multi-spacecraft observations of solar energetic and energetic storm particle events during...

4
Adv. Space Res. Vol. 13, No.9, pp. (9)355—(9)35$, 1993 0273—1177)93 $24.00 Printed in Great Britain. Mi rights reserved. Copyright @ 1993 COSPAR MULTI-SPACECRAFF OBSERVATIONS OF SOLAR ENERGETIC AND ENERGETIC STORM PARTICLE EVENTS DURING NOVEMBER/DECEMBER 1982 M.-B. Kallenrode,* G. Wibberenz,* N. Kontor** and V. Stolpovskii~ * Inst itut fir Kernphysik, Universirät of Kiel, Otto-Hahn Platz 1, 2300 Kiel, Germany ** Nuclear Physics Institute, Moscow State University, Moscow, Russia ABSTRACT Multi-spacecraft observations by Helios, IMP, and Venera show that interplanetary shocks can extend up to more than 900 east of the flare normal and are capable of accelerating particles, in particular protons up to energies of some tens of MeV. At the flanks the shock speed and the acceleration efficiency decrease; this decrease is more pronounced in high than in low energy protons. Shock spikes can be observed at energies up to 50 MeV and shock acceleration seems to be very effective inside 0.5 AU. INTRODUCTION During the last years statistical studies of earth bound observations have pointed out the import- ance of interplanetary shocks for the acceleration of tens of MeV protons, especially the ordering of the intensity profiles by the angle between observer and flare normal /1/, the mixing of flare- accelerated and shock-accelerated particles in well-connected events /2,3/, and the extension of proton acceleration at interplanetary shocks up to energies of 100 MeV /3/. In this paper we will use observations from three spacecraft at different longitudes and different radial distances to study individual events in more detail. OBSERVATIONS The data used in this paper were obtained by the University of Kiel particle instrument E6 on Helios, the Moscow State University KV-77 instrument on Venera, and the JHU/APL instrument on IMP. Fig. 1 gives an overview over the entire time period showing protons with energies of a few MeV and about 20 MeV observed by Helios (upper panel), ( Venera, 2nd panel), and (IMP, 3rd panel), together with the flare activity during that time period (bottom panel, small open circles mark flares with soft X-ray class between Ml and M4, large open circles flares between M5 and M9, filled circles flares X1, stars the eleven largest events marked in the above panels, for this method compare /6/). The insert in the bottom panel gives the spatial configuration of the three spacecraft. The entire time period is marked by strong flare activity on the visible disk, eleven flares seem to dominate the particle intensity profiles (numbered circles in the upper panels) and initiate interplanetary shocks (triangles). Due to this strong activity, the intensity stays, especially in the lower energy channels, above background for most of the time forming a super-event /cf. 5/. Fig. 2 shows event #3 (26 Nov 1982) in more detail: Around the spatial configuration (upper right) we show the IMP proton intensities (upper left), and for Veriera (lower left) and Helios (lower right) the anisotropy (bottom), the time evolution of the proton spectrum (middle) and the proton intensities (top) in four channels. All three spacecraft are located east of the flare normal with angles to the flare normal up to about 90° (IMP). The arrows in the configuration plot give the mean shock speeds determined from the travel times of the shock in that direction. The shock is observed on all three spacecraft, giving an extension of the shock of at least 90° to the east. Assuming that the shock is more or less symmetrical around the flare normal this would indicate a total extent of the interplanetary shock of about 180°. The shock is fastest close to the flare normal, the speed decreases as one goes to the eastern flank of the shock. (9)355

Upload: m-b-kallenrode

Post on 21-Jun-2016

214 views

Category:

Documents


2 download

TRANSCRIPT

Adv. SpaceRes.Vol. 13, No.9,pp. (9)355—(9)35$,1993 0273—1177)93$24.00Printedin GreatBritain. Mi rightsreserved. Copyright@ 1993COSPAR

MULTI-SPACECRAFFOBSERVATIONSOFSOLAR ENERGETICAND ENERGETICSTORMPARTICLEEVENTSDURINGNOVEMBER/DECEMBER1982

M.-B. Kallenrode,*G.Wibberenz,*N. Kontor** andV. Stolpovskii~

* Institutfir Kernphysik,UniversirätofKiel, Otto-HahnPlatz1, 2300Kiel,Germany** NuclearPhysicsInstitute,MoscowStateUniversity,Moscow,Russia

ABSTRACT

Multi-spacecraftobservationsby Helios, IMP, and Venerashow that interplanetaryshockscanextendup to more than 900 east of the flare normal and are capableof acceleratingparticles,in particular protons up to energiesof some tens of MeV. At the flanks the shock speedandthe accelerationefficiency decrease;this decreaseis more pronouncedin high than in low energyprotons.Shockspikescanbe observedat energiesup to 50 MeV andshockaccelerationseemstobe very effectiveinside0.5 AU.

INTRODUCTION

During the lastyearsstatisticalstudiesof earthboundobservationshavepointedout the import-anceof interplanetaryshocksfor the accelerationof tensof MeV protons,especiallytheorderingof the intensity profiles by the anglebetweenobserverandflare normal /1/, the mixing of flare-acceleratedand shock-acceleratedparticlesin well-connectedevents/2,3/, and the extensionofproton accelerationat interplanetaryshocksup to energiesof 100 MeV /3/. In this paperwewill useobservationsfrom threespacecraftat differentlongitudesanddifferentradial distancestostudyindividual eventsin moredetail.

OBSERVATIONS

The dataused in this paperwere obtainedby the University of Kiel particleinstrumentE6 onHelios, the MoscowState UniversityKV-77 instrumenton Venera,andthe JHU/APL instrumenton IMP. Fig. 1 gives anoverviewoverthe entiretime period showingprotonswith energiesof afew MeV andabout20 MeV observedby Helios (upperpanel),( Venera,2nd panel),and (IMP, 3rdpanel),togetherwith the flare activity during that time period (bottompanel, smallopencirclesmark flares with soft X-ray classbetweenMl and M4, largeopencircles flares betweenM5 andM9, filled circles flares �X1, starsthe eleven largesteventsmarkedin the abovepanels,for thismethodcompare/6/). The insert in the bottompanelgives the spatialconfigurationof the threespacecraft.The entire time period is markedby strongflare activity on the visible disk, elevenflares seemto dominatethe particleintensityprofiles (numberedcircles in the upperpanels)andinitiate interplanetaryshocks(triangles).Dueto this strongactivity, theintensitystays,especiallyin thelowerenergychannels,abovebackgroundfor mostof the timeforming asuper-event/cf. 5/.

Fig. 2 shows event#3 (26 Nov 1982) in more detail: Around the spatial configuration(upperright) we show the IMP proton intensities (upper left), andfor Veriera (lower left) and Helios(lower right) the anisotropy(bottom),the time evolutionof theproton spectrum(middle) andtheproton intensities(top) in four channels.All threespacecraftarelocatedeastof the flare normalwith anglesto the flare normalup to about90°(IMP). The arrowsin the configurationplot givethemeanshockspeedsdeterminedfrom the traveltimesof the shockin thatdirection. The shockis observedon all threespacecraft,giving an extensionof the shockof at least 90°to the east.Assumingthat theshockis moreor less symmetricalaroundthe flare normalthis would indicatea total extentof the interplanetaryshockof about 180°.The shockis fastestcloseto the flarenormal,the speeddecreasesas onegoesto theeasternflank of the shock.

(9)355

(9)356 M.-B. Kallearodeeta).

9.11 ~ i

5t4—I314eVP,oton, HEUOS10 ~ 27-37~eV 3 0 ci 0 0 0 0 0 0 0 0

‘ ‘ ‘ ‘ ‘ ‘°~~ ~j(~h

~ ~. ~ ‘‘~~ ~-•..±•~.‘~•

102 I ~-~-—~ ~ ‘~—~ ~

~ ~i~rr” I,,.’ ~ ii

TTt-7.2 proton. /ENERA

~ ~ V~ ~NT~T~ ~

I —1.5 IIOV Proton. 4 5 5 , S I It

10 t4-25M.V ~ Q ~. 0 0 0 0 0 0 0 0 - 0iø~ ‘ .2~- ~ ..____;—._ ~ 1o..~

102 —

10 .. .fl. ....‘-.... .- ..~ .... .-.-.

-. fl ,. \ia~ ~. ~fl~~.__fl ~ -~--.

103104 52 3 5 5 1 S

10

120 . --____________. *

80- 0 O~

0 0 :0:00 :0~0 \~—l20~ I I I I

320 325 330 335 340 345 350 355 360 365

TIMEFig. 1. Overview over particle dataand flare activity for the time period Novem-ber/December1982 (cf., text).

On all threespacecrafttheshockhasaninfluenceon theintensityprofilesof protons. Thisinfluenceis strongestcloseto theflare normal (Helios)whereashockspikeis observedevenin energiesup to50 MeV. On Heliosparticlescomefrom the solardirectionbeforethearrival of the shock(indicatedby a‘-F’ signin the anisotropy,which in this exampleis determinedwith respectto the directionofmain particlestreaming),aftershockpassageparticlesstreamtowardsthesun(‘-‘), indicatingthatthe shock is a moving sourceof particlesthat is sweptacrossthe observer.The intensityprofilesin the different energyrangeslook quite similar. Going eastfrom theflare normal,on Veneratheshock spike is observedin the lowest proton channel,in the higherproton energiesonly a smallhumpof shockacceleratedparticlesseemsto be superposedon the intensityprofile. Note that inhigh energiesthe shockacceleratedparticlesseemto havetheir maximumlongbeforethe arrivalof the interplanetaryshock. Theseparticlesprobably are acceleratedrelatively closeto the sunwere the shockis quasi-paralleland thereforemoreeffectivein particleacceleration.Furthereaston IMP the superposedshockparticlesare visible in thelow energyprotons;in thehigherenergiesthereseemto be no or only few shock-acceleratedprotons.Thereforeto theflank of the shocktheaccelerationefficiencyseemsto decrease,especiallyin higherenergies.

Multi-SpacecraftObservationsin NovemberdDecember1982 (9)357

I ~ -Protons 1-1.8 McV -

3 F 14-23MeV 0.MU10 IMP -

10 ....... .. •.... /7/

10 I I I__IMP ~

330 331 332 333 334

5 H’’1’ .; 1O9_1III~ -~ F - Protons 1-12MeV Protons4-13 MeV -— . 23-60 Me~’ 7 F 03-27 MeV

2 5 I ~__~ 60-110 MeV . 10 . 27-37 MeV -

25~~ ~0\IeV ~::h:::: ~MMeV- ... —. 10 - . s Helios -.j- Vencra . ....~ - -

I I I . ~ I 1 I —

~ -2- ~. _~~- ~ -2- -

~ 4- - 4~. -

- ~ II -

0.5 - ~ - ~, 0.5 -

~ 0 - 0 ~ ~ -<-0.5 ~ - <-0.5 -III’— _

1_:1:I.Ii_ ~ —

330 331 332 333 334 330 331 332 333 334

TIME TIME

Fig. 2. Configurationandparticledatafor the 26 Nov 1982event(cf. text).

~ ~: ~ Protons 118 ~ I I

353.6 354 354.4 354.8 . 10- Helios -

- I I I ~ •1•0~~ FVenera 1

F shock? ~2 5 - I - - ~ 10 - ~ - -

Protons 1-7.2 ‘.1eV z - t—._ -- -‘ - 25-6051eV ~ io~ 1 - ~ -. -, - -

z 0 - -j--- - 60-110MeV - Z - ~ Proton,4-13 MeV -

110-230 MeV 13-27 MeV10 2737MeV S—2 5 37 51 MeV FO I

I I I I ~FD

-2 . -5- - -

~ —3 —6- III ~ -;: ~ -~ __________________

1 ___________________________ 353.6 354 354.4 354.8—

353.6 354 354.4 354.8 - TIME

TIME

Fig. 3: Configurationand particledatafor the 19 Dec 1982 event(ci. text).

(9)358 M.-l3. Kallenrodeeta!.

Fig. 3 showsevent#9 (19 Dcc 1982). The geometricalsituationis similar to theoneshownabove,however,it is importantto note that Helios is locatedat a distanceof only 0.45 AU. On Heliosshock-acceleratedprotonsare visibleup to energiesof at least50 MeV; however,further to theeastof the flare normal on Venerathereis acomparablepromptcomponentof particlesacceleratedonthe sun(in thephotosphereor e.g.by a coronalshock,cf. /2/). Heretheshockacceleratedparticlesare dominantonly in low energyprotons,while in the higherenergiesthereseemto be no or onlyveryfew energeticstormp-~.rticlessuperposed.Furthereaston IMP the shockis not detected,thepromptevent is visible in the high energyprotons,in the low energy protons the backgroundistoo high to detectthis event. This exampleclearly showsthat closeto the sun,where the shockis quasi-parallel,proton accelerationat an interplanetaryshock occurs to a quite large degree.It is interestingthat thereare no or only few shock acceleratedparticlesin the higher energieson Venera. Probably particleaccelerationhas becomeinefficient, at leastfor the high energies,becausedueto the curvatureof the interplanetarymagneticfield line theshockhasbecomemoreperpendicular.Closeto the suntheshockhasbeenquasi-parallelon thefield line Venerais locatedon; if it has acceleratedparticlesthere, theseparticlesseemto vanishin the promptcomponentbecausethey are acceleratedonly arelatively shorttime later (cf., small super-posedhumpin theeventdiscussedabove).

DISCUSSION

Wefind that interplanetaryshockscanextendup to 90°eastof theflare normal,in a symmetricalconfigurationthiswould correspondto atotalangularextendof 180°,muchlarger thanthetypicalspansof the CME which are believedto be thedriver of the shock(ci., /7/ andreferencestherein).In addition, the shockspeeddecreasesconsiderablyas onegoesto the flanks of the shock.

Shockaccelerationis mostefficient closeto theflare normalanddecreasesto theflank, in intensityas well as in maximum energy; however,the low energy (a few MeV) protons are acceleratedup to angulardistancesof 900 from the flare normal. The quasi-parallelshock closeto the sunseemsto be a very efficient particle accelerator;in addition, thereseemsto be someindicationthat shockaccelerationbecomesless efficient as the shockpropagatesoutward,probablybecauseof geometricalreasons(due to the curvatureof the interplanetarymagneticfield line the shockbecomesmoreoblique) and eventuallyalso due to the weakeningof the shock. This would beinterestinginsofaras it would imply that shockaccelerationbecomeslessefficient beyond 1 AU, atleastforprotonswith energiesof sometensof MeV. On theotherhand,shock-acceleratedparticlesare observedbeyond 1 AU (cf., /8,9/); however,it is not clearwhetherall shocksbeyond 1 AU areableto accelerateprotons to energiesof sometensof MeV or whetherthis accelerationis limitedto extremelystrong shocksor systemsof shocksas suggestedin /9/. Suchsystemsof shocksormergedshocksseemalso importantfor theformationof asuper-event,e.g.due to theformationofa closedshell aroundthe sunconfining andacceleratingthe particles/4,5/. The sizes,directions,andspeedsof the shocksobservedin the time periodunderstudyshowevidencefor theformationof at leastsystemsof shocks,possiblyevenfor tile formationof aclosedshell aroundthesun. Fora betterunderstanding,however,the continuationof this preliminarystudyunderconsiderationof spacecraftat larger radial distances,in particularthe study of radial gradientsof promptandshock-acceleratedparticles,seemsto be important.

Acknowledgement:We aregratefulto all membersof the University of Kiel Helios team(principalinvestigatorH. Kunow). This work wassupportedby the DFG undercontractWi-259/8-1.

REFERENCES

/1/ H.V. Cane,D.V. Reames,andT.T. von Rosenvinge,J. Geophys.Res.93,9555 (1988)/2/ D.V. Reames,H.V. Cane,andT.T. von Rosenvinge,Astrophys.J. 373, 259 (1990)/3/ D.V. Reames,Astrophys.J. Lett. 358, L63 (1990)/4/ R. Miiller-Mellin, K. Röhrs, and G. Wibberenz, in: The Sun and the heliospherein threedimensions,ed. R. Marsden,Reidel,Dordrecht1986,p. 349/5/ W. Dröge,R. Müller-Mellin, and E.W. Cliver, Astrophys.J. Lett. 387,L97 (1992)/6/ E.C. Roelof, R.E. Gold, G.M. Simnett,S.J. Tappin, T.P. Armstrong, and L.J. Lanzerotti,Geophys.Res.Lett. 19, 1243 (1992)/7/ H.V. Cane,J. Geophys.Res.93, 1 (1988)/8/ S.M. Krimigis, SpaceSci. Rev. 59, 167 (1992)/9/ G. Wibberenz,H. Kunow, it. Miiller-Mellin, H. Sierks,B. Heber,M.-B. Kallenrode,A. Raviart,P. Ferrando,andR. Ducros, Geophys.Res.Lett. 19, 1279 (1992)