molecular clouds and gamma rays

40
Molecular clouds and gamma rays Yasuo Fukui Nagoya University H. Sano, S. Yosiike, T. Fukuda, H. Matsumoto T. Inoue, S. Inutsuka, R. Yamazaki, T. Tanaka, F. Aharonian, G, Rowell, M. Tavani, A. Guliani, N.McClure-Griffiths+ March 2-4, 2013 Physics with GAMMA 400, Trieste 1

Upload: wayne

Post on 24-Feb-2016

53 views

Category:

Documents


1 download

DESCRIPTION

Molecular clouds and gamma rays. Yasuo Fukui Nagoya University H. Sano, S. Yosiike , T. Fukuda, H. Matsumoto T. Inoue, S. Inutsuka , R. Yamazaki, T. Tanaka, F. Aharonian , G, Rowell, M. Tavani , A. Guliani , N .McClure -Griffiths+ March 2-4, 2013 Physics with GAMMA 400, Trieste. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Molecular clouds and  gamma rays

1

Molecular clouds and gamma rays 

Yasuo FukuiNagoya University  H. Sano, S. Yosiike, T. Fukuda, H. MatsumotoT. Inoue, S. Inutsuka, R. Yamazaki, T. Tanaka, F. Aharonian, G, Rowell, M. Tavani, A. Guliani,N.McClure-Griffiths+

March 2-4, 2013Physics with GAMMA 400, Trieste

Page 2: Molecular clouds and  gamma rays

2

Interstellar Medium ISM• Molecular clouds: dense neutral gas H2 (2.6mm CO)     - density 10^3 cm-3 or higher, Tk=10-20K• Atomic clouds: dense atomic gas HI (21cm HI)     - density 1-100 cm-3, Ts=30-100KGamma-rays produced by 1) Hadronic scenario:  This has been verified in 2012-13    - cosmic ray CR proton - ISM proton reaction,     neutral pions decay into gamma rays2) Leptonic scenario    - CR electrons, Inverse Compton (IC) process,  CMB etc.    Gamma-rays (0.1GeV-100TeV) observed by HESS, MAGIC, 

VERITAS, Fermi, AGILE and CTA[2016-]

Molecular clouds and gamma-raysThe origin of the cosmic rays is SNR?- Yes.

Page 3: Molecular clouds and  gamma rays

3

Hadronic Cosmic-ray Interactions

p

p (Inter stellar medium)

p

(Cosmic Microwave Background)

e+e–

Compton scattering

(CMB)

π0

π± → µ± → e±

(CMB)

Target ISM protonsNo real test yet for the targets

By  H. Tajima  2006

Page 4: Molecular clouds and  gamma rays

4

SNRs emitting gamma-rays

By courtesy of H. Tajima

Page 5: Molecular clouds and  gamma rays

5

CO transitions to probe molecular hydrogen

• Hydrogen molecules are not observable in radio. Too high energy levels. Only in absorption.

• Carbon monoxide CO and others can be observed in  rotational transitions.

•   Sub-mm transitions from generally higher excited states ratio between J and J’ gives density/temperature.

Page 6: Molecular clouds and  gamma rays

6

NANTEN & NANTEN2

@Atacama, alt.4800m@Las Campanas, alt.2400m

Page 7: Molecular clouds and  gamma rays

Left: NANTEN 12CO(1-0) image (beam size : 2.7’) of the W 28 region for VLSR=0 to 10 km/s with VHE γ ray significance contours overlaid (green) -levels 4,5,6σ. The radio boundary of W 28, the 68% and 95% location contours of GRO J1801- 2320 and the location of the HII region W 28A2 (white stars) are indicated. Right: NANTEN 12CO(1-0) image for VLSR=10 to 20 km/s. (Aharonian et al. 2007)

TeV γ vs. CO(J=1-0)

7

Page 8: Molecular clouds and  gamma rays

8

Comparison of 12CO(J=1-0) with X-rays

Fukui et al. 2003

-11 km/s < VLSR < -3 km/sD

A

B

C

Page 9: Molecular clouds and  gamma rays

9

Page 10: Molecular clouds and  gamma rays

10

SNR G347.3-0.5 (RX J1713.7-3946)- Shell-like structure: similar with X-rays- No significant variation of spectrum index  across the regions- spatial correlation with surrounding molecular gas

Aharonian et al. 2005

Page 11: Molecular clouds and  gamma rays

11

RX J1713.7-3946

Fukui et al. 2012, ApJ, 746, 82

Page 12: Molecular clouds and  gamma rays

12

Dark HI SE Cloud (Self-Absorption)

Page 13: Molecular clouds and  gamma rays

13

HI becomes dark at higher density

Goldsmith et al. 2007

Page 14: Molecular clouds and  gamma rays

14

ISM protons in RX J1713.7-3946

Fukui et al. 2012HI + 2H2

Page 15: Molecular clouds and  gamma rays

15

ISM protons in RX J1713.7-3946Support hadronic scenario

Fukui et al. 2012HI + 2H2

Page 16: Molecular clouds and  gamma rays

16

Ellison et al. 2010 paper

• Uniform model, to account for gamma rays   we need high proton density like 10 cm-3

• Then we have too strong thermal X rays, contradicting no thermal X rays (Suzaku)

• This is not a problem if the ISM is highly clumpy; cavity (0.1 cm-3) and dense clumps (1000 cm-3)

• Cavity is the site of particle acceleration and clumps are the target

Page 17: Molecular clouds and  gamma rays

17

Inoue, Yamazaki, Inutsuka, Fukui 2012, ApJ, 744, 71

Page 18: Molecular clouds and  gamma rays

18

MHD simulations of shock-cloud interaction

density vs. magnetic field

Inoue+ 2010

Page 19: Molecular clouds and  gamma rays

19

density vs. magnetic field[sub-pc scale]

Page 20: Molecular clouds and  gamma rays

20

Shock propagation into dense gas 

   n : density of clump n0 : ambient density (=1 cm-3)

 10^4 cm-3,  t 〜 1000yrs  Penetrating Depth = 0.03 pc €

Vsh ~ 3000 km s−1 n n0

Sano et al. 2010

Page 21: Molecular clouds and  gamma rays

21

SNR RXJ1713 summary Gamma-rays corresponds well with interstellar H nuclei, CO+HI, allowing detailed identification of target protons in a density range from 100 to 103 cm-

3. The gas is highly clumpy.  Wp ~ 1048erg for 100cm-3: gamma rays ~ Wp x ISM

• Hadronic origin is consistent with the spatial correspondence

• Careful analysis of dense atomic and molecular gas, HI and CO, yields total ISM protons

• Shock-cloud interaction causes gas turbulence and strong B field up to mG (e.g., Uchiyama+ 2007)

Page 22: Molecular clouds and  gamma rays

TeV gamma-ray SNR RX J0852.0-4622 

Color TeV gamma rays     contour X rays s22

Page 23: Molecular clouds and  gamma rays

RX J0852: CO distribution (interact with the SNR)

image: CO(1-0) I.I. (Vlsr: 24-33 km/s)contours: X-ray (1-5 keV)

CO vs. X-rays

good spatial corresp-ondence between the CO and X-rays

Interacting with the SNR

Page 24: Molecular clouds and  gamma rays

RX J0852: HI distribution (interact with the SNR)

Image: HI I. I. (Vlsr: 28-34 km/s)contours: X-ray (1-5 keV)

HI vs. X-rays

HI wind bubble at same velocity in CO

ISM cavity created by the progenitor

Page 25: Molecular clouds and  gamma rays

25

TeV gamma-ray SNR RX J0852 ISM Proton Column Density Distributions

                                             Fukui et al. 2013, in prep.

Color: HI+2H2

Contour : TeV  rays

Page 26: Molecular clouds and  gamma rays

26

TeV gamma-ray SNR RX J0852ISM Proton and TeV gamma-ray Distributions

gamma raysISM protonsgood correspondence

ISM protonsas targets for cosmic ray protons

Page 27: Molecular clouds and  gamma rays

27

RXJ0852Fermi LAT 

Page 28: Molecular clouds and  gamma rays

28

Gamma-ray spectrum of RXJ1713Abdo et al. 2011

The hard spectrum is not unique to the leptonic scenario

The hard spectrum is explained by energy dependent penetrationof CR protons into dense molecular gas.

Page 29: Molecular clouds and  gamma rays

Hadronic -ray spectrum for dense cloud cores Gabici 2007, Zirakasivili Aharonian 2010, Inoue, Inutsuka, Yamazaki, Fukui 2012

 accelerated particles in the cavity diffuse into clouds and pions are created

 diffusion length :

 mass of the cloud penetrated by CR particles (  number of gamma rays)∝Dense cloud cores [ r  ∝ r - 2 ]

 Photon spectrum : N(E) ∝ M(E) E -p ∝ E 1/2-p = E -1.5 for p = 2

 The same with the leptonic spectrum by IC  Hadronic scenario is consistent with the Fermi spectrum

-

Page 30: Molecular clouds and  gamma rays

30

ISM/gamma-ray  comparison

• RXJ1713.7-3946     -Dense molecular rich/clumpy        M(H2)=104Mo, M(HI)=104Mo     -Hard gamma-ray spectrum • RXJ0852.0-4622      -Diffuse atomic rich/uniform       M(H2)=103Mo, M(HI)=104Mo     -Soft gamma-ray spectrum 

Page 31: Molecular clouds and  gamma rays

31

Page 32: Molecular clouds and  gamma rays

32

X rays vs. COpc-scale correlation

Page 33: Molecular clouds and  gamma rays

33

SNRs emitting gamma-rays

By courtesy of H. Tajima

Page 34: Molecular clouds and  gamma rays

34

W44 new Fermi/AGILE results

Page 35: Molecular clouds and  gamma rays

35

W44 CO 2-1/1-0    Yoshiike+2013 ApJ

Page 36: Molecular clouds and  gamma rays

36

W44

Page 37: Molecular clouds and  gamma rays

37

W44 CO

Page 38: Molecular clouds and  gamma rays

38

W44

Uchida+ 2012

Page 39: Molecular clouds and  gamma rays

39

W44

Page 40: Molecular clouds and  gamma rays

40

Summary• ISM plays a key role in production of the gamma-rays and X-rays. ISM target protons showing good spatial correspondence with gamma rays

• In RX J1713 and RX J0852, gamma rays are hadronic,   CR proton acceleration has been verified    -Their total CR proton energy is 10^48 erg• Dense clumps amplify B field via shock-cloud interaction, leading to enhanced X-rays   X-ray photon index becomes small toward dense clumps. This may suggest additional acceleration in turbulent magnetic field

• Middle-aged SNRs W44 etc.• GAMMA400/CTA will provide future steps forward