n ational technical university of ukraine “kyiv polytechnic institute”

42
National Technical University of Ukraine “Kyiv Polytechnic Institute” Authors: Fedyay Artem, Volodymyr Moskaliuk, Olga Yaroshenko Quantum transport simulation tool, supplied with GUI Presented by: Fedyay Artem 13, April 2011 Kyiv, Ukraine ElNano XXXI Department of physical and biomedical electronics

Upload: debra

Post on 21-Jan-2016

52 views

Category:

Documents


1 download

DESCRIPTION

NTUU "KPI" 1898. Department of physical and biomedical electronics. N ational Technical University of Ukraine “Kyiv Polytechnic Institute”. Q uantum transport simulation tool, supplied with GUI. Authors: Fedyay Artem, Volodymyr Moskaliuk, Olga Yaroshenko. Presented by: Fedyay Artem. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

National Technical University of Ukraine“Kyiv Polytechnic Institute”

Authors: Fedyay Artem, Volodymyr Moskaliuk, Olga Yaroshenko

Quantum transport simulation tool,supplied with GUI

Presented by: Fedyay Artem

13, April 2011 Kyiv, UkraineElNano XXXI

Department of physical and biomedical electronics

Page 2: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 2

Overview

Objects of simulation Physical model Computational methods Simulation tool Examples of simulation

Page 3: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 3

Objects to be simulated

Layered structures with transverse electron transport:- resonant-tunneling diodes (RTD) with 1, 2, 3, … barriers;- Supperlattices

Reference topology (example):

Page 4: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 4

Physical model. Intro

ENVELOPE FUNCTION (EFFECTIVE MASS) METHOD

ψ( ) ( )χ( )nu

kr r r

i rχ( )=e krin case of homogeneous s/c

and flat bands (Bloch waves)

Envelope of what?

of the electron wave function:

What if not flat-band?

Page 5: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 5

Physical model. Type

ENVELOPE FUNCTION (EFFECTIVE MASS) METHOD

actual potential

hereafter will denote envelope of the wave function of electron in a crystal

*1m *

2m

its approximation within the method

ψ( ) χ( )r r

( ) ( )U Ur r

0 * m m

Page 6: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 6

Model’s restrictionh/s with band wraps of type I (II)

TYPE III

InAs-GaSb

Bandstructures sketches

TYPE I

GaAs – AlGaAs

GaSb – AlSb

GaAs – GaP

InGaAs – InAlAs InGaAs – InP

TYPE II

InP-Al0.48In0.52As

InP-InSb

BeTe–ZnSe

GaInP-GaAsP

Si-SiGe

za

Ec

Ev

Ez

DEc

DEv

za

Ec

Ev

Ez

DEc

DEv

za

Ez

A Б

Ec

Ev

DEc

DEv

A

Б

A

Б

Page 7: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 7

Physical model.Type

What do we combine?

leftreservoir

i-AlxGa1-xAs

bbс с

i-GaAs n+-GaAs

ND ND

device(active region)

rightreservoir

a

semiclassical

envelope-fucntion

we combine semiclassical and “quantum-mechanical”approaches for different regions

Sometimes referred to as “COMBINED”

(*) homogeneous ,(**) almost equilibrium high-doped

(*) nanoscaled heterolayers ,(**) non-equilibrium intrinsic

Page 8: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 8

Physical model.Electron gas

Parameter Value in l.r. Value in a.r. Value in r.r.

Donor’s concentration

ND=1022...1024 m-3 ND=1022...1024 m-3ND=0

Material base n+ GaAs n+ GaAsi-GaAs, i-AlAs

Electron gas (e.g.)

3D 3Dquazi-2D

State Local equilibrium Local equilibriumNon-equilibrium

2 2 2 2

* *( ) ,

2 2zk k

E U zm m

Dispersion low2 2 2 2

* *( )

2 2zk k

E U zm m

2 2y zk k k

Wave nature of electron is taking into account by means of

Effective mass;Band wrappings

Effective mass;Band wraping;

Envelope wave function

Mean free pathMore then reference

dimensions

More then reference

dimensions

Less then reference

dimentions

Motion mechanism

Drift, diffusionBallistic, quazi-

ballistic

2 2 2 2

0(5) * *( ) ,

2 2if 0( 0)

z

z z

k kE U z

m mk k

Electron concentraion

Ф 1( )

,( )

1 expk

i

ii c

NU

E Un N dE

E E U

T

* 2 3/24 (2 / h )cN m

0 5

2

( ) Ф 1( )( )

Б( ) 0( 5)

( ( ), ) ( )ln 1 exp ,

i i

L R z z z NL R c z

U U z i i

E k z E E Un N dE

k TE U

* 3/2Б

2 3

2( ) k

(2 )c

m TN

Effective mass;Band wrappings

Drift, diffusion

Page 9: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 9

Physical model.Master equations.(1 band)

0 5

2* 3/2

( ) Ô 1( )Á( ) 2 3

Á( ) 0( 5)

1). Electronconcentrationinquantumregion:

( ( ), ( , ) ( )2( )( , ) ln 1 exp ,

(2 )

where ( , ( )) ( ) ( , ( ))

2

i i

L z z L R z NL R z

U U z i i

lattice

scf

scf

scf

E k z E E Um k Tz dE

k TE U

U z n z U z U z n

n

z

UUn

0

*( )

( )* 2

). Poissonequation :

1( ) ( , ( )) ( ) .

Wave functions are solutionsof Schrodinger equations

( )1 2 ( ( ))( ) 0

( )

scfscf

L RL R

ddz z z N z

dz dz

d zd m E U zz

dz m z

U

d

n U

z

Page 10: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 10

Physical model.Electrical current.Coherent component

Coherent component of current flow is well described

by Tsu-Esaki formulation:

5 0

*B

2 3max( , )

( )2

,where2

( )( )

i i

z z

U U

zz D Em ek T

T dE EJ e

B 1

Á

F

B

( )1 exp

ln( )

1 ex

( )

p

z

z N

z

E E Uk T

T

DE E U

E

k

is a transmission

coefficient through

quantumre io

( )

g n

zT E

Page 11: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 11

Physical model.Electrical current.(!) Coherent component

z

Ez

LFE

RFE

NU

0 z0 z50iU L

EF

EF

5iU

quantum region

electron states from

left reservoir

electron states from both reservoirs

no electron states

depends on

( )

( )zT

U z

E

Page 12: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 12

Physical model.

Which equation L and R are eigenfunction of?

We need |L|2 and |R |2 for calculation of CURRENT and CONCENTRAION

– Schrödinger equation with effective mass. H E , where

ˆ ˆ ( ) ( )c H opH T E z U z iW ,

where:

2 1ˆ2 *( )

Tz m z z

is kinetic energy operator;

( )cE z is a bottom of Г-valley;

HU is the Hartree potential;

opW is so-called “optical” potential, which is modeling escaping of electrons

from coherent channel due to interaction with optical phonons.

Page 13: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 13

2-band model. What for?

E

D

XL

AlA

sE

XE

D

0

0.2

0.4

0.6

0.8

E, эВ

L

X

LG

aAs

E

LEDX AlA

sE

a b

0 a a+b

b

AlAsGaAs GaAs GaAsAlAs

z

XG

aAs

E

Page 14: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 14

2-band model. What for?

0

0.2

0.4

0.6

0.8

E, эВ

X

Г-X-Г

Г-X-Г

Г-X mixing points

Г-X

Current re-distribution between valleys changing of a total current Electrons re-distribution changing potential

! [100]

Page 15: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 15

Physical model. Г, X

It was derived from k.p-method that instead of eff.m.Schr.eq. it must be a following system:

2

ÃÃ Ã Ã

2X X X

X

10

( ) 2 0( ) 1

02

H z i

i H z

U U E x z m zx U U E

z m z

which “turns on” Г-X mixing at heterointerfaces (points zi) by means of . It of course reduces to 2 independent eff.m.Shcr.eqs. for X and Г-valley

Page 16: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 16

Physical model.Boundary conditions for Schr. eq.

We have to formulate boundary conditions for Schrödinger equation. They are quite natural (QuantumTransmissionBoundaryMethod). Wave functions in the reservoirs are plane waves.

L

R

ikzLr eikze ik z

Lt e ikz

Rt eik ze ik z

Rr e z

2

( ) LzTk

tk

E

Transmission coefficient needs to be found for currentcalculation

Page 17: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 17

Physical model. Features

Combined quazi-1D. Self-consistent (Hartee approach). Feasibility of 1 or 2-valley approach. Scattering due to POP and Г-X mixing is taking

into acount.

Page 18: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 18

Scientific content circumstantial evidence:direct use of works on modeling of nanostructures 1971-2010

1. Moskaliuk V., Timofeev V., Fedyay A. Simulation of transverse electron transport in resonant tunneling diode // Abstracts Proceedings of 33nd International Spring

Seminar on Electronics Technology “ISSE 2010. 2. Abramov I.I.; Goncharenko I.A.; Kolomejtseva N.V.; Shilov A.A. RTD Investigations using Two-Band Models of Wave Function Formalism // Microwave &

Telecommunication Technolog, CriMiCo 2007. 17th International Crimean Conference (10–14 Sept. 2007), 2007.–P.: 589–590.

3. Абрамов И.И., Гончаренко И.А. Численная комбинированная модель резонансно-туннельного диода // Физика и техника полупроводников. - 2005. – Вып. 39. - С. 1138-1145.

4. Pinaud O. Transient simulation of resonant-tunneling diode // J. Appl. Phys. – 2002. – Vol. 92, No. 4. – P. 1987–1994.

5. Sun J.P Mains R.K., Haddad G.I. “Resonant tunneling diodes: models and properties”, Proc. of IEEE, vol. 86, pp. 641-661, 1998.

6. Sun J.P. Haddad G.I. Self-consistent scattering calculation of Resonant Tunneling Diode Characteristics // VLSI design. – 1998. – Vol. 6, P. 83–86.

7. Васько Ф.Т. Электронные состояния и оптические переходы в полупроводниковых гетероструктурах. – К.: Наукова Думка, 1993. – 181 с.

8. Zohta Y., Tanamoto T. Improved optical model for resonant tunneling diode // J.. Appl. Phys. – 1993. – Vol. 74, No. 11. – P. 6996–6998.

9. Mizuta H., Tanoue T. The physics and application of resonant tunnelling diode. – Cambridge University Press, 1993. – 245 c. 10. Sun J.P., Mains R.K., Yang K., Haddad G.I. A self-consistent model of Г-X mixing in GaAs/AlAs/GaAs quantum well using quantum transmitting boundary method // J.

Appl. Phys. – 1993. – Vol. 74, No. 8. – P. 5053–5060.

11. R. Lake and S. Datta. Nonequilibrium “Green’s function method applied to double barrier resonant tunneling diodes”, Phys. Review B, vol. 45, pp. 6670-6685, 1992.

12. Lent C. S. and Kirkner D. J. The quantum transmitting boundary method // Journal of Applied Physics. - 1990. - Vol. 67. - P. 6353–6359.

13. K.L. Jensen and F.A. Buot. “Effects of spacer layers on the Wigner function simulation of resonant tunneling diodes”, J. Appl. Phys., vol. 65, pp. 5248-8061, 1989.

14. Liu H.C. Resonant tunneling through single layer heterostructure // Appl. Phys. Letters – 1987. – Vol. 51, No. 13. – P. 1019–1021. 15. Пакет для моделювання поперечного транспорту в наноструктурах WinGreen http://www.fz-juelich.de/ibn/mbe/software.html

16. Хокни Р., Иствуд Дж. Численное моделирование методом частиц: Пер. с англ. – М.: Мир, 1987. – 640 с.

17. Нгуен Ван Хьюеу. Основы метода вторичного квантования. – М.: Энергоатомиздат, 1984. – 208 с.

18. R. Tsu and L. Esaki. “Tunneling in a finite superlattice”, Appl. Phys. Letters, vol. 22, pp. 562–564, 1973.

19. Самарский А.А. Введение в теорию разностных схем. – М.: «Наука», 1971. – 553 с.

Page 19: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 19

Computational methodsNumerical problems and solutions:

? Computation of concentration n(z) needs integration of stiff function

using adaptive Simpson algorithm;

? Schrodinger equation have to be represented as finite-difference scheme, assuring conservation, and needs prompt solution

using of conservative FD schemes and integro-interpolating Tikhonov-Samarskiy method;

? Algorithm of self-consistence with good convergence should be used to find VH

using linearizing Gummel’s method

? Efficient method for FD scheme with 5-diagonal matrix solution(appeared in 2-band model, corresponding to Schrödinger equation)

direct methods, using sparse matrix concept in Matlab (allowing significant memory economy)

Page 20: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 20

Let’s try to simulate Al0.33Ga0.64As/GaAs RTD

left.r.

i-Al0.33Ga0.67As

3 nm

i-GaAs n+-GaAs

ND=1024

device right.r.

4 nm3 nm

ND=1024

L=100 nm

10 nm 20 nm

Page 21: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 21

Application with GUI

Page 22: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 22

Emitter

Page 23: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 23

Quantum region

Page 24: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 24

Base

Page 25: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 25

Materials data-base(1-valley case)

mГ(x),

(!) Each layer supplied withthe following parameters:

x – molar rate inAlxGa1-xAs

DEc(x)=U00*x

mГ(x)=m00+km*x,

DEc(x) – band off-set

(x) is dielectric permittivity

(x)= e00+ke*x

Page 26: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 26

Settings

Page 27: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 27

Graphs

Page 28: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 28

Calculation: in progress(few sec for nsc case)

Page 29: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 29

Calculation complete

Page 30: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 30

Concentration

Page 31: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 31

Potential (self-consistent)

Page 32: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 32

Concentration (self-consistent)

Page 33: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 33

Transmission probability (self-consistent)

Page 34: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 34

Local density of states g (Ez,z) (self-consistent)

Page 35: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 35

Local density of states g (Ez,z) (in new window with legend)

Page 36: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 36

Distribution function N (Ez,z) (tone gradation)

Page 37: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 37

I-V characteristic(non self-consistent case)

Page 38: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 38

Resonant tunneling diode(2 valley approach)

mX

DEХ-Г

(!) Each layer supplied withadditional parameters:

CB in Г and X-points

Page 39: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 39

LDOS in Г and X-valleys

X-valley:barriers wells

Г-valley

Page 40: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 40

Transmission coefficient2 valleys

Г – valley only

both Г and X valleys

(*) Fano resonances (**) additional channel of current

Page 41: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 41

Another example:supperlattice AlAs/GaAs 100 layers

LDOS

CB profile

Page 42: N ational Technical University of Ukraine “Kyiv Polytechnic Institute”

[email protected] 42

Try it for educational purposes!

Simulation tool corresponding to 1-band model w/o scatteringwill be available soon at: www.phbme.ntu-kpi.kiev.ua/~fedyay(!) Open source Matlab + theory + help

Today you can order it by e-mail: [email protected]

2-band model contains unpublished resultsand will not be submitted heretofore

THANK YOU FOR YOUR ATTENTION