msu field day report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014...

26
The Michigan Turfgrass Foundation and Michigan State University present: Turfgrass Field Day Robert Hancock Turfgrass Research Center Wednesday August 13, 2014

Upload: others

Post on 15-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

The  Michigan  Turfgrass  Foundation  and  Michigan  State  University  present:  

 

Turfgrass  Field  Day  

 Robert  Hancock  Turfgrass  Research  Center  

Wednesday  August  13,  2014  

   

 

Page 2: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

2

A great big...Thank You! The  MSU  Turf  Team  would  like  to  recognize  the  following  companies  that  have  donated  to  the  operation  of  the  Hancock  Turfgrass  Research  Center  in  2014.  

Accuproducts  International   John  Deere  Landscapes   The  Gandy  Co.        

Agrium  Advanced  Tech.   J.R.  Simplot  Co.   The  Toro  Co.        

Arysta  Life  Sciences   JRM  Inc.   The  Toro  Co.  –  Toro  NSN        

BASF   JW  Surge   Tri-­‐Turf  Inc.        

Bayer  Crop  Science   J.W.  Turf  Equip.   Tru-­‐Turf  Pty.  LTD.        

Bernhard  &  Co.,  Ltd.   L.T.  Rich  Co.   True-­‐Surface        

Carl  Schwartzkopf   MTF  Founders  Society   Turfco  Manufacturing        

Cleary  Chemical  Corp.   Pace  Equip.   Weingartz        

Countryside  Lawn  &  Power   PBI/Gordon  Corp.   Wesco  Turf,  Inc.        

Dakota  Peat  &  Equipment   Petro-­‐Canada/Civitas          

D  &  G  Equipment   Quali-­‐Pro          

Dow  AgriSciences   Residex          

Forest  Akers  Golf  Courses   Rhino  Seed  &  Turf  Supply          

Grigg  Brothers   The  Scotts  Miracle-­‐Gro  Company  

 

     Harrell’s   Spartan  Distributors    

     IPAC  Inc.   Spears  Manufacturing    

     Jacobsen   Syngenta  Crop  Protection    

     John  Deere  Ag.  &  Turf  Div.   The  Andersons    

     

Page 3: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

3

2014 Turfgrass Field Day Stops

Mount Hope Rd.

Farm Lane

Weed Garden

PuttingGreen

Fairway

Lawn Height Lawn Height

Weeds Putting Green Weeds

N

Dom

e

HTRC Fuller

6 3

5

1

2

7

4

8 9 10

12

13 14 15 16

17 18

11

Page 4: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

4

Table  of  Contents  

STOP  1.  WINTERKILL  REESTABLISHMENT   6  DR.  KEVIN  W.  FRANK  AND  AARON  HATHAWAY    

STOP  2&11.  REMOTE  SENSING  &  GIS  UNMANNED  AERIAL  SYSTEMS  (UAS)   8  ROBERT  GOODWIN,  JOE  WELSH,  AND  DR.  DAVE  LUSCH    

STOP  3.  A  NEW  PRODUCT  FROM  SIPCAMADVAN  FOR  POA  ANNUA  CONTROL.   9  DR.  J.M.  VARGAS,  JR.  AND  NANCY  DYKEMA    

STOP  4.  DOLLAR  SPOT  AND  ANTHRACNOSE  FIELD  TRIALS   10  NANCY  DYKEMA,  ERIC  GALBRAITH,  AND  DR.  J.M.  VARGAS,  JR.    

STOP  5.  EUROPEAN  CRANE  FLY  AND  ANNUAL  BLUEGRASS  WEEVIL  IDENTIFICATION  AND  MANAGEMENT   12  DR.  DAVID  SMITLEY    

STOP  6.  GOLF  SPIKE,  SOLE  DESIGN  STUDY   14  DR.  THOMAS  A.  NIKOLAI  AND  AARON  HATHAWAY    

STOP  7.  EFFECTS  OF  DROUGHT  AND  TRAFFIC  STRESSES  ON  PHYSIOLOGICAL  RESPONSES  AND  WATER  USE  CHARACTERISTICS  OF  CREEPING  BENTGRASS  (AGROSTIS  STOLONIFERA)  AND  ANNUAL  BLUEGRASS  (POA  ANNUA)   17  KEVIN  LASKOWSKI,  DR.  EMILY  MEREWITZ,  DR.  KEVIN  W.  FRANK,  AND  DR.  J.M.  VARGAS,  JR.    

8.  EFFECT  OF  CREEPING  BENTGRASS  SEEDING  RATES  AND  TRAFFIC  ON  ESTABLISHMENT  OF  PUTTING  GREENS  DURING  RENOVATION   19  THOMAS  O.  GREEN,  ERIC  C.  CHESTNUT,  AND  JOHN  N.  ROGERS,  III    

STOP  9.  ESTABLISHMENT  STUDIES  FOR  CREEPING  BENTGRASS  GREENS   19  ERIC  C.  CHESTNUT,  THOMAS  O.  GREEN,  AND  DR.  JOHN  N.  ROGERS,  III    

STOP  10.  LIGHTWEIGHT  ROLLING  AND  TOPDRESSING  DECREASE  FUNGICIDE  INPUTS  AND  DOLLAR  SPOT  SEVERITY  ON  FAIRWAYS   20  THOMAS  O.  GREEN,  DR.  JOHN  N.  ROGERS,  III,  DR.  JAMES  R.  CRUM,  DR.  THOMAS  A.  NIKOLAI,  AND  DR.  J.M.  VARGAS,  JR.    

STOP  11.  REMOTE  SENSING  &  GIS  UNMANNED  AERIAL  SYSTEMS  (UAS)   21  ROBERT  GOODWIN,  JOE  WELSH,  AND  DR.  DAVE  LUSCH    

STOP  12.  MSUTURFINSECTS.NET   21  TERRY  DAVIS  AND  DR.  DAVID  SMITLEY    

STOP  13.  A  BEE-­‐FRIENDLY  APPROACH  TO  HOME  LAWN  GRUB  CONTROL   21  

Page 5: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

5

DR.  DAVID  SMITLEY    

STOP  14.  ANNUAL  BLUEGRASS  CONTROL  IN  ATHLETIC  FIELDS   22  AARON  HATHAWAY  AND  DR.  THOMAS  A.  NIKOLAI    

STOP  15.  GROUND  COVER  SEDIMENT  MOVEMENT  STUDY   23  DR.  THOMAS  A.  NIKOLAI,  JEFF  BRYAN,  JOE  FABBO,  AND  AARON  HATHAWAY    

STOP  16.  RUNOFF  RESEARCH   24  DR.  KEVIN  W.  FRANK  AND  AARON  HATHAWAY    

STOP  17.  EVALUATING  THE  EFFECTS  OF  LIGHTWEIGHT  ROLLING  ON  ATHLETIC  FIELDS   25  NICK  BINDER,  DR.  THOMAS  A.  NIKOLAI,  DR.  JAMES  CRUM,  DR.  EMILY  MEREWITZ,  AND  DR.  JAMES  FLORE    

STOP  18.  ORGANIC  WEED  CONTROL  IN  TURF   25  AARON  HATHAWAY  AND  DR.  THOMAS  A.  NIKOLAI      

Page 6: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

6

Stop  1.  Winterkill  Reestablishment  Dr.  Kevin  W.  Frank  and  Aaron  Hathaway   The  winter  of  2013-­‐2014  caused  widespread  winterkill  of  Poa  annua  putting  greens.    The  Poa  annua  putting  greens  at  the  Hancock  Turfgrass  Research  Center  also  suffered  significant  damage.    We  initiated  several  different  reestablishment  studies  in  the  spring  of  2014.    One  study  evaluated  the  reestablishment  rate  of  different  nutritional  programs  that  were  commonly  being  used  in  Michigan  (Table  1).    The  study  was  designed  as  a  split  block  experiment  with  ½  of  each  plot  seeded  with  Pure  Distinction  creeping  bentgrass  at  2  lbs./1000  ft.2  on  May  2  using  the  Turfco  TriWave  40  Overseeder.    The  other  ½  of  the  plot  was  not  seeded  to  evaluate  Poa  annua  survival/reestablishment.    Nutritional  programs  were  initiated  the  day  of  seeding.    Some  programs  had  weekly  applications  while  others  were  treated  monthly.    Complete  program  details  are  presented  in  Table  1.          

Page 7: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

7

Table  1.  Winterkill  reestablishment  programs  Trt  #   Treatment   Rate   Rate  Unit   Application  Frequency   Rep  

         1   2   3  

1   Harrell's  Program        

101   308   608  

 Micro  Granular   5   lb/1000  ft2   At  Seeding  

       

Earthmax  Humic   6   fl  oz/1000  ft2   At  Seeding        

 Phos  Plus   4   fl  oz/1000  ft2   Weekly  

       

Bio  Max   2   fl  oz/1000  ft2   Weekly        

 N30  Plus   5   fl  oz/1000  ft2   Weekly  

       

Title  Phite   2   fl  oz/1000  ft2   Weekly        

 PAR   0.4   fl  oz/1000  ft2   1  WAS  

       

PAR   0.2   fl  oz/1000  ft2   Weekly  2WAS                        2   Residex  Program  

     102   305   605  

 Starter  14-­‐28-­‐8   1   lb  ai/1000  ft2   At  Seeding  

       

Carbon  21   3   fl  oz/1000  ft2   Weekly        

 Photo  Fuel   3   fl  oz/1000  ft2   Weekly  

       

Quick  Green   6   fl  oz/1000  ft2   Weekly                        3   Floratine  Program  

     103   307   603  

 Starter  14-­‐28-­‐8   1   lb  ai/1000  ft2   At  Seeding  

       

EON  75  Bio   5   lb/1000  ft2   At  Seeding        

 Bent  Special  28-­‐8-­‐18   0.55   lb/1000  ft2   Weekly  

Until  Sufficient  Cover    

Glycosyn   3   fl  oz/1000  ft2   Weekly  

 Maxiplex   3   fl  oz/1000  ft2   Weekly  

 5.0  Cal   6   fl  oz/1000  ft2   Weekly  

 Knife  Plus   1   fl  oz/1000  ft2   Weekly  

Once  Sufficient  Cover  Achieved  

 Per  4  Max   1   fl  oz/1000  ft2   Every  two  weeks  

 Power  12-­‐6-­‐0   10   fl  oz/1000  ft2   Weekly  

 ProteSyn   4   fl  oz/1000  ft2   Weekly  

 Astron   1   fl  oz/1000  ft2   Every  three  weeks  

               4   Starter  Only        

104   302   602  

 Starter  14-­‐28-­‐8   1   lb  ai/1000  ft2   At  Seeding  

       

Starter  14-­‐28-­‐8   0.3   lb  ai/1000  ft2   Monthly                        5   Starter  and  Urea  

     105   304   606  

 Starter  14-­‐28-­‐8   1   lb  ai/1000  ft2   At  Seeding  

       

Urea   0.1   lb  ai/1000  ft2   Weekly                        6   Urea  Only  

     106   306   604  

 Urea   0.1   lb  ai/1000  ft2   Weekly  

                     7   Crystal  Green  &  Urea        

107   301   601  

 Starter  5-­‐27-­‐0   1   lb  ai/1000  ft2   At  Seeding  

       

Urea   0.1   lb  ai/1000  ft2   Weekly                        8   Seed  &  Nothing  More  

     108   303   607  

   

Page 8: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

8

Stop  2&11.  Remote  Sensing  &  GIS  Unmanned  Aerial  Systems  (UAS)  Robert  Goodwin,  Joe  Welsh,  and  Dr.  Dave  Lusch    RS&GIS  UAS  research  services  utilizes  multiple  platform-­‐sensor  combinations  paired  with  advanced  image  processing  techniques.  This  diverse  toolset  allows  RS&GIS  to  collect  and  process  a  wide  range  of  remote  sensing  data  and  create  secondary  imagery  products  such  as  NDVI  mosaics  and  Digital  Terrain  Models.    For  maximum  flexibility,  RS&GIS  employs  both  fixed-­‐wing  craft  and  multi-­‐rotor  craft  for  its  UAS  projects.    Currently,  RS&GIS  operates  the  Aeromao  Aeromapper  glider  UAS  and  the  3D  Robotics  X8  multi-­‐rotor  UAS.    

   Aeromao  Aeromapper  fixed-­‐wing  UAS.    Image  courtesy  of  Aeromao.com.  

3DR  X8  rotor-­‐craft  UAS.    Image  courtesy  of  3D  Robotics.  

 RS&GIS  is  currently  utilizing  the  above  platforms  to  conduct  research  on  the  efficacy  of  using  small  UAS  for  a  variety  of  applications,  including  turf  management.    RS&GIS  staff  fly  their  UAS  in  semi-­‐autonomous  or  manual  mode.    In  semi-­‐autonomous  mode,  the  craft  follows  pre-­‐loaded  instructions  navigating  via  GPS  positioning  and  barometer  measurements.    A  variety  of  sensors  provide  remote  sensing  data  at  regular  intervals.    Sensors  include  RGB  and  Color  Infrared  cameras,  Thermal  Infrared  sensors  and  laser  scanners.    This  data  is  processed  by  GIS  analysts  at  RS&GIS  to  create  image  mosaics,  terrain  models,  referenced  NDVI  images  and  more.        Flight  times,  payload  and  mission  capabilities  vary  between  platforms  but  generally  rotor-­‐craft  are  more  flexible  than  fixed-­‐wing  aircraft.    Rotor-­‐craft  are  more  agile  and  are  not  limited  by  an  aerodynamic  airframe  for  sensor  deployment.    However,  flight  time  is  short  compared  to  fixed-­‐wing  aircraft,  particularly  multi-­‐rotor  aircraft.      For  instance,  the  3D  Robotics  X8,  powered  by  a  6000  mAh  lithium  polymer  battery  pack,  can  fly  for  10  –  15  minutes  carrying  800  grams.    The  design  is  such  that  adding  additional  battery  capacity  does  not  increase  flight  time  substantially.  The  Aeromapper  fixed-­‐wing  aircraft  can  fly  for  nearly  an  hour  carrying  a  slightly  larger  battery  pack  while  carrying  about  half  the  weight.    A  larger  airframe  improves  lifting  capacity.    Both  of  the  systems  described  above  are  appropriate  for  turf  research  and  evaluation.    The  decision  on  which  UAS  to  use  depends  primarily  on  the  type  &  dimensions  of  the  sensor  and  the  flight  area.  For  more  information,  contact:  

Robert  Goodwin,  UAS  Manager  RS&GIS,  MSU  [email protected]  517.432.0879  

Page 9: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

9

Stop  3.  A  new  product  from  SipcamAdvan  for  Poa  annua  control.  Dr.  J.M.  Vargas,  Jr.  and  Nancy  Dykema    There  has  been  a  trend  over  the  past  couple  of  years  to  replace  predominately  Poa  annua  greens  with  creeping  bentgrass.    In  conjunction  with  establishing  the  greens  to  creeping  bentgrass,  there  has  also  be  a  movement  to  kill  the  fairways  with  Roundup  and  reseed  them  with  creeping  bentgrass.  Whereas  the  greens  are  fumigated  and  become  established  to  pure  stands  of  creeping  bentgrass,  the  fairways  often  have  a  lot  of  Poa  annua  grow  in  with  the  newly  seeded  creeping  bentgrass.    There  are  certainly  a  few  herbicides,  like  Velocity  or  Xonerate,  to  kill  the  Poa  annua,  but  they  often  leave  large  areas  of  dead  turf  which  take  a  long  time  to  heal.  A  new  experimental  product  being  developed  by  SipcamAdvan  has  been  shown  to  suppress  the  Poa  annua  allowing  the  creeping  bentgrass  to  become  dominant  in  the  population.  You  will  see  3  different  formulations  of  the  product  in  these  studies.      

Page 10: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

10

Stop  4.  Dollar  Spot  and  Anthracnose  Field  Trials  Nancy  Dykema,  Eric  Galbraith,  and  Dr.  J.M.  Vargas,  Jr.    DOLLAR  SPOT  Dollar  spot,  caused  by  the  fungus  Sclerotinia  homoeocarpa,  is  a  very  important  disease  of  turfgrass.  The  fungus  attacks  the  foliage  of  the  plant  producing  bleached  to  straw  colored  lesions  which  may  or  may  not  expand  across  the  width  of  the  blade.  The  lesions  are  characterized  by  possessing  a  reddish  brown  perimeter  in  all  susceptible  grass  species  except  for  annual  bluegrass,  which  lacks  the  border.  As  the  epidemic  progresses,  small  spots  up  to  3  inches  in  diameter  are  formed.  If  conditions  remain  conducive  for  infection  and  the  disease  is  left  untreated,  the  spots  may  coalesce  and  form  larger,  irregularly-­‐shaped,  blighted  areas.  The  disease  can  be  spread  via  equipment  such  as  mowers,  from  clippings,  or  just  from  plants  growing  in  close  proximity.  Dollar  spot  is  typically  more  severe  in  drought-­‐stressed  areas  as  well  as  those  under  low  fertility.  When  temperatures  range  from  60-­‐90°F  and  nighttime  temperatures  fall  into  the  50-­‐60°F  area,  the  disease  is  most  active.  Under  these  temperatures,  heavy  dew  formation  usually  results  and  often  cob-­‐web  like  mycelia  may  be  observed  on  the  turf.    This  year,  several  dollar  spot  trials  were  conducted,  including  two  early  season  treatment  studies  on  an  A4  creeping  bentgrass  (CB)  fairway,  a  preventive  trial  on  an  A4  CB/annual  bluegrass  (AB)  mixed  fairway,  and  a  curative  trial  on  a  Crenshaw  CB  putting  green.  Each  trial  included  four  replicates  of  each  treatment.  Treatments  were  applied  using  a  CO2-­‐powered  backpack  sprayer  with  a  single  TeeJet  8002E  flat  fan  nozzle  at  approximately  42  psi.  Application  volume  was  48  GPA  unless  otherwise  specified  in  the  tables  below.  Mowing  height  for  fairway  trials  was  0.5”  and  for  greens  trials  was  0.135”.  Fertility  was  applied  as  needed.  Treatment  lists  and  plot  maps  are  provided  below.  Significant  amounts  of  dollar  spot  developed  in  each  of  the  inoculated  trials.  Differences  in  amounts  of  dollar  spot  among  treatments  are  currently  visible.      Early  Season  Treatment  Application  for  Dollar  Spot  Control,  2014.  Treatment  applications  were  made  on  23  Apr  and  20  May  2014.  Fertility  averaged  0.35  lb  N/1000  sq  ft/mo.  The  inoculated  study  received  an  application  of  fungus-­‐infested  sand/cornmeal  topdressing  on  24  Apr  2014.  Dollar  spot  began  to  develop  in  the  untreated  control  plots  in  the  inoculated  trial  in  mid  to  late  June.  In  the  non-­‐inoculated  trial,  dollar  spot  was  first  noted  in  early  to  mid-­‐July,  approximately  1  month  later  than  in  the  inoculated  trial.      Preventive  Dollar  Spot  Fairway  Trial,  2014.  Most  treatment  applications  were  made  initially  beginning  on  21  Jun  2014.  Treatments  were  applied  on  a:  14  day  schedule  (21  Jun,  3,  17,  and  31  Jul);  21  day  schedule  (21  Jun  and  15  Jul);  or  28  day  schedule  (21  Jun  and  17  Jul);  or  on  a  program  schedule  where  various  products  were  applied  throughout  the  season.  Fertility  applications  averaged  approximately  0.35  lb  N/1000  sq  ft/mo.  The  site  was  inoculated  with  fungus-­‐infested  sand/cornmeal  topdressing  on  26  May  and  28-­‐May.  Disease  pressure  has  been  good  this  season  with  the  untreated  control  averaging  35%  

Page 11: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

11

dollar  spot  in  mid-­‐July.  Differences  in  amount  of  dollar  spot  present  as  well  as  quality  differences  are  readily  observed  in  this  trial.    Curative  Dollar  Spot  Putting  Green  Trial,  2014.  Treatment  applications  were  made  as  listed  below,  with  most  applications  beginning  on  25  Jun  2014.  Treatments  on  a  7  day  schedule  were  applied  on  25  Jun,  3,  9,  15,  22,  and  29  Jul;  14  day  schedule  on  25  Jun,  9  and  22  Jul;  21  day  schedule  on  25  Jun  and  15  Jul;  and  28  day  schedule  on  25  Jun  and  22  Jul  or  as  listed  in  the  table.  Fertility  applications  averaged  approximately  0.3  lb  N/1000  sq  ft/mo.  The  site  was  inoculated  with  fungus-­‐infested  sand/cornmeal  topdressing  on  28  May.  Disease  pressure  has  been  good  this  season  with  the  untreated  control  averaging  around  40%  dollar  spot  throughout  July.  Differences  in  amount  of  dollar  spot  present  as  well  as  quality  differences  are  readily  observed  in  this  trial.    ANTHRACNOSE  Anthracnose,  caused  by  Colletotrichum  cereale,  is  a  devastating  disease  that  attacks  annual  bluegrass,  and  occasionally  bentgrass.    It  can  be  a  problem  on  golf  course  greens,  tees,  and  fairways.    Low  fertility,  low  mowing  heights,  and  droughty  conditions  that  lead  to  stressed  turf  can  be  a  precursor  for  this  disease.    Excess  moisture,  such  as  from  heavy  irrigation  or  heavy  rainfall,  followed  by  a  period  of  hot  weather  can  also  contribute  to  this  problem.    When  infection  occurs  on  fairways,  it  usually  affects  the  foliage  of  the  plants  causing  the  turf  to  look  brown  and  wilted.    Upon  close  examination  of  infected  tissue,  one  might  be  able  to  identify  tiny,  dark  fungal  structures  called  acervuli,  which  can  be  diagnostic  for  this  disease.  The  pathogen  can  also  infect  the  crowns  of  plants,  turning  them  a  charcoal  black  color,  particularly  on  greens  height  turf.    If  there  is  damage  to  the  crown  of  the  plant,  recovery  is  often  quite  slow.    Foliar  infections  typically  recover  more  quickly  than  infections  that  occur  in  the  crown  of  the  plant.        Anthracnose,  2014.    Treatments  were  applied  preventively  beginning  on  23  Jun  2014.  Subsequent  applications  for  treatments  on  a  7  day  schedule  were  applied  on  1,  9,  and  21,  and  28  Jul.  Treatments  on  a  14  day  schedule  were  reapplied  on  9  and  21  Jul.  Fertility  levels  averaged  approximately  0.35  lb  N/1000  sq  ft/mo.  The  study  was  inoculated  on  2  Jul  with  sand/cornmeal  topdressing  infested  with  C.  cereale.  Disease  pressure  has  been  moderate  this  year,  with  untreated  control  plots  averaging  up  to  28%  anthracnose.  Several  treatments  prevented  disease  development  in  the  study,  while  others  lacked  efficacy.  Differences  in  the  amount  of  anthracnose,  as  well  as  turfgrass  quality  differences  are  readily  visible  in  the  trial.    

Page 12: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

12

Stop  5.  European  Crane  Fly  and  Annual  Bluegrass  Weevil  Identification  and  Management  Dr.  David  Smitley  

European  crane  flies  that  have  recently  established  and  become  a  turf  pest  in  Michigan  consist  of  two  different  species  from  Europe:  Tipula  paludosa  (European  crane  fly)  and  Tipula  oleracea  (common  crane  fly).  The  adult  stage  of  both  of  these  pests  looks  like  a  giant  mosquito  with  a  wing  span  of  more  than  an  inch.    They  prefer  moist  soils,  so  are  most  likely  to  be  found  in  irrigated  turf,  although  with  enough  rain  they  can  develop  in  almost  any  lawn.  The  adults  fly,  mate  and  lay  eggs  in  August  and  September  and  may  be  seen  in  or  near  infested  lawns  or  golf  turf  in  large  numbers.    The  second  species,  the  common  crane  fly,  may  also  have  a  second  generation  of  adults  that  emerge  in  the  spring.  The  larvae,  called  “leatherjackets,”  grow  to  become  nearly  an  inch-­‐long  and  look  like  a  brown  caterpillar  with  no  head  or  legs.  

European  crane  fly  adult  (left)  and  larvae  (right).      (Credit:  Dave  Shetlar,  OSU)  

In  October  the  leatherjackets  consume  enough  turf  roots,  stems  and  leaves  to  cause  visible  injury  to  lawns  or  golf  courses.  Turf  damage  begins  to  appear  as  a  general  thinning  of  the  infested  turf,  but  may  progress  to  large  dead  patches.  Leatherjackets  can  be  brought  to  the  surface  by  drenching  with  a  soapy  water  solution  –  1  ounce  dish  wash  soap  in  2  gallons  of  water.  Leatherjackets  also  tend  to  come  to  the  surface  when  an  insecticide  is  applied.  This  can  be  a  nuisance  on  golf  courses  if  large  numbers  of  leatherjackets  appear  on  tees,  greens  and  fairways.  

Turf  treated  for  grubs  in  the  spring  are  not  protected  from  European  crane  fly  damage  in  October.  However,  if  grub  treatments  are  made  in  July  or  August,  they  should  also  protect  against  European  crane  fly.  See  the  table  below  for  a  list  of  products  that  are  effective  against  European  crane  fly.  

Page 13: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

13

Products  and  timing  of  products  used  to  prevent  damage  

Product   Correct  timing  for  European  crane  fly  

Sevin  (carbaryl)   In  April,  May  or  October  when  turf  damage  is  discovered.  

Acelepryn  (Chlorantraniliprole)   April  or  May  (also  protects  against  grubs  and  other  turf  pests).  

Arena  (clothianidin)  

Should  provide  protection  when  applied  in  July  or  August  (also  protects  against  grubs).  

Merit  (imidacloprid)  

Aloft  (clothianidin  +  bifenthrin)  

Meridian  (thiamethoxam)  

So  far  crane  fly  damage  has  only  been  reported  from  around  the  Grand  Rapids,  Mich.,  and  Detroit  areas,  but  each  year  the  infested  area  increases.  Symptoms  like  thin  turf  and  digging  activity  by  skunks  and  raccoons  may  appear  to  be  caused  by  grubs,  but  the  presence  of  gray  to  tan-­‐colored  leather  jackets  will  confirm  the  pest  as  European  crane  fly.    Infested  lawns  can  be  treated  in  October  with  Sevin  or  another  turf  product  containing  carbaryl.  In  order  to  avoid  this  problem  next  year,  insecticides  used  for  grubs  can  be  applied  in  July  or  August  to  also  protect  against  European  crane  fly.  

Annual  bluegrass  weevil  is  a  major  golf  course  pest  in  the  northeast  United  States.    Because  it  is  often  resistant  to  pyrethroid  insecticides,  it  can  be  very  difficult  to  control.    We  have  been  expecting  it  to  arrive  in  Michigan  because  it  became  a  problem  in  Pennsylvania  and  Ontario  at  least  five  years  ago.    Maybe  we  should  consider  it  a  blessing  that  it  has  not  yet  become  a  golf  course  pest  in  Ohio  or  Michigan.    Still,  it  is  wise  to  be  aware  of  this  future  pest  so  that  when  it  does  appear  we  will  recognize  it  and  take  the  steps  needed  to  control  it  before  we  see  too  much  turf  damage.      

Watch  for  patches  of  dead  annual  bluegrass  that  appear  in  June  or  July  on  aprons  around  greens  or  on  fairways.    Usually,  only  the  annual  bluegrass  dies,  although  bentgrass  can  become  infested.      Annual  bluegrass  weevil  can  be  distinguished  from  anthracnose  by  the  presence  of  sawdust-­‐like  frass,  hollow  stems,  and  the  tiny  (1/16th  of  an  inch)  weevils  and  their  larvae  (legless  white  grubs,  1/16th  of  an  inch-­‐long).    The  grubs  may  be  found  inside  of  annual    bluegrass  stems,  and  the  adult  weevils  will  float  when  cup-­‐cutter  samples  of  turf  are  submerged  in  water.              

Page 14: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

14

Stop  6.  Golf  Spike,  Sole  Design  Study  Dr.  Thomas  A.  Nikolai  and  Aaron  Hathaway   In  2013  I  received  several  phone  calls/Emails  from  superintendents  concerned  about  the  aggressiveness  of  several  new  spike/cleat  designs  on  their  putting  surfaces.    In  response  and  with  the  aid  of  FootJoy  I  lined-­‐up  several  golf  spikes/soles  and  performed  a  traffic  study  at  several  golf  courses  in  Florida  and  Michigan.    At  all  four  locations  the  golf  cleat  tests  were  conducted  in  the  following  manner.      

1.    3'  x  3'  plots  were  strung  on  a  putting  green  using  a  tape  measure,  string,  and  golf  tees  resulting  in  30-­‐plots  each  (10  treatments  including  the  non-­‐trafficked  check  plot  with  3  replications  each)  strung-­‐out  in  a  grid  of  3  rows  and  10  columns.    2.  In  a  randomized  order  each  plot  was  trafficked  by  individuals  using  size  11.5  and/or  13  golf  shoes  mimicking  a  golfer  pulling  a  golf  ball  out  from  the  bottom  of  the  cup  after  making  a  putt.  At  each  site  30  rounds  of  golf  were  applied  per  treatment  to  each  plot.    3.  After  plots  were  trafficked  individuals  (golfers,  golf  course  superintendents,  or  other  turf  industry  individuals)  rated  the  plots  on  the  putting  surface  a  scale  of  1-­‐5  for  putting  green  smoothness.    The  rating  scale  was:  

 1  =  Excellent;  no  visible  traffic  2  =  Very  good  3  =  Good;  some  traffic  but  I  would  not  mind  putting  on  the  surface  4  =  Fair  5  =  Poor;  terrible  putting  conditions  would  recommend  banning  this              cleat/sole  from  our  golf  course.  

 In  Figure  1  the  data  was  combined  from  all  four  sites  (i.e.  Forest  Glen  Country  Club,  Royal  Poinciana  Country  Club,  Naples  Beach  G.C.,  and  Brookshire  Inn  &  Golf  Course).    Combining  all  the  data  1620  observations  are  represented  in  Figure  1.  Bars  in  Figure  1  represent  treatments  (golf  stud  or  shoe  style).    Bars  that  do  not  share  the  same  letter  (displayed  at  the  top  of  each  bar)  are  significantly  different  from  one  another.    Another  way  of  saying  the  same  thing  is  that  every  bar  (treatment)  that  has  the  same  letter  above  it  is  NOT  significantly  different  from  all  other  treatments  with  the  same  letter  above  them.      The  statistics  takes  into  account  variability  that  results  among  raters  and  variability  in  turf  wear  among  the  three  replicate  plots  within  each  treatment.    In  Figure  1  the  non-­‐trafficked  check  received  the  highest  overall  rating  with  plots  trafficked  with  the  Foot  Joy  Dry  Joy  resulting  in  the  least  visible  wear  on  the  putting  surfaces.    Foot  Joy  M:  Project,  FJ  D.N.A.  with  stock  cleats,  and  FJ  D.N.A.  with  pulsar  cleats  shared  the  second  best  ratings  (all  with  the  letter  C)  and  all  with  over  85%  acceptable  ratings  (i.e.  good,  very  good,  and  excellent  ratings).    Overall  the  Ecco  Biom  and  Adizero  Tour  resulted  in  the  most  visible  foot  traffic  with  27%  and  31%  of  the  ratings  resulting  in  unacceptable  ratings.      

Page 15: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

15

Figure  1.  Predicted  probabilities  of  spike  treatments  to  be  rated  as  either  "Excellent",  "Very  Good",  "Good",  "Fair",  or  "Poor".    Probabilities  were  estimated  using  logistic  regression  analysis  of  data  collected  from  3  replicate  plots  evaluated  from  four  locations  (Forest  Glen  C.C.  Royal  Poinciana  G.C.,  Naples  Beach  G.C.,  and  Brookshire  Inn  and  G.C.).    Bars  that  do  not  share  a  letter  are  significantly  different  (a  =  0.05).  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  Poa  annua  Management  in  Creeping  Bentgrass  at  Putting  Green  Height  with  several  Herbicide  and  Nitrogen  Regimes  Aaron  Hathaway  and  Dr.  Thomas  A.  Nikolai    Management  of  Poa  annua  in  bentgrass  putting  greens  has  always  been  problematic  and  control  without  detriment  to  bentgrass  quality  and  playability  continues  to  be  an  important  topic  on  golf  courses  and  at  The  Hancock  Turfgrass  Research  Center.      Poa  annua  winterkill/severe  injury  concerns  have  heightened  following  the  polar  vortex  of  2013/14  as  have  superintendent  thoughts  about  controlling  Poa  annua  as  it  infiltrates  into  greens  and  fairways.  Although  a  daunting  task,  there  is  no  shortage  of  new  products  and  ideas  when  it  comes  to  controlling  annual  bluegrass.    In  this  study  12  annual  bluegrass  control  regimes  were  initiated  on  a  creeping  bentgrass  putting  green  featuring  combinations  of  five  products  maintained  on  plots  with  two  rates  of  nitrogen  (Table  1).  Methiozolin  (PoaCure),  amicarbazone  (Xonerate),  bispyribac  sodium  (Velocity),  paclobutrazol  (Trimmit),  and  flurprimidol  (Cutless)  were  applied  every  2  weeks  starting  on  June  24,  2013  in  combination  with  urea,  as  a  tankmix,  at  0.1  lbs  N/M  (low  rate)  and  0.2  lbs  N/M  (high  rate).  

Page 16: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

16

 Nitrogen  rates  are  included  in  the  study  because  high  rates  of  nitrogen  should  help  mask  injury  to  the  bentgrass  caused  by  some  of  these  herbicides  while  low  rates  of  nitrogen  are  thought  to  favor  annual  bluegrass  over  creeping  bentgrass.  The  two  nitrogen  rates  could  result  in  long  term  differences  and  a  possible  trade-­‐off  between  decreased  turf  quality  (low  rate)  and  decreased  annual  bluegrass  control  (high  rate)  for  the  end-­‐user.    These  herbicides  are  intended  to  provide  a  gradual  and  subtle  control  of  annual  bluegrass  throughout  the  growing  season  so  that  bare  soil  doesn’t  result  and  creeping  bentgrass  is  able  to  spread  and  overtake  weakened  annual  bluegrass.    You  are  invited  to  stop  by  the  site  and  judge  each  herbicides  effectiveness  for  yourself.    Table  1:  Treatment  List  for  Annual  Bluegrass  Control  on  a  Putting  Green  1   methiozolin  (PoaCure)   Low  N   Biweekly  2   High  N  3   methiozolin  (PoaCure)   Low  N   Biweekly  

Fall  Treatments*  4   High  N  5  

amicarbazone  (Xonerate)  Low  N  

Biweekly  6   High  N  7  

bispyribac  sodium  (Velocity)  Low  N  

Biweekly  8   High  N  9  

paclobutrazol  (Trimmit)  Low  N  

Biweekly  10   High  N  11   flurprimidol  (Cutless)   Low  N   Biweekly  12   High  N  13  

Untreated  Low  N  

Biweekly  14   High  N  *Initiated  September  16,  2013  with  follow-­‐up  applications  October  2  and  16.      

Page 17: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

17

Stop  7.  Effects  of  Drought  and  Traffic  Stresses  on  Physiological  Responses  and  Water  Use  Characteristics  of  Creeping  bentgrass  (Agrostis  stolonifera)  and  Annual  bluegrass  (Poa  annua)  Kevin  Laskowski,  Dr.  Emily  Merewitz,  Dr.  Kevin  W.  Frank,  and  Dr.  J.M.  Vargas,  Jr.   A  significant  amount  of  research  has  been  devoted  to  understanding  the  interaction  of  the  two  predominant  turfgrass  species  on  golf  course  greens,  creeping  bentgrass  and  Poa  annua.  Much  research  has  been  tailored  to  identifying  the  faults  of  P.  annua  in  order  to  kill  the  species  by  targeting  its  physiological  weaknesses.  P.  annua  relies  on  aggressive  growth  and  frequent  seedhead  production  and  highly  viable,  quick  germinating  seed  for  survival  under  both  optimal  conditions  and  during  times  of  stress.  Under  stressed  conditions,  golf  course  superintendents  do  not  desire  the  characteristics  inherent  to  P.  annua  stress  escape  strategies  such  as  prolific  seed  heads.      A  putting  green  approximately  24,000  ft.2  in  area  was  constructed  at  the  Hancock  Turfgrass  Research  Center  in  2008  according  to  the  United  States  Golf  Association  recommendations  for  putting  green  construction.    Within  the  entire  putting  green  there  are  eighteen,  36  ft.  by  36  ft.,  blocks  with  independent  irrigation  control.    Nine  of  the  irrigation  blocks  are  Poa  annua  and  nine  are  A4  creeping  bentgrass.    During  construction  seventy-­‐gallon  plastic  cattle  watering  tanks  were  buried  in  the  putting  greens  to  function  as  lysimeters  that  can  be  used  to  measure  water  quantity  and  quality.    Before  burying  the  tanks  in  the  putting  green,  cement  was  poured  in  the  bottom  of  the  tanks  on  an  angle  to  ensure  water  movement  out  of  the  tank  to  the  collection  vessel  on  the  north  side  of  the  greens.    Within  each  36  ft.  by  36  ft.  putting  green  three  lysimeters  were  buried.    Rain  Bird  TSM-­‐1  soil  sensors  were  installed  at  a  3  inch  depth  within  each  irrigation  block  in  the  summer  of  2012.  Using  the  Rain  Bird  Integrated  Sensor  System  (ISS),  three  different  volumetric  soil  moisture  targets  will  be  set  (8,  12,  and  16%).  The  irrigation  system  will  automatically  schedule  irrigation  to  maintain  these  soil  moisture  levels.    Individual  plots  are  set  up  as  a  total  area  of  about  191  ft2.  There  are  3  of  these  plots  per  irrigation  block  with  buffer  alleyways  between  each.  Traffic  treatments  are  applied  at  a  low  and  moderate  rate  through  the  use  of  a  traffic  simulator.  One  plot  in  each  irrigation  block  will  receive  the  low  rate  while  one  plot  will  receive  the  moderate  traffic  rate.  The  last  plot  is  left  as  an  untreated  control.  Visual  turf  quality  ratings,  canopy  reflectance,  electrolyte  leakage,  chlorophyll  content  and  photochemical  efficiency  will  be  determined  to  evaluate  turf  responses  to  the  watering  treatments.  Determination  of  root  moisture  content  and  leaf  relative  water  content  will  also  be  performed.    The  TSM-­‐1  soil  sensors  will  measure  volumetric  soil  moisture  every  twenty  minutes,  as  well  as  the  use  of  TDR  technologies.      New  equipment  that  to  our  knowledge  is  not  commonly  utilized  in  turfgrass  systems  will  be  used  to  directly  measure  ethylene  concentration  in  the  field  (CID  Bio-­‐sciences;  CID-­‐900).  This  equipment  will  be  tested  for  effectiveness  of  determining  ethylene  production  from  both  roots  

Page 18: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

18

and  shoots  of  the  plants  sampled  from  the  turfgrass  plots  both  by  destructive  and  non-­‐destructive  sampling.  Evaluating  efficacy  of  this  equipment  could  pose  extremely  valuable  to  the  turf  industry  and  research  community.      Results  In  2013  research  commenced  at  the  Hancock  Turfgrass  Research  Center  is  looking  at  physiological  aspects  of  drought  and  traffic  stresses  on  Poa  annua  and  creeping  bentgrass.    This  research  has  been  carried  through  to  2014  observing  the  same  characteristics.    Regarding  water  use  characteristics,  overall  P.  annua  requires  more  water  to  maintain  the  target  soil  moisture  content.  For  example,  at  8%  and  12%  soil  moisture  target,  P.  annua  used  about  0.5  in.  more  water  than  creeping  bentgrass  per  month  in  2013.  In  2014,  the  same  trend  is  being  seen,  where  P.  annua  uses  more  water  to  maintain  soil  moistures  levels  to  the  specified  targets.    2014  also  is  offering  greater  amount  of  drought  stress  than  2013  and  increased  localized  dry  spots  can  be  observed  on  low  target  moisture  plots.      Physiological  responses  such  as  electrolyte  leakage,  relative  leaf  water  content,  photochemical  efficiency,  chlorophyll  content  and  chlorophyll  reflectance  were  affected  by  different  levels  of  traffic.  After  two  weeks  of  traffic  treatments,  traffic  started  to  cause  a  decline  in  the  quality  of  turf.  The  moderate  trafficked  plots  had  a  lower  quality,  low  trafficked  plots  had  better  quality  than  moderate,  and  non-­‐trafficked  plots  had  the  highest  quality  within  both  species.  Across  traffic  treatments,  creeping  bentgrass  consistently  maintained  higher  turf  quality  compared  to  P.  annua.  A  yellowing  of  turfgrass  color  was  also  observed  showing  that  there  is  decreased  chlorophyll  content.      Regarding  ethylene  production,  on  some  dates  P.  annua  tended  to  have  higher  ethylene  production  than  creeping  bentgrass  in  2013.  This  result  is  also  being  seen  in  the  2014  season.    Data  from  2013  field  research  shows  that  rooting  is  very  different  between  P.  annua  and  creeping  bentgrass  with  creeping  bentgrass  having  longer  and  more  abundant  roots.  Traffic  and  irrigation  treatments  did  not  significantly  affect  rooting  habits  of  either  species.  As  cooler  weather  sets  in  (Fall),  P.  annua  rooting  habit  exhibits  that  of  creeping  bentgrass  in  length  but  not  quantity.    

   

Page 19: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

19

8.  Effect  of  Creeping  Bentgrass  Seeding  Rates  and  Traffic  on  Establishment  of  Putting  Greens  during  Renovation  Thomas  O.  Green,  Eric  C.  Chestnut,  and  John  N.  Rogers,  III  Cutting  edge  advancements  in  biotechnology  and  genetic  engineering  have  allowed  turf  breeders  to  introduce  species  and  varieties  of  grasses  with  outstanding  germination  rates  and  physiological  characteristics.  Depending  upon  the  current  demand  and  limited  availability  of  these  improved  grasses,  turf  managers  can  expect  to  pay  exorbitant  prices  for  such  seeds.  Generally,  renovation  entails  complete  conversion  yet  very  little  data  exists  that  identify  a  cost-­‐effective,  optimum  creeping  bentgrass  (Agrostis  stolonifera)  seeding  rate.  Contrary  to  popular  belief,  in  an  effort  to  circumvent  weed  competition  and  minimize  disruption  of  golf  rounds  played  in  the  first  season  following  renovation,  using  higher  than  recommended  seeding  rates  negatively  affects  plant  health.  Although  speedy  establishment  can  offset  costs  and  revenue  loss,  it  is  uncertain  if  high  shoot  density  turf  can  withstand  early  season  traffic.  One  method  that  could  address  these  concerns  is  using  improved  creeping  bentgrass  varieties  at,  or  near  the  lower  range  of  the  recommended  seeding  rates  of  0.5  -­‐1.0  lb/1000  ft2.  The  goal  of  the  study  was  to  evaluate  the  effects  of  various  seeding  rates  and  traffic  initiations  on  the  establishment  of  a  sustainable  putting  surface  following  renovation.  The  site  was  a  USGA  putting  green  (0.125-­‐in  cut  height,  5-­‐d  weekly),  strip  plot,  factorial-­‐design  (6  x  4)  with  8  blocks  at  Michigan  State  University.  Main  plot  factor  was  ‘V8’  creeping  bentgrass  rate  (0.125,  0.25,  0.5,  0.75,  1.0,  and  2.0  lb/1000  ft2)  and  strip  plot  factor  was  traffic  initiation  (May,  June,  and  July).  Plots  were  seeded  in  August  2012  and  replicated  in  2013.  Traffic  treatments  occurred  3x  weekly  (4  passes)  using  a  Jacobsen®  PGM  22  with  116-­‐“Black  Widow”  Softspikes®.  Turf  density  was  rated  qualitatively  (visual  percentage  plot  area  of  turf  cover),  and  quantitatively  (chlorophyll  and  NDVI  meters,  Spectrum  Technology).  Rooting  strength  data  was  collected  using  a  shear  vane  tester  from  Turf  Tec  International.  Preliminary  results  showed  no  significant  difference  (rooting  strength,  chlorophyll  index)  between  0.75  and  2.0  lb/1000  ft2  seeding  rates.  Data  garnered  from  this  experiment  will  improve  upon  renovation  techniques  that  both  reduce  costs  without  compromising  turf  quality.      

Stop  9.  Establishment  Studies  for  Creeping  Bentgrass  Greens  Eric  C.  Chestnut,  Thomas  O.  Green,  and  Dr.  John  N.  Rogers,  III   New  creeping  bentgrass  varieties,  harsh  winters,  and  a  number  of  other  environmental  factors  are  forcing  some  superintendents  to  consider  renovation  of  golf  course  putting  greens.  The  purpose  of  this  study  is  to  find  an  ideal  plan  to  establish  a  new  creeping  bentgrass  putting  green  surface  using  four  different  factors.  Agrostis  stolonifera  var.  Pure  Distinction  was  seeded  into  a  sand-­‐based  profile  (95/5  root-­‐zone  medium)  in  August  of  2013.  Two  of  the  factors,  mowing  height  and  fertility  rate,  were  started  in  the  fall  and  the  other  two  factors,  verticutting  and  PRG  regimes,  were  initiated  the  following  summer.      Mowing  heights  were  initially  at  0.200”  and  0.150”  and  were  reduced  by  0.010”  and  0.005”  each  week,  respectively,  until  a  height  of  0.125”  was  reached  for  both  treatments.  The  nitrogen  (46-­‐0-­‐0)  fertility  rates  that  were  used  were  0.05  lb  N/1000  ft2,  0.10  lb  N/1000  ft2,  and  0.15  lb  

Page 20: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

20

N/1000  ft2  per  week.  The  verticutting  regimen  began  on  May  28,  2014.  Plots  were  either  assigned  a  bi-­‐weekly  treatment  or  no  treatment.  Primo  treatments  began  on  June  6,  2014.  Plots  either  received  the  labeled  rate  of  0.125  fl  oz/1000  ft2  every  other  week  or  no  treatment.  The  factors  that  seem  to  have  the  greatest  impact  on  turf  quality  so  far,  based  on  visual  observations,  are  nitrogen  fertility  rate  and  verticutting  regimen.  The  data  has  not  yet  been  subjected  to  statistical  analysis,  so  all  observations  thus  far  are  subjective.  This  study  is  in  its  first  year  of  existence  and  will  be  replicated  for  another  year  after  this.  Data  are  being  collected  based  on  NDVI  Index,  chlorophyll  content,  and  visual  percent  cover.  At  the  end  of  this  year’s  study  the  data  will  be  used  to  determine  significant  differences  and  interactions  between  treatments.      

Stop  10.  Lightweight  Rolling  and  Topdressing  Decrease  Fungicide  Inputs  and  Dollar  Spot  Severity  on  Fairways  Thomas  O.  Green,  Dr.  John  N.  Rogers,  III,  Dr.  James  R.  Crum,  Dr.  Thomas  A.  Nikolai,  and  Dr.  J.M.  Vargas,  Jr.   Dollar spot (Sclerotinia homoeocarpa F.T. Bennett) is an extensive turfgrass disease in the upper Midwest that drastically diminishes turf quality and golf course playability—in many cases, results in great expenditures of fungicide products. Michigan State University scientists have observed reduced dollar spot infection in putting greens that were rolled several times weekly. Others have observed a reduction of disease in putting greens that were frequently sand topdressed. Therefore, we hypothesized that dollar spot infection on fairways would be decreased by sand topdressing and by rolling, hence reducing the need for frequent fungicide treatments. Our objective was to evaluate dollar spot severity responses on a mixed stand (Agrostis stolonifera L. and Poa annua L.) fairway to lightweight rolling and sand topdressing with and without fungicide applications. The study was a split block design with three-replications, and conducted from 2011 to 2014 at the Hancock Turfgrass Research Center at MSU. Treatments consisted of sand topdressing, three rolling frequencies (1x, 3x, and 5x weekly), and controls. In contrast, Emerald® fungicide applications (0.045, 0.09, and 0.180 oz/1000 ft2) at 15-d and 30-d intervals, rolling 3x weekly, sand topdressing, and controls were also started in 2013 and 2014. Infection was visually assessed, and preliminary data suggest that sand topdressing significantly (P<0.05) reduced dollar spot by 40 to 50% at the peak of the disease cycle in 2011 and 2013. Furthermore, the 3x and 5x weekly rolled treatments exhibited 50% less dollar spot injury in 2013. First year data results revealed no interaction effects of sand topdressing and rolling on fungicide efficacy; however, initial results imply that sand topdressing and lightweight rolling could lessen the need for recurrent fungicide inputs for controlling dollar spot on fairways.  

Page 21: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

21

Stop  11.  Remote  Sensing  &  GIS  Unmanned  Aerial  Systems  (UAS)  Robert  Goodwin,  Joe  Welsh,  and  Dr.  Dave  Lusch    Please  see  report  on  pg.  8.  

Stop  12.  MSUTurfInsects.net  Terry  Davis  and  Dr.  David  Smitley   The  Turf  Insect  ID  website  (www.msuturfinsects.net)  is  up  and  running.    It  can  be  used  to  identify  turf  pests  via  entering  turf  damage  symptoms  or  comparing  descriptions  and  pictures  of  the  damage  and  insects.    Pictures,  descriptions,  life  history  and  general  control  measures  can  be  found  on  this  website  for  all  of  the  major  turf  insect  pests  in  Michigan.    This  is  the  companion  website  to  the  turf  disease  and  weed  websites.      

Stop  13.  A  Bee-­‐Friendly  Approach  to  Home  Lawn  Grub  Control  Dr.  David  Smitley  

Imidacloprid,  clothianidin,  and  thiomethoxam  are  the  neonicotinoid  insecticides  used  on  on  home  lawns  and  golf  courses  for  grub  control.    These  insecticides  and  many  other  insecticides  can  be  toxic  to  bees  when  bee-­‐attractive  flowers  are  sprayed.    However,  because  bees  only  feed  on  the  nectar  and  pollen  they  will  not  visit  turfgrass  in  home  lawns  unless  flowering  weeds  like  clover  are  present.    If  a  lawn  does  not  have  any  flowering  weeds  there  will  be  no  adverse  effects  on  bees  when  an  insecticide  is  applied  for  grubs.      Let’s  say  that  your  lawn  care  company  usually  treats  lawns  for  grubs,  billbugs  and  chinch  bugs  in  early  June.    Customer  lawns  can  be  divided  into  two  categories  with  the  following  bee-­‐friendly  grub  control  options:  

1. Old  customers,  no  flowering  weeds  present.      Standard  grub  control  practices  will  not  harm  bees  because  your  outstanding  weed  control  program  has  eliminated  flowering  weeds.    

2.  New  customers,  flowering  weeds  are  present.  If  the  lawn  is  mowed  immediately  before  it  is  treated  with  an  insecticide  for  grub  control,  weed  flowers  will  be  removed  and  the  insecticide  application  will  not  be  harmful  to  bees.      Also,  in  a  recent  study  in  Kentucky,  Dr.  Dan  Potter  found  no  adverse  effects  to  bumble  bees  visiting  clover  in  a  lawn  sprayed  with  chlorantraniliprole  (Acelepryn  or  GrubEx).    So,  if  flowering  weeds  are  present,  chlorantraniliprole  can  be  used.      

What  if  linden  trees  or  other  flowering  trees  are  present  in  the  lawn?    We  do  not  know  at  this  point  if  the  grub  control  rate  of  imidacloprid,  thiomethoxam  or  clothianidin  applied  to  turfgrass  under  flowering  trees  will  be  harmful  to  bees.    The  trees  will  absorb  some  of  the  neonicotinoid  insecticide  through  their  roots  and  some  of  the  insecticide  will  be  systemically  moved  

Page 22: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

22

throughout  the  plant,  including  into  the  pollen  and  nectar.    This  may  not  be  enough  insecticide  to  be  harmful  to  bees,  because  in  Dr.  Potter’s  study  in  Kentucky,  turf  with  clover  was  not  harmful  to  bees  when  it  was  mowed  before  spraying,  even  though  the  clover  bloomed  again  a  few  weeks  after  clothianidin  was  spayed.    Still,  the  safest  approach  is  to  apply  imidacloprid,  thiomethoxam  or  clothianidin,  in  July,  after  lindens  and  most  flowering  trees  are  done  blooming.    Also,  landscapers  should  not  use  imidacloprid  as  a  basal  soil  drench  around  linden  trees  or  other  trees  that  are  attractive  to  bees.    Some  landscapers  have  used  imidacloprid  basal  soil  drenches  for  control  of  Japanese  beetle,  aphids,  scale  insects  and  borers.      

Recent  research  has  shown  that  all  of  the  insecticides  used  to  control  grubs  in  lawns  are  more  consistent  when  the  lawn  is  irrigated  immediately  after  application.    So,  regardless  of  what  insecticide  is  used,  irrigate  with  ½”  of  water  immediately  after  application.  

Another  alternative  to  using  a  neonicotinoid  insecticide  for  grub  control  is  to  grow  a  lawn  with  a  dense  root  system  that  is  tolerant  of  grubs.  This  can  be  done  without  the  use  of  any  insecticide.  If  homeowners  set  their  mowers  at  the  highest  setting  (clips  turf  at  3  to  4  inches  in  height),  return  their  grass  clippings  to  the  lawn  instead  of  collecting  them,  chop  tree  leaves  into  the  lawn  instead  of  raking,  fertilize  modestly,  and  water  during  dry  periods,  they  will  build  a  dense  turf  resistant  to  grubs.  Tips  on  how  to  do  this  are  available  in  the  Michigan  State  University  Extension  Smart  Gardening  tip  sheets:    Mow  high,  mulch  leaves,  and  smart  watering.  

Stop  14.  Annual  bluegrass  Control  in  Athletic  Fields  Aaron  Hathaway  and  Dr.  Thomas  A.  Nikolai    Annual  bluegrass  (ABG)  continues  to  infiltrate  Kentucky  bluegrass  (KBG)  athletic  fields.  It  not  only  becomes  an  aesthetic  problem  because  it  forms  small  and  large,  yellower  patches,  but  does  not  tolerate  traffic  nor  recuperate  from  traffic  stress  as  well  as  KBG.  If  ABG  is  not  controlled  in  a  timely  manner  it  proliferates  from  year  to  year  becoming  a  bigger  and  bigger  problem  because  it  can  produce  plenty  of  seed  even  when  regularly  mowed  low  while  KBG  cannot.  ABG  builds  its  population  above  the  ground  but  also  builds  its  potential  future  population  through  an  ever-­‐increasing  bank  of  seed  in  the  soil.  It  is  important  to  control  ABG  from  the  very  beginning  as  maintaining  control  of  small  populations  of  ABG  is  much  easier  than  mass  control  of  a  large  population.  Another  hurdle  to  ABG  control  in  KBG  is  that  these  two  turfgrass  species  are  very  closely  related  and,  so,  it  can  be  difficult  to  find  a  herbicide  that  effectively  controls  ABG,  but  is  also  adequately  safe  on  KBG.  A  trial  was  initiated  on  a  KBG  athletic  field  mowed  at  one  inch.  Herbicides  were  first  applied  on  June  6,  2014  and  applied  every  two  weeks  thereafter.              

Page 23: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

23

Treatment  List:  Annual  Bluegrass  Control  in  Athletic  Fields  Trial    

Treatment   Rate   Interval   #  of  apps  Velocity  17.6  WG   4  oz/A   Every  2  weeks   4  of  6  PoaCure   0.45  lbs  ai/A   Every  2  weeks   4  of  6  PoaCure   0.45  lbs  ai/A   3  apps  in  fall   0  of  3  PoaCure   0.45  lbs  ai/A   1  app  in  late  fall   0  of  1  Xonerate  70  WG   2  oz/A   Every  2  weeks   4  of  6  Trimmit  2  SC   0.5  lbs  ai/A   Every  2  weeks   4  of  4  Xonerate  +  Trimmit   2  oz/A  +  0.5  lbs  ai/A   Every  2  weeks   4  of  4  Tenacity  4  SC   4  fl  oz/A   Every  2  weeks   4  of  4  Untreated          

Stop  15.  Ground  Cover  Sediment  Movement  Study  Dr.  Thomas  A.  Nikolai,  Jeff  Bryan,  Joe  Fabbo,  and  Aaron  Hathaway   In  2010  a  sediment/fertilizer  study  was  initiated  in  Flint,  Michigan  as  an  environmental  portion  of  a  social  study  gauging  the  impact  of  turfgrass  on  an  urban  environment.    After  three-­‐years  that  study  indicated,  among  other  things,  that  well  maintained  lawns  increase  neighborhood  interaction  and  increases  feelings  of  security  and  trust.    Additionally,  turfgrass  lots  that  were  fertilized  in  Flint  reduced  sediment  run-­‐off  compared  to  lots  that  were  not  fertilized.    The  ground  cover/sediment  movement  study  at  the  Hancock  Turfgrass  Research  center  was  also  initiated  in  2010.      The  objective  of  the  study  was  to  identify  which  turfgrass  ground  cover  and  fertility  practices,  if  any,  reduced  the  amount  of  sediment  run-­‐off  while  maintaining  good  turfgrass  quality.        Ground  cover  treatments  include  perennial  ryegrass,  fine  fescue,  tall  fescue,  Kentucky  bluegrass,  a  Scott’s  sun/shade  grass  seed  mixture,  and  a  wild  flower  prairie  mix.    All  six  ground  covers  received  no  nitrogen  or  approximately  4  lbs.  of  nitrogen  per  year  in  four  applications.      Additionally,  since  establishment  the  plots  have  had  no  pesticides  or  irrigation  applied.      Please  stop  in  and  see  the  site  and  discuss  possible  impacts  for  your  business.  

 

 

   

Page 24: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

24

Stop  16.  Runoff  Research  Dr.  Kevin  W.  Frank  and  Aaron  Hathaway   A  runoff  research  area  was  constructed  at  the  Hancock  Turfgrass  Research  Center  on  the  campus  of  Michigan  State  University  in  the  summer  of  2013.    The  turfgrass  is  Kentucky  bluegrass  maintained  to  home  lawn  standards.    Individual  plot  size  is  8  x  8  ft.  with  each  plot  draining  to  a  collection  gutter  and  then  a  collection  vessel  where  runoff  water  can  be  quantified  and  tested  for  nutrients.    The  objective  of  this  research  is  to  collect  data  to  determine  whether  or  not  the  use  of  slow  release  fertilizers  with  single  application  rates  as  high  as  4  lb.  N/1000  ft.2  increase  the  risk  of  nitrogen  in  runoff  water.      Fertilizer  Treatments:  

1. Non-­‐fertilized  control  2. Standard  program,  4  lbs  N  /  1000  sq.  ft.  annually:    

April:  60%  urea/40%  PCSCU  applied  at  1  lb  N/1000  sq  ft,  plus  0-­‐0-­‐60  at  0.57  lb  K2O/1000  sq  ft  June:  60%  urea/40%  PCSCU  applied  at  1  lb  N/1000  sq  ft  August  or  Sept:    60%  urea/40%  PCSCU  applied  at  1  lb  N/1000  sq  ft,  plus  0-­‐0-­‐60  at  0.57  lb  K2O/1000  sq  ft  Oct  or  Nov  (depending  on  timing  of  previous  application):  75%  urea/25%  PCSCU  applied  at  1  lb  N/1000  sq  ft  

3. Duration  SIFI  35-­‐0-­‐10,  single  application  in  April,  4.0  lb  N  /  1000  sq.  ft.    4. Duration  SIFI  35-­‐0-­‐10,  single  application  in  April,  2.5  lb  N  /  1000  sq.  ft.,  plus  0-­‐0-­‐60  at  

0.43  lb  K2O/1000  sq  ft    5. Duration  SIFI  35-­‐0-­‐10,  2.5  lb  N  /  1000  sq.  ft.  applied  in  mid-­‐October  -­‐  November,  

followed  by  1.5  lb  N  /  1000  sq.  ft.  applied  in  May  or  June  2013,  based  on  observed  longevity  of  fall  application  (4.0  lb  N  /  1000  sq.  ft.  total).  From  April  through  Sep  2013,  make  low  rate  applications  (0.5  lb  N  /  1000  sq.ft.)  of  urea  as  needed  to  maintain  acceptable  turf  quality.  Limit  these  applications  to  the  minimum  necessary  to  maintain  acceptable  turf.        

 Data  Collection:  

1. Turfgrass  color  and  quality,  visual  ratings,  collected  monthly.  Quantitative  color  readings  with  Spectrum  Technologies  TCM  500  NDVI  Turf  Color  Meter.    

2. Inorganic  N  in  runoff,  collected  continuously  (report  individual  sample  date  results,  as  well  as  cumulative  results  for  mass  N  loss).  

3. Runoff  volumes          

Page 25: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

25

Stop  17.  Evaluating  the  Effects  of  Lightweight  Rolling  on  Athletic  Fields  Nick  Binder,  Dr.  Thomas  A.  Nikolai,  Dr.  James  Crum,  Dr.  Emily  Merewitz,  and  Dr.  James  Flore  

Routine  lightweight  rolling  has  become  a  common  management  practice  of  golf  course  greens  due  to  numerous  studies  that  have  taken  place  over  the  last  couple  decades,  several  of  them  right  here  at  Michigan  State.  Benefits  of  rolling  putting  greens  discovered  through  research  include  faster  green  speed,  reduced  broadleaf  weeds,  decreased  dollar  spot,  greater  topdressing  incorporation.  However,  there  is  currently  no  published  research  evaluating  this  practice  on  athletic  fields.  This  research  looks  at  routine  lightweight  rolling  at  its  effects  on  athletic  field  surface  and  subsurface  characteristics.  Current  studies  are  looking  at  how  rolling  affects  athletic  field  characteristics  such  as  surface  smoothness  (ball  roll),  root  stability,  moisture  content,  compaction,  and  more.    For  more  information  on  rolling  athletic  fields,  visit  the  link:  http://www.kenilworth.com/publications/cg/de/201407/  

Stop  18.  Organic  Weed  Control  in  Turf  Aaron  Hathaway  and  Dr.  Thomas  A.  Nikolai    

At  the  end  of  2010,  over  170  municipalities  in  Canada,  including  the  provinces  of  Ontario  and  Quebec  placed  restrictions  on  the  “cosmetic”  use  of  “synthetic”  lawn  herbicides.  New  Brunswick  and  Prince  Edward  Island,  in  2009  and  2010,  respectively,  banned  the  use  of  2,4-­‐D  on  lawns.  Many  U.S.  cities  and  communities  have  worked  to  reduce  or  ban  “cosmetic”  pesticide  use  in  their  respective  parks  and  communities,  often  even  in  residential  areas.  Questions  about  “organic”  herbicide  efficacy  have  continued  to  increase  over  the  years  from  home  owners  and  lawn  care  operators  trying  to  serve  the  home  owners.  One  trial  was  initiated  to  investigate  the  efficacy  of  “organic”  herbicides  and  “organic”  methods  for  selective  control  of  broadleaf  weeds  in  turfgrass.  Another  trial  was  initiated  for  nonselective  control  of  broadleaf  weeds  and  turfgrass.  Herbicide  applications  and  weeding  methods  employed  for  each  of  these  trials  were  initiated  on  July  24,  2014.    So  what  makes  a  product  or  method  organic?  The  Organic  Materials  Review  Institute  (OMRI)  is  a  “nonprofit  organization  that  determines  which  input  products  are  allowed  for  use  in  organic  production  and  processing.”  So,  OMRI  determines  which  products  can  be  used  by  certified  organic  operations  under  the  USDA  National  Organic  Program.  There  are  other  organizations  with  programs  that  hand  out  “organic  certification”  such  as  the  Northeast  Organic  Farming  Organization’s  Organic  Land  Care  Program  (NOFAOLC).  Although  there  are  regulations  in  place  in  order  for  foods  to  receive  the  “organic  stamp”  from  the  USDA,  this  stamp  has  yet  to  be  identified  in  lawn  care.  Also,  although  there  are  some  products,  like  St.  Gabriel  Organic’s  BurnOut  II  that  are  approved  as  “organic”  by  OMRI,  others  don’t  bother  seeking  this  status  or  even  call  the  product  organic  on  the  label.  These  other  products  use  creative  marketing  and  use  labels,  such  as  “natural”  or  “Elemental,”  like  Ortho’s  iron  product.  Still,  other  products  actually  have  an  EPA  regulation  number  and,  so,  are  officially  pesticides,  such  as  Monterey’s  Herbicidal  Soap.  It  seems  that  just  as  “organic”  weed  control  in  turf  has  not  yet  been  well  investigated,  it  is  also  not  well  defined.  There  is  much  room  for  creative  marketing  by  lawn  care  operators  to  sell  “organic”  products,  “natural”  products,  “subjectively  safer”  products,  or  any  product-­‐less  methods,  like  mechanical  control,  for  selective  and  nonselective  weed  control.  

Page 26: MSU Field Day Report 2014archive.lib.msu.edu/tic/msufd/article/2014.pdf · 2014-08-18 · 3 2014 Turfgrass Field Day Stops Mount Hope Rd. e Weed Garden Putting Green Fairway Lawn

26

Trial  1:  “Organic”  Selective  Weed  Control:       Company   Product   Active  Ingredient  1   Ortho:  Elementals   Lawn  Weed  Killer   1.5%  Iron  HEDTA  2   The  Dial  Corp.   20  Mule  Team  Borax   Sodium  tetraborate  (Boron)  3   AgraLawn  Inc.   Crabgrass  Killer   0.95%  cinnamon  bark  4     iron  +  cinnamon    5     iron  +  cinnamon  +  boron    6   Flame  Engineering,  Inc.   Weed  Dragon  Torch   fire  7     Steam  Weeding   steam  8     Mechanical  Weeding   Hand  weeding  9   PBI  Gordon   Trimec  Classic   2,4-­‐D,  MCPP,  dicamba  10     Untreated      Trial  2:  “Organic”  Nonselective  Weed  Control       Company   Product   Active  Ingredient  

1   EcoSmart   Organic  Weed  and  Grass  Killer  1%  rosemary  oil  0.06  %  sodium  lauryl  sulfate  

2   Monterey   Herbicidal  Soap   22%  ammoniated  soap  of  fatty  acids  

3   Naturally  Clean  and  Green   Natural  Horticultural  Vinegar   20%  acetic  acid  yucca  extract  (surfactant)  

4   St.  Gabriel  Organics   BurnOut  II    5     Acetic  acid  +  Epsom  Salt    6     Clear  Plastic    7     Glyphosate   41%  glyphosate  8     Untreated