neural differentiation in aggregates containing mixtures of cell types

3
296 Specialia EXPERIENTIA 30/3 them under the electron microscope. The observations were realized with a Philips 300 EM 9. Results and discussion. In the fine sections we observed the binucleate cells subjected to the action of the 3'AdR for 3, 5, 7 and 9 h (Figure 1). The presence of 3'AdR for 2 h before the caffeine treatment justifies us in assuming that the binucleate cells produced subsequently have gone through their anaphase and telophase under the effect of the 3'AdR. The nuclei of these cells show numerous lobulations at the surface. The prenucleolar material can be observed in the interchromatinic spaces in the form of small round bodies of varying sizes (Figure 2b and c) and of argyrophilic nature (Figure 2 a). These prenucleolar bodies appear compact and consist of apparently fibrillar material, homogeneously distributed and possessing an electron density similar to that of the pars fibrosa of a normal nucleolus. In the first few hours of the interphase, the prenucleolar bodies generally do not show any vacuoles inside them, but in the course of the following hours, in addition to some small bodies, other larger bodies appear with vacuoles in them. Both the smaller and the larger ones generally show granules 400-500 in diameter on the periphery and on the inner surface of the vacuoles (Figure 2g). In some of the prenucleolar bodies observed, there is a small 'cap' of material that appears to be trabecular in nature. With the uranyl-EDTA-lead method, which is selective for ENA staining 7, the prenucleoIar bodies show up in strong contrast, while the chromatin remains unstained (Figure 2e). With this staining technique, the granules as well as the described 'caps' appear positive (Figure 2f-g). With silver impregnation, the prenucleolar bodies stand out clearly in the nucleus (Figure 2d), appearing homogeneous in point of staining intensity and size of sliver grains, which are generally smaller than those seen in the rest of the nucleus. As morphological elements typicaI ~ of telophase nuclei, the prenucleolar bodies have already been studied in previous papers 1, ~, and it is worth calling attention to their argyrophilia ~0, n and to their staining affinity with uranyl-EDTA-lead~, ~2. The absence of nucleolar reor- ganization in the telophase, while the prenucleolar bodies are still present under the effect of RNA synthesis inhi- bitors, has been studied under the light microscope 1,~. This paper confirms the results previously obtained, and the staining peculiarities of the prenucleolar material. The phenomenon of vacuolization observed in the larger prenucleolar bodies - probably due to the coalescence of smaller bodies - appears to be similar to that which is found in interphase nucleoli treated with 3'AdR 2. In addition to the prenucleolar material of fibrillar character, and in close connexion with it, we can also observe other ultrastructural elements: the small caps of apparently trabecular material, similar to the 'coiled bodies' ~3, and granules measuring 400-500 A in diameter which seem to resemble those observed in Allium cepa interphase nucleoli under the action of 3'AdR ~4. Resumen. E1 estudio ultraestructural de los cuerpos prenucleolares en c6iulas meristematicas de Allium cepa, en las que se ha inhibido la reorganizacion del nucleolo pot accion del 3'AdR, revels la naturaleza fibrilar de los mismos, la existencia sobre ellos de granulos de 400-500 de dis asl como formaciones a modo de ~cap)) de material con aspecto trabecular. Se observa a lo largo del tratamiento un fendmeno de vacuolaci6n semejante al descrito en nucleolos interfasicos tratados con 3'AdR. A. M. SACRISTAN-GARATE 15 and J. C. STOCKERT Departarnento de Citologia, Instituto de Biologia Celular, C.S,I.C., Veldzquez 744 Madrid-6 (Spain), 26 October 7973. 9 j. C. STOCKERT, O. D. COLMANand P. ESPONDA, J. Microsc. 9, 823 (1970). 10 C. J. TANDLER, Expl. Cell Res. 77, 560 (1959). 11 N. I~. DAS and M. ALFERT, Ann. Histochem. 8, 109 (1963). 12 j. L. DIEZ, rq[. F. IV[ARIN,P. ]~SPONDA and J. C. STOCK~RT, Expe- rientia 27, 266 (1971). 13 W. BERNHARD, in Advances in Cytopharmacology, First Interna- tional Symposium on Cell Biology and Cytopharmacology (Rave Press, New York 1971), vol. 1, p. 49. 14 G. GI~IENEz-MARTiN, M. C. RISUEI~IO, M. E. FERNANDEZ-GOMEZ and P. AHMADIAN, Cytobiologie 7, 181 (1973). 15 The work reported in this paper was undertaken during the tenure of a Fellowship awarded by the Ministerio de Edueaci6n y Cieneia of Spain to one of us (A.S.G.). Neural Differentiation in Aggregates Containing One of the most striking aspects of neural development is the differentiation of several types of neurons which associate themselves by means of specialized junctions, the synapses. Very littte is known about the cell interac- tions required for the development of the synaptic junction. The great complexity of the embryonic neural tube makes it very difficult to analyse these interactions in vivo, so that it is advisable to use simplified models. Reaggregation cultures1, 2 which have proved to be important tools for studying cell interactions, have been used to study various aspects of neural differentiation *-9. This culture technique is being used in our laboratory to study interactions between different types of neural cells or between neural and non-neural cells when they become associated in 'combined' aggregates. Some of the ultra- structural observations reported here indicate that this procedure can give valuable information on the mecha- nisms which regulate synapse formation. Optic lobe (OL), telencephalon (T), neural retina (NR) and limb (LB) cells from 7-day-old White Leghorn chick embryos were used. These tissues were chosen because Mixtures of Cell Types some of them (e.g.: neural retina and optic lobe) are known to interconnect selectively during development. Before dissociation, OL and T were freed from surround- ing mesenchyme, and NR isolated from pigmented retina. Dissociation was carried out as previously described ~, 5 following with some modifications the procedures developed by MoscoNA 1 and STEI~BER~ 2. Cell suspen- sions were adjusted to a final concentration of 10-20 • 1 A. A. ~r in Cells and Tissues in Culture (Ed. E. N. WILL- ~ER; Academic Press, New York 1965), vol.1, p. 489. M. S. STEINBERG, in Methods in Developmental Biology; (Eds. E. H. WILT and N. K. WESSELS; Crowell, New York 1967), p. 565. 3 A. STEFANELLI,A. ~V[. ZACCHEI,S. CARAVITA,A. CATALDIand L. A. IERADI, Experientia 23, 199 (1967). R. ADLER, Devl. Biol. 27,403 (1970). s R. ADLER, ExpI. Cell Res. 68, 395 (1971). R. ADLER, Expl. Cell Res. 77, 367 (1973). 7 G. R. DE LONG and R. L. SIDMA~, Devl. Biol. 22, 584 (1970). s j. B. SHEFFIELD and A. A. MoscoN*, Devl. Biol. 23, 36 (1970). 9 S. M. CRAII~ and M. B. BORNSTEIN, Science 776, 182 (1972).

Upload: angela-maria-suburo

Post on 12-Aug-2016

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Neural differentiation in aggregates containing mixtures of cell types

296 Specialia EXPERIENTIA 30/3

t h e m u n d e r t he e lec t ron microscope. T he obs e r va t i ons were real ized w i t h a Ph i l ips 300 E M 9.

Results and discussion. I n t he f ine sect ions we obse rved the b inuc l ea t e cells sub jec t ed to t h e ac t ion of t he 3 ' A d R for 3, 5, 7 and 9 h (Figure 1). T he presence of 3 ' A d R for 2 h before t h e caffeine t r e a t m e n t jus t i f ies us in a s suming t h a t t he b i n u c l e a t e cells p roduced s u b s e q u e n t l y h a v e gone t h r o u g h the i r a n a p h a s e a n d t e lophase u n d e r t he effect of t h e 3 'AdR.

The nucle i of these cells show n u m e r o u s lobu la t ions a t t he surface. The p renuc leo la r m a t e r i a l can be obse rved in t he i n t e r c h r o m a t i n i c spaces in t h e fo rm of smal l r o u n d bodies of v a r y i n g sizes (Figure 2b a n d c) a n d of a rgyrophi l i c n a t u r e (Figure 2 a). These p renuc leo la r bodies a p p e a r c o m p a c t a n d cons is t of a p p a r e n t l y f ibr i l lar mate r ia l , homogeneous ly d i s t r i b u t e d a n d possess ing a n e lec t ron dens i ty s imi la r to t h a t o f t he pars f ib rosa of a n o r m a l nucleolus . I n t he f i rs t few hour s of t h e in te rphase , t he p renuc leo la r bodies genera l ly do n o t show a n y vacuoles ins ide t h e m , b u t in t he course of t he fol lowing hours , in add i t i on to some smal l bodies, o the r larger bodies a p p e a r w i t h vacuoles in t h e m . B o t h t he smal le r a n d t he larger ones genera l ly show granules 400-500 in d i a m e t e r on t he p e r i p h e r y a n d on t he inne r surface of t h e vacuoles (Figure 2g). I n some of t he p renuc leo la r bodies observed, t h e r e is a smal l ' cap ' of m a t e r i a l t h a t appea r s to be t r a b e c u l a r in na tu re .

W i t h t h e u r a n y l - E D T A - l e a d m e t hod , w h i c h is select ive for E N A s t a in ing 7, t he p renuc leoIa r bodies show up in s t rong con t ras t , whi le t h e c h r o m a t i n r e m a i n s u n s t a i n e d (Figure 2e). W i t h t h i s s t a in ing t echn ique , t he granules as well as t he descr ibed ' caps ' a p p e a r pos i t ive (Figure 2f-g).

W i t h s i lver impregna t i on , t he p renuc leo la r bodies s t a n d ou t c lear ly in t he nuc leus (Figure 2d), a p p e a r i n g homogeneous in p o i n t of s t a in ing i n t e n s i t y a n d size of s l iver grains, wh ich are genera l ly smal le r t h a n those seen in t he res t of the nucleus.

As morpholog ica l e l emen t s t yp i ca I ~ of t e lophase nuclei, t h e p renuc leo la r bodies h a v e a l r eady been s tud ied in p rev ious p a p e r s 1, ~, a n d i t is w o r t h cal l ing a t t e n t i o n to t h e i r a rgyroph i l i a ~0, n a n d to t h e i r s t a in ing a f f in i ty w i t h u r any l -EDTA- lead~ , ~2. The absence of nuc leo la r reor- gan iza t ion in t he te lophase , while t h e p renuc leo la r bodies are sti l l p r e sen t u n d e r t he effect of R N A syn thes i s inhi-

b i tors , ha s been s tud ied u n d e r t h e l igh t microscope 1,~. Th i s p a p e r conf i rms t he resu l t s p rev ious ly ob ta ined , a n d t h e s t a in ing pecul ia r i t ies of t he p renuc leo la r ma te r i a l . The p h e n o m e n o n of v a c u o l i z a t i o n obse rved in t h e la rger p renuc leo la r bodies - p r o b a b l y due to t h e coalescence of smal le r bodies - appea r s to be s imi la r to t h a t w h i c h is found in i n t e r p h a s e nucleol i t r e a t e d w i t h 3 ' A d R 2. I n add i t i on to t h e p renuc leo la r m a t e r i a l of f ibr i l la r cha rac te r , a n d in close c o n n e x i o n w i t h it, we can also observe o the r u l t r a s t r u c t u r a l e l emen t s : t h e smal l caps of a p p a r e n t l y t r a b e c u l a r mate r ia l , s imi la r to t he 'coi led bodies ' ~3, a n d granu les m e a s u r i n g 400-500 A in d i a m e t e r w h i c h seem to r e semble those obse rved in All ium cepa i n t e r p h a s e nucleol i u n d e r t he ac t ion of 3 ' A d R ~4.

Resumen. E1 es tudio u l t r a e s t r u c t u r a l de los cuerpos p renuc leo la res en c6iulas m e r i s t e m a t i c a s de All ium cepa, en las que se h a i nh ib ido la reorgan izac ion del nucleolo p o t accion del 3 'AdR, r e v e l s la na tu ra l eza f ibr i la r de los mismos, la ex i s tenc ia sobre ellos de g ranu los de 400-500

de d i s asl como formaciones a modo de ~cap)) de m a t e r i a l con aspec to t r abecu la r . Se obse rva a lo largo del t r a t a m i e n t o u n f e n d m e n o de vacuo lac i6n s e m e j a n t e al descr i to en nucleolos in te r fas icos t r a t a d o s con 3 'AdR.

A. M. SACRISTAN-GARATE 15 a n d J. C. STOCKERT

Departarnento de Citologia, Instituto de Biologia Celular, C.S,I.C., Veldzquez 744 Madrid-6 (Spain), 26 October 7973.

9 j. C. STOCKERT, O. D. COLMAN and P. ESPONDA, J. Microsc. 9, 823 (1970).

10 C. J. TANDLER, Expl. Cell Res. 77, 560 (1959). 11 N. I~. DAS and M. ALFERT, Ann. Histochem. 8, 109 (1963). 12 j. L. DIEZ, rq[. F. IV[ARIN, P. ]~SPONDA and J. C. STOCK~RT, Expe-

rientia 27, 266 (1971). 13 W. BERNHARD, in Advances in Cytopharmacology, First Interna-

tional Symposium on Cell Biology and Cytopharmacology (Rave Press, New York 1971), vol. 1, p. 49.

14 G. GI~IENEz-MARTiN, M. C. RISUEI~IO, M. E. FERNANDEZ-GOMEZ and P. AHMADIAN, Cytobiologie 7, 181 (1973).

15 The work reported in this paper was undertaken during the tenure of a Fellowship awarded by the Ministerio de Edueaci6n y Cieneia of Spain to one of us (A.S.G.).

Neural Differentiation in Aggregates Containing

One of t h e m o s t s t r ik ing aspec ts of neura l d e v e l o p m e n t is t he d i f f e r en t i a t i on of severa l t ypes of neu r ons wh ich associa te t hemse lves b y means of special ized junc t ions , t h e synapses . Ve ry l i t t t e is k n o w n a b o u t t he cell in te rac - t ions r equ i red for t he d e v e l o p m e n t of t he synap t i c j unc t ion . The g rea t c o m p l e x i t y of t he e m b r y o n i c neu ra l t u b e m a k e s i t v e r y di f f icul t to ana lyse these i n t e r ac t i ons in vivo, so t h a t i t is adv i sab le to use s impl i f ied models . R e a g g r e g a t i o n cul tures1, 2 w h i c h h a v e p r o v e d to be i m p o r t a n t tools for s t u d y i n g cell in te rac t ions , h a v e been used to s t u d y va r ious aspects of neu ra l d i f f e r en t i a t i on *-9. Th i s cu l tu re t e c h n i q u e is be ing used in our l a b o r a t o r y to s t u d y in t e r ac t i ons b e t w een d i f fe ren t types of neu ra l cells or b e t w e e n neu ra l a n d n o n - n e u r a l cells w h e n t h e y become assoc ia ted in ' c o m b i n e d ' aggregates . Some of t he u l t ra - s t r u c t u r a l obse rva t i ons r e p o r t e d here i nd i ca t e t h a t t h i s p rocedure can give v a l u a b l e i n f o r m a t i o n on t h e mecha- n i sms w h i c h regu la te synapse fo rmat ion .

Opt ic lobe (OL), t e l encepha lon (T), neu ra l r e t i n a (NR) a n d l imb (LB) cells f rom 7-day-old W h i t e L e g h o r n ch ick e m b r y o s were used. These t i ssues were chosen because

Mixtures of Cell Types

some of t h e m (e.g.: n e u r a l r e t i n a and opt ic lobe) are k n o w n to i n t e r c o n n e c t se lec t ively d u r i n g deve lopmen t . Before dissociat ion, OL a n d T were freed f rom su r round - ing mesenchyme , a n d N R iso la ted f rom p i g m e n t e d re t ina . Dissoc ia t ion was car r ied ou t as p rev ious ly descr ibed ~, 5 fol lowing w i t h some mod i f i ca t ions t he p rocedures deve loped b y MoscoNA 1 a n d STEI~BER~ 2. Cell suspen- sions were a d j u s t e d to a f ina l c o n c e n t r a t i o n of 10-20 •

1 A. A. ~r in Cells and Tissues in Culture (Ed. E. N. WILL- ~ER; Academic Press, New York 1965), vol.1, p. 489. M. S. STEINBERG, in Methods in Developmental Biology; (Eds. E. H. WILT and N. K. WESSELS; Crowell, New York 1967), p. 565.

3 A. STEFANELLI, A. ~V[. ZACCHEI, S. CARAVITA, A. CATALDI and L. A. IERADI, Exper i en t i a 23, 199 (1967). R. ADLER, Devl. Biol. 27 ,403 (1970).

s R. ADLER, ExpI . Cell Res. 68, 395 (1971). R. ADLER, Expl . Cell Res. 77, 367 (1973).

7 G. R. DE LONG and R. L. SIDMA~, Devl. Biol. 22, 584 (1970). s j . B. SHEFFIELD and A. A. MoscoN*, Devl. Biol. 23, 36 (1970). 9 S. M. CRAII~ and M. B. BORNSTEIN, Science 776, 182 (1972).

Page 2: Neural differentiation in aggregates containing mixtures of cell types

15.3. 1974 Speeialia 297

Fig. 1. Aggregate formed after 8 days in culture by optic lobe (OL) ceils. Several neuroblasts and numerous ceil processes can be seen. Post- fixation in potassium permanganate. • 8,800.

Fig. 2. Same type of aggregate as in Figure 1, but postfixed in osmium tetroxide. 'Axon-like' processes (a) contain microtubules and mito- chondria, 'dendrite-like' processes (d) contain ribosomes as well. • 20,000.

Fig. 3. Detail of a cell process belonging to the same material as in Figure 1. A cluster of clear vesicles of 400-600 A can be seen within the process. • 32,000.

l0 s cells/ml in cul ture m e d i u m (medium 199 supplemen- t ed wi th 10% chicken serum and 10% 9-day-old chick embryo extract ) . In t he 'pure ' cultures, 3 ml alicluots of one of the cell suspensions were placed in 25 ml Er len- meye r flasks sealed wi th rubbe r s toppers . In the ' combin- ed ' cultures, 1.5 ml a l iquots of two of the cell suspensions were mixed before cul turing. The flasks were placed in a wa te r b a t h a t 37~ wi th gy ra to ry ag i ta t ion at 90 rpm. The cul ture m e d i u m was changed twice weekly. Af ter 8 days in culture, the resul t ing aggregates were f ixed for 1 h in the cold wi th a m ix tu r e of equal vo lumes of cul ture m e d i u m and 5% g lu ta ra ldehyde in 0.1 M cacodyla te buffer, p H 7.4, followed by a brief wash ing in t he same buffer. They were fu r the r processed for 1 h w i th e i ther 1% osmium t e t rox ide in 0.1 M cacodyla te buffer, or 0.8% po tas s ium p e r m a n g a n a t e in the same buffer, d e h y d r a t e d in ace tone and e m b e d d e d in E p o n 812.

'Pure' aggregates. After 8 days in culture, OL aggregates show m a n y neuroblas t s (Figure 1). The cell somas have a

lobula ted nucleus, and the i r cy top lasm is r ich in r ibosomes. Numerous cell processes (Figure 1), of 2 t ypes (Figure 2), are observed. 'Axon-l ike ' processes con ta in mi tochondr i a and longi tudinal ly or iented microtubules , whereas 'den- dr i te- l ike ' processes conta in r ibosomes as well. Some processes show bulbous expans ions conta in ing ve3icles of d i f ferent sizes, resembl ing the ' axon-g rowth cones ' descr ibed in neural cul tures 10. This f inding suggests t h a t a t least some of the processes are fo rmed dur ing culturing. Cell processes are f r equen t ly seen in con tac t w i th o ther cell processes or w i th cell somas. At the con tac t areas, junc t iona l s t ruc tures of the zonula adhae ren tes type , fo rmed by th ickenings of ad j acen t p l a sma m e m b r a n e s separa ted by a 100-200 A gap, can be seen. Al though synap t i c m e m b r a n e special izat ions are no t observed, a few processes conta in clusters of small (400-600 A) clear

10 M. B. BI~NGE, J. Cell Biol. 56, 713 (1973).

Fig. 4. Low power light micrograph of an aggregate formed by a mixture of optic lobe and limb bud ceil suspensions (OL+LB) after 8 days in culture. Limb bud cells form a central core surrounded by elongated cells, whereas optic lobe cells form clusters (arrows) adherent to the latter. 1 p.m Epon section, toluidine blue stained.

Fig. 5. Electron mierograph of the neural portion of the same aggregate as in Figure 4. Two cell processes appear forming a 'synaptic-like' structure. Note the numerous clear vesicles (arrows). The plasma membranes of both processes show a higher electron density at the junctional zone. Osmium tetroxide postfixation. • 30,000.

Fig. 6. Same material as in Figure 5. Another cell process shows many large vesicles with a dense central core. • 30,000.

Page 3: Neural differentiation in aggregates containing mixtures of cell types

298 Specialia ]~XPERIENTIA 30/3

vesicles (Figure 3), r e sembl ing t h e synap t i c vesicles of m a t u r e synapses~L These vesicles seem to be bes t p re se rved in m a t e r i a l pos t f ixed w i t h p o t a s s i u m p e r m a n - ganate . I n some cases, i sola ted vesicles of 1000-1400 A in d iameter , w i t h a cen t r a l dense core, can be seen a long cell processes or in cell somas.

Neu rob l a s t s found in aggrega tes fo rmed b y T or N R cells h a v e t he same morpho log ica l charac ter i s t ics , al- t h o u g h t he l a t t e r show a pecu l ia r spa t i a l o rgan iza t i on wh ich has been descr ibed b y SI~EFFI~LD a n d 1VIoscoNA s. Besides occasional c lus ters of synap t i c - l ike vesicles, no o the r s y n a p t i c e l emen t s could be obse rved in t h e i r processes.

'Combined' aggregates. ' C o m b i n e d ' O L + N R and O L + T aggrega tes do n o t show a n y s t r i k ing u l t r a s t r u c t u r a l differences w h e n c o m p a r e d w i t h ' pu re ' OL, N R or T ones. A l t h o u g h b o t h t ypes of ' c o m b i n e d ' cu l tu res a p p a r e n t l y h a v e a g rea te r n u m b e r of cell processes, morpho log ica l synap t i c d i f f e r en t i a t i on seems to be a t t he same s tage as in ' pure ' aggregates . ADLER a n d TEITELMAN 1~ observed t h a t , a f te r 8 days in c u l t u r e , t he a c t i v i t y of t he enzyme cho l ine-ace ty l t rans fe rase , wh ich is respons ib le for t he syn thes i s of ace ty lchol ine , is h igher in ' c o m b i n e d ' O L + N R aggrega tes t h a n in ' pu re ' OL or N R ones. I t could seem surpr i s ing t h a t no dif ference in synapse f o r m a t i o n is found w h e n t h e u l t r a s t r u c t u r e of t he same aggregates is compared . On t he basis t h a t b iochemica l and s t r u c t u r a l aspec ts of d i f f e r en t i a t i on m u s t no t necessar i ly be synch ron ica l (see also ref.~a), we are now s t u d y i n g t he same t y p e of aggregates k e p t in cu l tu re for longer periods.

I n O L + L B ' c o m b i n e d ' aggregates , b o t h t ypes of ceils show a pecul ia r so r t ing -ou t b e h a v i o r (Figure 4). Af te r 8 days in cul ture , LIB cells fo rm a cen t r a l core of s te l la ted ceils i m m e r s e d in a n a m o r p h o u s ex t race l lu la r s u b s t a n c e and s u r r o u n d e d b y a shell of e longa ted cells. OL cells a p p e a r fo rming clusters a d h e r e n t to th i s ou te r shell. This t e n d e n c y of r e c o n s t r u c t e d neu ra l t i s sue to cover on ly pa r t i a l l y o the r t i ssues in ' c o m b i n e d ' cu l tu res ha s been descr ibed b y S ~ I ~ E I ~ t*. I n t he neu ra l region of these O L + L B aggregates , t he re seems to be a g rea te r n u m b e r of cell processes and, moreover , synapse fo rma- t i on seems to be more a d v a n c e d t h a n in ' pu re ' OL aggregates . M a n y cell processes show clusters of synap t i c - l ike vesicles of t he clear t y p e a n d / o r larger vesicles (800- 1500 A) c o n t a i n i n g a c en t r a l dense core. I n these ' com- b i n e d ' aggregates , t he c lus ters of vesicles o f ten a p p e a r associa ted w i t h m e m b r a n e specia l iza t ions which suggest t he ex is tence of a s y n a p t i c complex (Figures 5 and 6).

O t h e r au tho r s h a v e shown t h a t e m b r y o n i c neura l cells in r eaggrega t ion cu l tu res are able to a t t a i n f u n c t i o n a l synapse d i f f e ren t i a t ion ~. The l e n g t h of t i m e requ i red for t he a p p e a r a n c e of synap t i c s t ruc tu re s in v i t ro depends on t he age a n d t y p e of donor t issuea, S,~,l~-~L Seven-

day-o ld opt ic lobe cells, which a t th i s age h a v e no t fo rmed s y n a p t i c s t r u c t u r e in v ivo ~*, are able to form synapse - l ike s t ruc tu re s a f te r on ly 8 days in cu l tu re in c o m b i n a t i o n w i t h l i m b b u d cells, a l t h o u g h t h e y fai l to do so in ' pu re ' cul tures , or in c o m b i n a t i o n w h i t t e l encepha lon or neu ra l r e t i n a cells. L i m b b u d cells, therefore , seem to p rov ide some fac to r w h i c h s t i m u l a t e s synapse f o r m a t i o n b y op t ic lobe ceils ~9, s0.

Resumen. Se descr ibe la d i fe renc iac i6n u l t r a e s t r u c t u r a l a l canzada en cul t ivos de reagregac idn por c61ulas neura les e m b r i o n a r i a s despues de 8 dins in v i t ro . Se e s t u d i a r o n agregados <~puros~ fo rmados por c61ulas de ldbulo 6pt ico, r e t i n a neu ra i o telenc6falo, y cu l t ivos , c o m b i n a d o s ~ de ldbulo 6pt ico + r e t i n a n e u r a l (OL + NR), 16bulo 6pt ico + te lenc6falo (OL + T), y ldbulo 6pt ico q- esbozo de m i e m b r o (OL + LB). E n los cul t ivos <~puros~ las c61ulas poseen ca rac te r l s t i cas de neurob las tos , pero el proceso de s inap tog6nes i s estA poco desarrol lado. No se e n c u e n t r a n di ferencias s ign i f ica t ivas en t re la d i fe renc iac idn a l c a n z a d a p o t los cu l t ivos <~puros~> y los <~combinados~ OL + N R y OL + T. Po r el con t ra r io , en los (~combinados~> OL + L B Ia s inap tog6nes i s est~ m u c h o m~s a v a n z a d a y se e n c u e n t r a n p ro longac iones s inApticas s e m e j a n t e s a l a s del adul to .

ANOXL~ MARIA SUBURO a n d R. ADLER ~1

Imtituto de Biologla Celular, FacuHad de Medicina, Paraguay 2755 Buenos Aires (Argentina), 23 aruly 7973.

11 E. DE ROBERTIS, Science 156, 907 (1967). 1~ R. ADLER and G. TEITELMAN, manuscript in preparation. i3 N. W. SEEDS and A. E. VATTEa, Proe. natn. Acad. Sci., USA 68,

3219 (1971). 14 IV[. S. STEINBERO, J. exp. Zool. 773, 395 (1970). 15 K. MELLER, W. BREIPOHL, H. H. WAGNEa and A. KNUT~, Z. Zell-

forsch. 101, 135 (1969). 16 y. SHIMADA, D. A. FISCHMAN and A. A. MOSCOXA, Proc. natn. Aead.

Sei., USA 62, 715 (1969). 17 M. B. BOR~STEIN and P. G. MODEL, Brain Res. 37, 287 (1972). is W. YVEcHSL~R and K. MELLER, in Progress in Brain Research:

Developmental Neurology (Eds. C. G. BERNHARD and J. P. SCHADs Elsevier Publishing Co., Amsterdam. (1967), vol. 26, p. 93.

19 Acknowledgements. The authors are deeply indepted to Dr. G. J. ETCHEVERRY for his critical reading of the manuscript, and to Mrs. M. S. ~E IBAR, Miss. N. ALASSIA, Mrs. M. A. DE IBAR and Mr. A. SAENZ for their competent technical assistance.

2~ work was supported by a grant from the Consejo Nacional de Investigaciones Cientlficas y T6cnicas de la Repflblica Argen- tina, and by NIH ~ a n t No. 2 ROI 069533-07 NEUA to Professor DE ROBERTIS.

21 R. ADLER is a Member of the Research Career from the Consejo Naeional de Investigaciones Cientificas y T~cnicas de la Repfiblica Argentina.

The Allergenic Cross-Reactivity of Antisera made of a Homopolymer, Dextran

D e x t r a n , a h 0 m o p o l y m e r cons i s t ing of 96% ~-1,6 l inked glucose un i t s can be o b t a i n e d in f rac t ions r a n g i n g in molecu la r we igh t f rom 1400 to 1.9 • 10 ~1. T he homo- p o l y m e r m a y exis t in p re fe r red conf igura t ionsK Studies u t i l iz ing th i s h o m o p o l y m e r h a v e d e m o n s t r a t e d t h a t t h e va l ency of an t i body , b o t h of t he I gG a n d IgM class, v a r y w i t h t h e size of t he d e x t r a n K B i v a l e n t h a p t e n s can elici t t h e pass ive c u t a n e o u s a n a p h y l a x i s r eac t ion a n d p rec ip i t a t e w i t h a n t i b o d y whereas u n i v a l e n t h a p t e n s canno t . RICHTER~ has shown t h a t a pass ive a n a p h y l a c t i c

Against Different Molecular Weights

reaction (PCA) can occur if the antiserum is of sufficient strength and with dextran homopolymers of molecular weight as low as 3600. This study was undertaken to determine the degree of cross-reactivity between antibody made against various sized dextran fractions and to determine the lower limit molecular weight which will elici te a n allergic reac t ion .

Materials and methods. New Zea land wh i t e r a b b i t s were i m m u n i z e d w i t h d e x t r a n molecu la r we igh t f r ac t ions 1400, 2950, 4875, 10,000, 110,000 a n d 1.9 • 10 ~ coupled to