearly) arbitrary potentials

more realistic simulations

OUTLINE 2-G

Page 9: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

OUTLINE

Transparent boundary conditions (TBC)

Analytical transparent boundary conditions for the Schrödinger

equation

Derivation of discrete transparent boundary conditions (DTBC) for theSchrödinger equation for a higher order compact 9-point scheme

Approximation of DTBC

Simulation of quantum wave guides

Extension of the DTBC to (nearly) arbitrary potentials

more realistic simulations

solving the Schrödinger equation on circular domains

OUTLINE 2-H

Page 10: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

TRANSPARENT BOUNDARY CONDITIONS (IN GENERAL )

Rn

ψ

Γ

Ω

Definition (TBC) :Consider a given whole-space initial value problem (IVP) on Rn

and Ω ⊂ Rn, Γ = ∂Ω. We are interested in the solution of the IVPon Ω. Therefore we need new artificial boundary conditions on Γ.We call these artificial BC transparent, if the solution of the IVBPon Ω corresponds to the whole-space solution of the IVP restrictedon Ω.

TRANSPARENT BOUNDARY CONDITIONS (IN GENERAL) 3

Page 11: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

ANALYTICAL TBC FOR THE SCHRÖDINGER EQUATION

IVP: time-dependent Schrödinger equation (here: 1D)

i~∂

∂tψ(x, t) =

− ~2

2m∗

∂2

∂x2+ V (x, t)

«

ψ(x, t), x ∈ R, t > 0

ψ(x, 0) = ψI(x) ∈ L

2(R)

on a domain of interest Ω = x ∈ R|0 < x < X.

ANALYTICAL TBC FOR THE SCHRÖDINGER EQUATION 4

Page 12: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

ANALYTICAL TBC FOR THE SCHRÖDINGER EQUATION

IVP: time-dependent Schrödinger equation (here: 1D)

i~∂

∂tψ(x, t) =

− ~2

2m∗

∂2

∂x2+ V (x, t)

«

ψ(x, t), x ∈ R, t > 0

ψ(x, 0) = ψI(x) ∈ L

2(R)

on a domain of interest Ω = x ∈ R|0 < x < X.

Assumptions:

• supp ψI ⊆ Ω

• potential V (., t) ∈ L∞(R), V (x, .) is piecewise continuous

• V constant on R\Ω (here: V (x, t) = 0 for x ≤ 0 and V (x, t) = VX forx ≥ X)

Goal:

Calculate the solution ψ(x, t) ∈ C on Ω with TBC at x = 0 and x = X.

ANALYTICAL TBC FOR THE SCHRÖDINGER EQUATION 4-A

Page 13: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

DERIVATION OF TBC

0

ψ

x

V = const V = const

X

G G21

ψ I

Ω

x ∈ G : x ∈ G2 :

i~ψt = − ~2

2m∗ψxx + V (x, t)ψ i~ψt = − ~

2

2m∗ψxx + V (x, t)ψ

ψ(x, 0) = ψI(x) v(x, 0) = 0

ψx(0, t) = (T0ψ)(0, t) v(X, t) = Φ(t) t > 0, Φ(0) = 0

ψx(X, t) = (TXψ)(X, t) limx→∞

v(x, t) = 0

vx(0, t) = (TXΦ)(t)

DERIVATION OF TBC 5

Page 14: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Laplace-transformation on the exterior domains :

vxx(x, s) +2im∗

~

s+iVX

~

v(x, s) = 0 x > X

v(X, s) = Φ(s)

limx→∞

v(x, s) = 0

vx(X, s) = (TXΦ)(s)

solution: v(x, s) = e−i

+r

2im∗

~

`s+

iVX~

´(x−X)

Φ(s)

⇒ (TXΦ)(s) = −r

2m∗

~e−

iπ4

+

r

s+iVX

~Φ(s)

With the inverse Laplace-Transformation follows the analytical TBC

ψx(X, t) = −r

~

2πm∗e−i π

4 e−i

VX~

t d

dt

tZ

0

ψ(X, τ)eiVX τ

~

√τ − t

dτ.

[J. S. Papadakis (1982)]

DERIVATION OF TBC 6

Page 15: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Application of DTBC for the Schrödinger equation:

• Simulation of quantum transistors in quantum waveguides (withinhomogeneous DTBC for the 2D Schrödinger equation)

• Analyse steady states and transient behaviour

x0 X

0

Y

Vcontrol

ψ inc

y

ΩΓ Γ1 2

x0 X

0

Yinc

Γ Γ2

ψ

1

y

Ω

Vcontrol ψ pw

DERIVATION OF TBC 7

Page 16: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

FORMER STRATEGIES :

• Discretization of the analytic TBCs with an numericalapproximation of the convolution integral [e.g. B. Mayfield(1989)]

⇒ only conditionally stable, not transparent!

FORMER STRATEGIES: 8

Page 17: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

FORMER STRATEGIES :

• Discretization of the analytic TBCs with an numericalapproximation of the convolution integral [e.g. B. Mayfield(1989)]

⇒ only conditionally stable, not transparent!

• Create a buffer zone Θ of the length d with a complex potentialV (X) = W − iA around the computational domain Ω withDirichlet 0-BC at ∂Θ and absorbing boundary conditions on ∂Ω

[e.g. L. Burgnies (1997)]

ψ=0ψ=00 X

Ω ΘΘ

⇒ unconditionally stable, unphysical reflections at theboundary, huge numerical costs

FORMER STRATEGIES: 8-A

Page 18: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

SUCCESSFUL STRATEGIES

• Family of absorbing BCs (also for the non-linear Schrödingerequation, wave equation)

[J. Szeftel (2005)]

• discretize the whole space problem with an unconditionally stablescheme (e.g. Crank-Nicolson finite difference scheme) and calculatenew discrete transparent boundary conditions for the full discretizedSchrödinger equation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

|ψ|

DTBC: dx=0.00625, dt=2e−05, t=0.014

[A. Arnold, M. Ehrhardt (since 1995)]

SUCCESSFUL STRATEGIES 9

Page 19: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

DERIVATION OF DISCRETE TRB

Discretize 2D Schrödinger equation:

• Crank-Nicolson scheme in time, tn = n∆t, n ∈ N, H := − 12∆ + V

Hamilton-Operator, Ω = [0,X] × [0, Y ]

1 +iH∆t

2

«

ψ(x, y, t+ ∆t) =

1 − iH∆t

2

«

ψ(x, y, t)

⇒„∂2

∂x2+∂2

∂y2

«`ψ

n+1(x, y) + ψn(x, y)

´

= gn+ 1

2 (x, y)`ψ

n+1(x, y) + ψn(x, y)

´+Wψ

n(x, y)

• compact 9-point scheme in space, xj = j∆x, yk = k∆y withj ∈ Z, 0 ≤ k ≤ K

• DTBC at x0 = 0 and xJ = X = J∆x with J ∈ Z

• 0-BC at y = 0 and y = Y = K∆y with K ∈ N

DERIVATION OF DISCRETE TRB 10

Page 20: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

9-point discretization scheme:

(j,k)

(j+1,k+1)

(j+1,k)

D2x +D

2y +

∆x2 + ∆y2

12D

2x D

2y

ψn+ 1

2j,k

=

I +∆x2

12D

2x +

∆y2

12D

2y

« h

2Vn+ 1

2j,k ψ

n+ 12

j,k − 2iD+t ψ

nj,k

i

with

ψn+ 1

2j,k =

1

2

n+1j,k + ψ

nj,k

´

D+t ψ

nj,k =

ψn+1j,k − ψn

j,k

∆t, n ≥ 0

D2x ψ

nj,k =

ψnj−1,k − 2ψn

j,k + ψnj+1,k

∆x2, j ∈ Z

D2y ψ

nj,k =

ψnj,k−1 − 2ψn

j,k + ψnj,k+1

∆y2, k ∈ N

DERIVATION OF DISCRETE TRB 11

Page 21: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Discrete Sine-Transformation in y-direction:

ψnj,m :=

1

K

K−1X

k=1

ψnj,k sin

„πkm

K

«

m = 0, . . . ,K

Motivation:Solve discrete stationary Schrödinger equation in 1D:

−1

2∆2

y χmj,k = E

mj,k, k = 0, . . . ,K

χmj,0 = χ

mj,K = 0.

The eigenfunctions χmj,k = sin

`πkm

K

´provide the energies

Em =

1

∆y2

1 − cos“πm

K

””

.

Hence follows for m = 0, . . . ,K

⇒ − 1

2∆y2

ψnj,k−1 − 2ψn

j,k + ψnj,k+1

”b

m=

1

∆y2

1 − cos“πm

K

” ”

ψnj,m.

DERIVATION OF DISCRETE TRB 12

Page 22: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Sine-Transformation of the discrete Schrödinger equation on theexterior domains j ≤ 0, j ≥ J yields for the modes m = 0, . . . , K:

Cmj+1ψ

n+1j+1,m + Cm

j−1ψn+1j−1,m +Rm

j ψn+1j,m

= (D − Cmj+1)ψ

nj+1,m + (D − Cm

j−1)ψnj−1,m + (Bm

j −Rmj )ψn

j,m.

DERIVATION OF DISCRETE TRB 13

Page 23: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Sine-Transformation of the discrete Schrödinger equation on theexterior domains j ≤ 0, j ≥ J yields for the modes m = 0, . . . , K:

Cmj+1ψ

n+1j+1,m + Cm

j−1ψn+1j−1,m +Rm

j ψn+1j,m

= (D − Cmj+1)ψ

nj+1,m + (D − Cm

j−1)ψnj−1,m + (Bm

j −Rmj )ψn

j,m.

Definition [Z - Transformation ]:The Z-Transformation of a sequence (ψn)n∈N is given by

Z ψn = Ψ(z) :=

∞∑

n=0

ψnz−n z ∈ C, |z| > 1.

DERIVATION OF DISCRETE TRB 13-A

Page 24: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

One can show:

• Z“

ψn+1j,m

= −zψ0j,m + zΨm

j (z)

• ψ0J+1,k = ψ0

J−1,k = ψ0J,k = 0 for k = 0, . . . ,K

• Vj constant for j ≤ 1, j ≥ J − 1 ⇒ Cmj = Cm, Rm

j = Rm, Bmj = Bm

⇒ ΨJ+1(z) +

»Rz + R−B

C z + C −D

ΨJ(z) + ΨJ−1(z) = 0.

DERIVATION OF DISCRETE TRB 14

Page 25: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

One can show:

• Z“

ψn+1j,m

= −zψ0j,m + zΨm

j (z)

• ψ0J+1,k = ψ0

J−1,k = ψ0J,k = 0 for k = 0, . . . ,K

• Vj constant for j ≤ 1, j ≥ J − 1 ⇒ Cmj = Cm, Rm

j = Rm, Bmj = Bm

⇒ ΨJ+1(z) +

»Rz + R−B

C z + C −D

ΨJ(z) + ΨJ−1(z) = 0.

This difference equation with constant coefficients is solved byΨj(z) = νj(z):

ν2(z) +

»Rz +R−B

C z + C −D

ν(z) + 1 = 0,

Physical background forces decay of the solution for j → ∞

⇒ |ν(z)| > 1 und ν(z)ΨJ(z) = ΨJ−1(z) → Z-transformed DTBC

DERIVATION OF DISCRETE TRB 14-A

Page 26: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Theorem [ DTBC for the 2D Schrödinger equation ]: Discretizethe 2D Schrödinger-Equation with the compact 9-point differencescheme in space and with the Crank-Nicolson scheme in time.Then the DTBC at xJ = J∆x and x0 = 0 for n ≥ 1 read

ψn1,m − s

(0)0,mψ

n0,m =

n−1∑

ν=1

s(n−ν)0,m ψν

0,m − am1 ψ

n−11,m ,

ψnJ−1,m − s

(0)J,mψ

nJ,m =

n−1∑

ν=1

s(n−ν)J,m ψν

J,m − amJ−1ψ

n−1J−1,m.

The convolution coefficients s(n)j,m can be calculated by

s(n)j,m = αm

j

(λmj )−n

2n− 1

[

Pn(µmj ) − Pn−2(µ

mj )

]

with the Legendre-Polynomials Pn ( P−1 ≡ P−2 ≡ 0).

DERIVATION OF DISCRETE TRB 15

Page 27: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Advantages of the new DTBC :

• no numerical reflections

• 3-point recursion for s(n)

• these DTBC have exactly the same structure like the DTBCcalculated with the 5-point scheme [A. Arnold, M. Ehrhardt]

• convergence: O(∆x4 + ∆y4 + ∆t2)

• same numerical effort like discretized analytical TRB

• s(n)j,m = O(n−3/2)

• CN-FD scheme with DTBC is unconditionally stable, withA := I + ∆x2

12 D2x + ∆y2

12 D2y follows:

D+t ||ψ||2A = 0 with ||ψ||2A := 〈ψ,Aψ〉. (1)

DERIVATION OF DISCRETE TRB 16

Page 28: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

some drawbacks :

• DTBC are non-local in time→ high memory costs: the solution ψn

j,m has to be saved in

x0 and xJ for all time steps n = 1, 2, . . .

→ in each time step n = 1, 2, . . . you have to calculate K

convolutions of the length n

(FFT not useable, ⇒ O(Kn2))

DERIVATION OF DISCRETE TRB 17

Page 29: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

some drawbacks :

• DTBC are non-local in time→ high memory costs: the solution ψn

j,m has to be saved in

x0 and xJ for all time steps n = 1, 2, . . .

→ in each time step n = 1, 2, . . . you have to calculate K

convolutions of the length n

(FFT not useable, ⇒ O(Kn2))

• These DTBC are given in the Sine-transformed form: BC ofone mode is a linear combination of all other boundary points

→ diagonal structure of the system matrix is destroyed

DERIVATION OF DISCRETE TRB 17-A

Page 30: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Sparsity pattern of the system matrix for J = K = 10

DERIVATION OF DISCRETE TRB 18

Page 31: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Example 1 :

free 2D Schrödinger equation on Ω = [0, 2] × [0, 2] with the initialdata:

ψI(x, y) = eikxx+ikyy−60

(

(x− 12 )

2+(y− 1

2 )2

)

, (x, y) ∈ Ω

0

50

100

020

4060

80100

120

0

0.2

0.4

0.6

0.8

1

x

it = 10

y

T = 10

0

50

100

020

4060

80100

120

0

0.2

0.4

0.6

0.8

1

x

it = 60

y

T = 60∆t

0

50

100

020

4060

80100

120

0

0.01

0.02

0.03

0.04

0.05

x

it = 160

y

T = 80∆t

DERIVATION OF DISCRETE TRB 19

Page 32: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

*

APPROXIMATION OF DTBC

• Idea: Approximate the convolution coefficients s(n)j,m by a sum of

exponentials:

s(n) ≈ s(n) =L

l=1

blq−nl , n ∈ N, |ql| > 1, L ≤ 40

APPROXIMATION OF DTBC 20

Page 33: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

*

APPROXIMATION OF DTBC

• Idea: Approximate the convolution coefficients s(n)j,m by a sum of

exponentials:

s(n) ≈ s(n) =L

l=1

blq−nl , n ∈ N, |ql| > 1, L ≤ 40

• bl, ql are calculated by the Padé - Approximation of

f(x) =2L−1∑

n=0

s(n)xn, |x| ≤ 1

[A.Arnold, M. Ehrhardt, I. Sofronov (2003)]

APPROXIMATION OF DTBC 20-A

Page 34: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

*

Recursion formula for the convolution coefficients:n−1X

t=0

s(n−t)

ψt =

LX

l=1

c(n)l

with

c(n)l = q

−1l c

(n−1)l + blq

−1l ψ

n−1, n = 1, . . . , N

c(0)l = 0

APPROXIMATION OF DTBC 21

Page 35: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

*

Recursion formula for the convolution coefficients:n−1X

t=0

s(n−t)

ψt =

LX

l=1

c(n)l

with

c(n)l = q

−1l c

(n−1)l + blq

−1l ψ

n−1, n = 1, . . . , N

c(0)l = 0

Advantages:

If you have calculated bl, ql once for a set ∆x,∆y,∆t, V , you’ll easilyderive b∗l , q

l for any ∆x∗,∆y∗,∆t∗, V ∗ by

q∗

l =qla− b

a− qlb

b∗

l = blql

aa− bb

(a− qlb)(qla− b)

1 + q∗l1 + ql

Numerical effort: O(Kn2) → O(KLn)

Memory: O(Kn) → O(KL)

APPROXIMATION OF DTBC 21-A

Page 36: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

*

Example 2 :

free 2D Schrödinger-Equation in Ω = [0, 1] × [0, 1]

Initial function:

ψI(x, y) = sin(πy)eikxx−60(x− 1

2 )2 , (x, y) ∈ Ω

00.2

0.40.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

x

IT=150

|psi

(x,y

)|, t

=T

L = 5 : T = 150∆t

00.2

0.40.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

x

IT=300

|psi

(x,y

)|, t

=T

T = 300∆t

00.2

0.40.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

x

IT=500

|psi

(x,y

)|, t

=T

T = 500∆t

00.2

0.40.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

x

IT=150

|psi

(x,y

)|, t

=T

L = 20 : T = 150∆t

00.2

0.40.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

x

IT=300

|psi

(x,y

)|, t

=T

T = 300∆t

00.2

0.40.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

x

IT=500

|psi

(x,y

)|, t

=T

T = 500∆t

APPROXIMATION OF DTBC 22

Page 37: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

SIMULATION OF QUANTUM WAVEGUIDES

x0 X

0

Y

Vcontrol

ψ inc

y

ΩΓ Γ1 2

40.5nm32nm

20nm

20nm

• Incoming wave at x = 0:

ψinc(0, y, t) = sin(πy)e

−iEt~ , E = 29.9meV

• inhomogeneous DTBC at x = 0, DTBC at x = X

SIMULATION OF QUANTUM WAVEGUIDES 23

Page 38: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Little trick to suppress oscillations in time:

ψinc oscillates like e−iEt

~ in time.

E big:

fast oscillation of the solution in time

small time step size is necessary

high numerical effort for the analysis of steady state and long-timebehaviour

Define

ϕ(x, y, t) := e−iωt

ψ(x, y, t) mit ω = −E~.

ϕ solve the modified Schrödinger equation

i~ϕt = − ~2

2m∗(ϕxx + ϕyy) + (V − ω~)

| z

=:V

ϕ

SIMULATION OF QUANTUM WAVEGUIDES 24

Page 39: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

0 1 2 3 4 5 6 7 8 9 100

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

t [10−12 s]

V=0V=−E

f1(t) = ||ψ1(x, y, t) − ψref (x, y, t)||2f2(t) = ||ψ2(x, y, t) − ψref (x, y, t)||2

ψ1 is calculated with V = 0, ψ2 with V = −E and ψref is a numerical

reference solution, which has been calculated with high accuracy.

SIMULATION OF QUANTUM WAVEGUIDES 25

Page 40: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

0

20

40

60

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

3

y

Initial function: X=1, Y=0.86667, dx=0.016667, dy=0.016667, dt=0.0002, V=0

x

|psi

(x,y

)|, t

=0

T = 0∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

2.5

3

y [nm]

Quantenwellen.m, solution after T = −1.7998 ps, it = 1000

|ψ(x

,y,T

)|

T = 1000∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

2.5

3

y [nm]

Quantenwellen.m, solution after T = −0.1998 ps, it = 9000

|ψ(x

,y,T

)|

T = 9000∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

2.5

3

y [nm]

Quantenwellen.m, solution after T = 0.0202 ps, it = 10100

|ψ(x

,y,T

)|

T = 10100∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

2.5

3

y [nm]

Quantenwellen.m, solution after T = 0.0802 ps, it = 10400

|ψ(x

,y,T

)|

T = 10400∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

2.5

3

y [nm]

Quantenwellen.m, solution after T = 1.9002 ps, it = 19500

|ψ(x

,y,T

)|

T = 19500∆t

SIMULATION OF QUANTUM WAVEGUIDES 26

Page 41: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS

Drawbacks of the simulations:

• Hard walls (zero Dirichlet BCs) and edges are not practicable inindustry!

→ Geometry of computational domain shall be realized by

potentials also in the simulations.

→ How to choose the incoming wave and the initial function then?

• Potentials are NOT constant in the exterior domains!→ Decoupling of the modes for V (x, y) 6= const. after Sine-

Transformation is not possible

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS 27

Page 42: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS

Drawbacks of the simulations:

• Hard walls (zero Dirichlet BCs) and edges are not practicable inindustry!

→ Geometry of computational domain shall be realized by

potentials also in the simulations.

→ How to choose the incoming wave and the initial function then?

• Potentials are NOT constant in the exterior domains!→ Decoupling of the modes for V (x, y) 6= const. after Sine-

Transformation is not possible

Discrete Schrödinger equation:5-point scheme in space, Crank-Nicolson in time:

i~D+t ψ

nj,k = − ~

2

2m∗

`D

2x +D

2y

´ψ

n+ 12

j,k + Vn+ 1

2j,k ψ

n+ 12

j,k

Calculate new Eigenfunctions, which take the potential into account!

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS 27-A

Page 43: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Solve the eigenvalue equation on the exterior domains (j ≤ 0, j ≥ J):

− 1

2∆y2

nj,k−1,m − 2χn

j,k,m + χnj,k+1,m

´+ V

n+ 12

k χnj,k,m = E

nj,mχ

nj,k,m

with

∆y

KX

k=0

|χnj,k,m|2 = 1 and χ

nj,0,m = χ

nj,K,m = 0

for 0 ≤ k, m ≤ K, n > 0.

Transformation w.r.t. the eigenfunctions

ψnj,m = ∆y

K−1X

k=1

χnj,k,mψ

nj,k, 0 ≤ m ≤ K.

yields

i~D+t ψ

nj,m = − ~

2

2m∗D

2x ψ

n+ 12

j,m + Enj,mψ

n+ 12

j,m

same structure as the sine-transformed Schrödinger equation![N. Ben Abdallah, M.S. (2005)]

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS 28

Page 44: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Example 3: 2D channel

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

100

110Potential V(0,y)

yk

V(0

,yk)

potential V (y) = 400y(1 − y)

0 10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenfunction χ for j=0, |χ j,k,m

|2 of the m = 1st mode with the Eigenvalue λ = 65.3211

yk

|χ j,

k,m

|2

eigenfunction χ of m = 1

initial function:

ψIj,k = e

ikxj∆xχ

0j,k,m

incoming wave:

ψincj,k,n = e

ikxj∆xχ

0j,k,me

−iExn∆t with Ex =1 − cos(kx∆x)

∆x2

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS 29

Page 45: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

y

t = 0

x

|ψ(x

,y,t)

|2

T = 0∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

y

t = 50 ⋅ ∆ t = 0.01

x

|ψ(x

,y,t)

|2

T = 50∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

y

t = 150 ⋅ ∆ t = 0.03

x

|ψ(x

,y,t)

|2

T = 150∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

y

t = 250 ⋅ ∆ t = 0.05

x

|ψ(x

,y,t)

|2

T = 250∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

y

t = 500 ⋅ ∆ t = 0.1

x

|ψ(x

,y,t)

|2

T = 500∆t

0

0.5

1

00.2

0.40.6

0.81

0

0.5

1

1.5

2

y

t = 1700 ⋅ ∆ t = 0.34

x

|ψ(x

,y,t)

|2

T = 1700∆t

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS 30

Page 46: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

SCHRÖDINGER EQUATION ON CIRCULAR DOMAINS

Solve the Schrödinger equation (in polar coordinates)

iψt = −1

2

„1

r(rψr)r +

1

r2ψθθ

«

+V (r, θ, t)ψ, r > 0, 0 ≤ θ ≤ 2π, t > 0

on a circular domain Ω = [0, R] × [0, 2π] with TBC at x = R.

Problems:

• solve a second order difference equation with varying coefficients:

ajΨJ+1(z) + bj(z)ΨJ(z) + cjΨJ−1(z) = 0

• calculation of the convolution coefficients for the DTBC

→ "recursion from infinity"

• singularity at r = 0 → not equidistant offset-grid rj = rj+ 12

• approximation of the convolution coefficients and the -sum

[A.Arnold, M. Ehrhardt, M. S., I. Sofronov (2006)]

SCHRÖDINGER EQUATION ON CIRCULAR DOMAINS 31

Page 47: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Example 4:free Schrödinger equation on unit disc Ω1 = [0, 1] × [0, 2π]

ψI(r, θ) =

1√αxαy

e2ikxr cos θ+2ikyr sin θ−

(r cos θ)2

2αx−

(r sin θ)2

2αy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

0

1

0

5

10

15

20

initial function on Ω1 = [0,1]x[0,2π], ∆r = 1/128, ∆θ = 2π /128

|ψ(r

,θ,0

)|

initial function

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

0

1

0

1

2

3

4

5

6

7

solution on Ω1 = [0,1]x[0,2π] at time t= 0.125, ∆t = ∆r = 1/128, ∆θ = 2π /128

|ψ(r

,θ,t)

|

T = 0.125

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

0

1

0

0.5

1

1.5

2

2.5

3

3.5

solution on Ω1 = [0,1]x[0,2π] at time t= 0.25, ∆t = ∆r = 1/128, ∆θ = 2π /128

|ψ(r

,θ,t)

|

T = 0.25

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

initial function on Ω1 = [0,1]x[0,2π], ∆r = 1/128, ∆θ = 2π /128

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

solution on Ω1 = [0,1]x[0,2π] at time t= 0.125, ∆t = ∆r = 1/128, ∆θ = 2π /128

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

solution on Ω1 = [0,1]x[0,2π] at time t= 0.25, ∆t = ∆r = 1/128, ∆θ = 2π /128

SCHRÖDINGER EQUATION ON CIRCULAR DOMAINS 32

Page 48: Numerical solution of the Schrödinger equation on ...php.math.unifi.it/users/cimeCourses/2006/04/poster_schulke.pdf · Numerical solution of the Schrödinger equation on unbounded

Error due to the scheme/TBC:

L(ψ, ϕ, tn,Ω) :=||ψ(rj , θk, tn) − ϕ(rj , θk, tn)||Ω,2

||ϕ(rj , θk, tn)||Ω,2

ψ: numerical solution

ϕ: exact solution or numerical reference solution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510

−4

10−3

10−2

10−1

100

t

relative L2 error due to the scheme

J=K=64, ∆t=1/64J=K=128, ∆t=1/128J=K=256, ∆t=1/256

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510

−16

10−15

10−14

10−13

10−12

10−11

10−10

t

relative L2−error due to the TBC

J=K=64, ∆t=1/64

J=K=128, ∆t=1/128

J=K=256, ∆t=1/256

SCHRÖDINGER EQUATION ON CIRCULAR DOMAINS 33