neutron transport in a polarized proton medium

3
NEUTRON TRANSPORT PROTON MEDIUM A. V. Markov IN A POLARIZED UDC 621.039.51.12 Neutron transport in polarized proton media is considerably different from transport in unpolarized media because of the strong spin--spin dependence of the scattering cross section. For example, the neu- tron-proton interaction cross section for parallel spins is ~3b and is ~28b for antiparallel spins. Polar- ized proton targets are used at the present time to obtain beams of polarized neutrons and the question of the use of a polarized proton reflector in a pulsed fast reactor has been considered [1]. It was shown that one could achieve a neutron pulse halfwidth At ~ 1 ~sec by changing the albedo of such a reflector by means of a magnetic field. Because of this, there is interest in exact solutions of certain problems involving neutron transport in polarized proton media. Equations describing neutron transport in polarized proton media have been obtained [1]. ~VF-(P, ~)+Z- F- (P~ Q) = d~ {F4W--F-+Z+~W+-F+}; (1) (r, ~VF+ ~)+ Z+F+(r, ~)= ~ d~ {ZZW-+F-+~W++F+}, where F- and F + are the neutron fluxes in the triplet and singlet states; Y.- and Z + are the interaction cross sections for the corresponding states; W--, W +-, W-+, and W ++ are the probabilities of neutron spin reorientations during scattering. In plane geometry, Eq. (1) can be written for isotropic scattering in the following manner: 1 0 x ."~x ~(, ~)+~(~,~)=~ j ~(~, ~')d~', (2) -1 where ~(x, ~) = F+ is a vector; ~ is a matrix with elements Cij i z~- w__ z~ w+- ~ = 2Z+ 2Z+ (3) -~+W-+ Z ~ w++ 2;~+ A and the matrix ~ is where 5 = (Z-/~,+) > 1. Y=[0 ' We write the solution of Eq. (2) in the form (x,/~) = (v, ~) exp (--x/v). One can delineate three regions for v: 1 ~ v E (--l/a, 1/~); 2 ~ uE(--l, --I/c) or (l/a, I); 3 --* discrete values ui lying outside the interval (--1, 1). The general solution of Eq. (2) can be written in the following form: (4) Translated from Atomnaya Energiya, Vol. 38, No. 3, pp. 179-181, March, 1975. Original article submitted August 13, 1974. 19 75 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this artiele is available from the publisher for $15.00. 231

Upload: a-v-markov

Post on 10-Jul-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Neutron transport in a polarized proton medium

N E U T R O N T R A N S P O R T

P R O T O N M E D I U M

A. V. M a r k o v

IN A P O L A R I Z E D

UDC 621.039.51.12

Neutron t r anspor t in polar ized proton media is considerably different f rom t ranspor t in unpolarized media because of the s t rong spin--spin dependence of the sca t ter ing cross section. For example, the neu- t r o n - p r o t o n interact ion c ross sect ion for paral le l spins is ~3b and is ~28b for antiparallel spins. Po la r - ized proton ta rge ts a re used at the present t ime to obtain beams of polar ized neutrons and the question of the use of a polar ized proton re f lec tor in a pulsed fast r eac to r has been considered [1]. It was shown that one could achieve a neutron pulse halfwidth At ~ 1 ~sec by changing the albedo of such a ref lec tor by means of a magnetic field. Because of this, there is in teres t in exact solutions of cer ta in problems involving neutron t ranspor t in polar ized proton media. Equations describing neutron t ranspor t in polar ized proton media have been obtained [1].

~VF-(P, ~)+Z- F- (P~ Q) = d~ {F4W--F-+Z+~W+-F+}; (1)

(r, ~VF+ ~)+ Z+F+ (r, ~)= ~ d~ {ZZW-+F-+~W++F+},

where F- and F + a re the neutron fluxes in the t r iplet and singlet s ta tes; Y.- and Z + a re the interaction c ros s sections for the corresponding s tates; W-- , W +-, W -+, and W ++ are the probabil i t ies of neutron spin reor ientat ions during scat ter ing.

In plane geometry , Eq. (1) can be written for isotropic sca t ter ing in the following manner :

1 0 x

."~x ~ ( , ~ )+~(~ ,~ )=~ j ~(~, ~')d~', (2) - 1

where ~(x, ~) = F+ is a vector; ~ is a mat r ix with elements Cij

i z~- w__ z~ w+- ~= 2Z+ 2Z+ (3)

-~+W-+ Z~ w++ 2;~+ A

and the mat r ix ~ is

where 5 = (Z-/~,+) > 1.

Y=[0 '

We write the solution of Eq. (2) in the form

(x,/~) = �9 (v, ~) exp (--x/v).

One can delineate th ree regions for v:

1 ~ v E ( - - l / a , 1/~);

2 ~ uE(--l, --I/c) or (l/a, I);

3 --* d i scre te values ui lying outside the interval (--1, 1).

The genera l solution of Eq. (2) can be writ ten in the following fo rm:

(4)

Trans la ted f rom Atomnaya Energiya, Vol. 38, No. 3, pp. 179-181, March, 1975. Original ar t ic le submitted August 13, 1974.

�9 19 75 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy o f this artiele is available from the publisher for $15.00.

231

Page 2: Neutron transport in a polarized proton medium

h -x/v i ~ ( x , ~ t ) : ~ [A(vi) i~(vi ,~)e + A ( - - v i ) { l ) ( - - v i , ~ ) e x/vi]

i= i

j ( j + (l) (2)

The d i s p e r s i o n funct ion fo r the de t e rmina t i on of d i s c r e t e va lues vi is

A (z)= i - -2Ci izT (i/(~z)--2C~2zT ( i /z)+4Cz2T (l/z) T (i/(~z),

where T(1/z) = a rg th (1 / z ) , C = det C and the e igerdunct ions a r e

~ (~ vl,r3 = (~ ~ t~ C2~-- 2CviT (I/(~vi) v~

vt~p, [ -- C i~ (~v-- ~)

[ Cv__~ +~(~v- -p , ) [C~- -2~CT (or)] ., *~ ' (~, ~) = |~

\ - - C~i~ (v-- ~)

[ City ) [ crv--~

*(" (v' Vt) = ~ vv (--~) +(o v (v-- }z) '

where

] (v) = Cz~-- 2vCT (I/(~v), ~ (v) = i - - 2vC~2T (v) - - 2vCiiT (I/(~v).

(5)

(6)

(7a)

(7b)

(7c)

(7d)

The o r thogona l i ty and n o r m a l i z a t i o n r e l a t ions needed fo r the d e t e r m i n a t i o n of the coeff ic ients A (v i), A 1 (v), and A2(v) have been d e m o n s t r a t e d [2]. Since the functions ~1) and ~ l ) a r e not o r thogona l fo r v = v ' , we in t roduce the fol lowing two new funct ions :

Xt (~, ~)=N~e~i~ (v, ~)--Ni2~9 ) (v, W); x~ (~, ~)=N~O7' (~, ~)--N~Oi" (v, ~). (8a)

Fo r Xt(v, /~) and X2(v, /~), the o r thogona l i ty r e l a t ions exhibit the fol lowing f o r m :

(X~, Op0 = N~5 (v-- v');

(x~, (I)(#)=0; (8b) (x~, ~ , ) : N ~ (V-~); (x~, Oi~') = O,

where by def ini t ion i

- 1

~+(v, 9) is a so lu t ion of the adjoint equat ion where

(~)(2h (1)(~9 = N28 (v-- v').

We in t roduce the e x p r e s s i o n s fo r the n o r m a l i z a t i o n funct ions :

L(crv~) 2 - [ - o'~'i i -- T (i/(~vi)]_ N i • = • 2v~ { Ci~C~t

-~[C~2--2C,,T (I/ovi)]2 [ ~ - - T(i/'vi)] } ;

N U : -- CjiV {Cii + C22-- 2vC [T (v) + T (av)]} ; IVii = v {Ct2C21 ~- [C ti - - 2vCT (~)]2 + a~C2v2; N ~ =: v { C i2C 2i q- [ C ~2 -- 2vC T (~;)]~+ ~C2v2;

N l = v2C: { i -- 2vCliT ((Iv) - - 2vC~2T (v) + v~C [4T (~) T (o~) - - n~]}~+ ~2C2va {2Cv [T (v)

+ T (av)]-- Cti-- C2~} ~; N~ = ~ {l--2vC22T (v)--2vCitT ( l /or)

+ 4"~CT (v) T ( i / ~ ) } 2 + n~va {C2 2 _ 2vCT (i/~4;) }3:

where C = det C.

We obtain a so lu t ion of Eq. po l a r i zed p ro ton m e d i um .

(9)

(10a)

(10b) (10c) (10d)

(10e)

(10f)

(1) f o r a plane i so t rop ic s o u r c e emi t t ing p o l a r i z e d neu t rons in an infinite This can be done by us ing the G r e e n ' s funct ion [3] fo r Eq. (2) in an infinite

232

Page 3: Neutron transport in a polarized proton medium

medium.

F (x)= ~ 2Ct~T ( i /avi) - x / v ~ N~--~ ~ ~

i

/ • t[C~--2C'viT (l /ovi) ] viT (i/v~) J

l/o e -~/~ " ,f C2~

+ S dv 9-~t +L(C2t'tV2t+C~2Ntt) [.--C~tl o

i e 2Ct~vr (l/6v) ~ .

l/a

Assuming 100% polar izat ion of the medium, we obtain numerical values for the elements of the mat r ix C

- (t,8~5 o - k4,052 0,44S)

by using the resul ts of [1] and (r = 11.839, In this case, the d ispers ion function has two roots on the real axis, v i = ~:1.86948 [2].

We consider the case of a source emitting neutrons with a spin antiparallel to the spin of the pro-

(11)

i , 2. 3.

L I T E R A T U R E C I T E D

Yu~ N. Kazachenkov and V. V. Orlov, At. Energ. , 32, 297 (1972). C. Siewert and P. Shieh, Nucl. Energy, 2__77, 5 (1967). K. Case and P. Zweifel, Linear T ranspor t Theory [Russian translation], Mir, Moscow (1972).

233