modernization of rice irrigation and drainage

19
40th International Course on Land Drainage 40th International Course on Land Drainage By: José A. Rodríguez Alvarez By: José A. Rodríguez Alvarez

Upload: jose-rodriguez

Post on 26-May-2015

1.870 views

Category:

Technology


6 download

DESCRIPTION

Modernization of Rice Irrigation and Drainage

TRANSCRIPT

Page 1: Modernization of Rice Irrigation and Drainage

40th International Course on Land Drainage40th International Course on Land Drainage

By: José A. Rodríguez AlvarezBy: José A. Rodríguez Alvarez

Page 2: Modernization of Rice Irrigation and Drainage

ContentsContentsContentsContents

40th International Course on Land Drainage40th International Course on Land Drainage

1.- Overview of Rice Production in Cuba.1.- Overview of Rice Production in Cuba.

2.- Objectives.2.- Objectives.

3.- Material and Methods.3.- Material and Methods.

4.- Results.4.- Results.

5.- Conclusions.5.- Conclusions.

1.- Overview of Rice Production in Cuba.1.- Overview of Rice Production in Cuba.

2.- Objectives.2.- Objectives.

3.- Material and Methods.3.- Material and Methods.

4.- Results.4.- Results.

5.- Conclusions.5.- Conclusions.

Page 3: Modernization of Rice Irrigation and Drainage

Overview of Rice Production in CubaOverview of Rice Production in CubaOverview of Rice Production in CubaOverview of Rice Production in Cuba

40th International Course on Land Drainage40th International Course on Land Drainage

•There are 8 State Rice Enterprise in Cuba with a total area of There are 8 State Rice Enterprise in Cuba with a total area of

more than 200 000 ha.more than 200 000 ha.

•There are 8 State Rice Enterprise in Cuba with a total area of There are 8 State Rice Enterprise in Cuba with a total area of

more than 200 000 ha.more than 200 000 ha.

•The rice in Cuba is directly seeded, not transplanted, with wet The rice in Cuba is directly seeded, not transplanted, with wet

and dry seeding technologies. Wet seeding is used in wet sea-and dry seeding technologies. Wet seeding is used in wet sea-

son, while dry seeding is used in dry season.son, while dry seeding is used in dry season.

•The rice in Cuba is directly seeded, not transplanted, with wet The rice in Cuba is directly seeded, not transplanted, with wet

and dry seeding technologies. Wet seeding is used in wet sea-and dry seeding technologies. Wet seeding is used in wet sea-

son, while dry seeding is used in dry season.son, while dry seeding is used in dry season.

• The Rice production sector is the most important water consu-The Rice production sector is the most important water consu-

mer in Cuban agriculture.mer in Cuban agriculture.

• The Rice production sector is the most important water consu-The Rice production sector is the most important water consu-

mer in Cuban agriculture.mer in Cuban agriculture.

Others18%

Pasture Irrigation1%

Vegetables Irrigation

9%

Fruit and Citric Irrigation

2%

Industry and Urban Supply

30%

Sugar Cane Irrigation

10%

Rice Irrigation30%

Others18%

Pasture Irrigation1%

Vegetables Irrigation

9%

Fruit and Citric Irrigation

2%

Industry and Urban Supply

30%

Sugar Cane Irrigation

10%

Rice Irrigation30%

Page 4: Modernization of Rice Irrigation and Drainage

Overview of Rice Production in CubaOverview of Rice Production in CubaOverview of Rice Production in CubaOverview of Rice Production in Cuba

40th International Course on Land Drainage40th International Course on Land Drainage

• The typical rice irrigation system is formed by very large levelThe typical rice irrigation system is formed by very large level

basins (4 to 12 ha ), with 50 m/ha or less irrigation canals den-basins (4 to 12 ha ), with 50 m/ha or less irrigation canals den-

sity, low irrigation discharges and adverse topographic condi-sity, low irrigation discharges and adverse topographic condi-

tions (insufficient land levelling).tions (insufficient land levelling).

• The typical rice irrigation system is formed by very large levelThe typical rice irrigation system is formed by very large level

basins (4 to 12 ha ), with 50 m/ha or less irrigation canals den-basins (4 to 12 ha ), with 50 m/ha or less irrigation canals den-

sity, low irrigation discharges and adverse topographic condi-sity, low irrigation discharges and adverse topographic condi-

tions (insufficient land levelling).tions (insufficient land levelling).

• The rice yields are very low and insufficient to cover the na- The rice yields are very low and insufficient to cover the na-

tional demand. tional demand.

• The rice yields are very low and insufficient to cover the na- The rice yields are very low and insufficient to cover the na-

tional demand. tional demand.

0

0.5

1

1.5

2

2.5

3

3.5Y

ield

(T

/ha

)

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Year

0

0.5

1

1.5

2

2.5

3

3.5Y

ield

(T

/ha

)

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Year

Page 5: Modernization of Rice Irrigation and Drainage

ObjectivesObjectivesObjectivesObjectives

40th International Course on Land Drainage40th International Course on Land Drainage

1.- To develop and apply a methodology for studying1.- To develop and apply a methodology for studying

modernization scenarios in a rice farm.modernization scenarios in a rice farm.

1.- To develop and apply a methodology for studying1.- To develop and apply a methodology for studying

modernization scenarios in a rice farm.modernization scenarios in a rice farm.

2.- To evaluate modernization policies that can be 2.- To evaluate modernization policies that can be

extended to other rice farms sharing similar problems.extended to other rice farms sharing similar problems.

2.- To evaluate modernization policies that can be 2.- To evaluate modernization policies that can be

extended to other rice farms sharing similar problems.extended to other rice farms sharing similar problems.

Page 6: Modernization of Rice Irrigation and Drainage

Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods

40th International Course on Land Drainage40th International Course on Land Drainage

Id en tifica tion an d D esc rip tion

S im u la tion o f th e F irs t Irrig a tion

Moderniza tion Scena rios

N et P resen t V a lu e

S en s it ivity A n a lys is

Econom ic Ana lysis

C a libra tion a nd Va lida tion of a 2D S im ula tion Model

F ie ld E leva tion S u rveys

D isch arg e M easu rem en t

A d van ce D ata

Field D a ta C ollection

In filtra tion

F ie ld E leva tion s

D a ta Ana lysis Methods

Field SiteY u cayo F arm : F ie ld # 1 9

F ern á n d o E ch en iq u e R ice In te rp riseG ran m a P rovin ce , C u b a

Yucayo Farm

Page 7: Modernization of Rice Irrigation and Drainage

Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods

40th International Course on Land Drainage40th International Course on Land Drainage

Id en tifica tion an d D esc rip tion

S im u la tion o f th e F irs t Irrig a tion

Moderniza tion Scena rios

N et P resen t V a lu e

S en s it ivity A n a lys is

Econom ic Ana lysis

C a libra tion a nd Va lida tion of a 2D S im ula tion Model

F ie ld E leva tion S u rveys

D isch arg e M easu rem en t

A d van ce D ata

Field D a ta C ollection

In filtra tion

F ie ld E leva tion s

D a ta Ana lysis Methods

Field SiteY u cayo F arm : F ie ld # 1 9

F ern á n d o E ch en iq u e R ice In te rp riseG ran m a P rovin ce , C u b a

Inflow Hydrograph for T-48 Level Basin

020406080

100120140160

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (min)

Infl

ow

(L

/s)

Inflow Hydrograph for T-48 Level Basin

020406080

100120140160

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (min)

Infl

ow

(L

/s)

ADVANCE DATAADVANCE DATA

Advance front was determined at variable time intervals,Advance front was determined at variable time intervals,

locating flags at the edge of the advancing front.locating flags at the edge of the advancing front.

ADVANCE DATAADVANCE DATA

Advance front was determined at variable time intervals,Advance front was determined at variable time intervals,

locating flags at the edge of the advancing front.locating flags at the edge of the advancing front.

Irrigation Trial

Irrigation Trial

Page 8: Modernization of Rice Irrigation and Drainage

Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods

40th International Course on Land Drainage40th International Course on Land Drainage

Id en tifica tion an d D esc rip tion

S im u la tion o f th e F irs t Irrig a tion

Moderniza tion Scena rios

N et P resen t V a lu e

S en s it ivity A n a lys is

Econom ic Ana lysis

C a libra tion a nd Va lida tion of a 2D S im ula tion Model

F ie ld E leva tion S u rveys

D isch arg e M easu rem en t

A d van ce D ata

Field D a ta C ollection

In filtra tion

F ie ld E leva tion s

D a ta Ana lysis Methods

Field SiteY u cayo F arm : F ie ld # 1 9

F ern á n d o E ch en iq u e R ice In te rp riseG ran m a P rovin ce , C u b a

Kostiakov Infiltration Model

R2=0.994 Fit Standar Error=0.0062

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 25 50 75 100 125 150 175 200

Time (min)

Infil

tra

ted

Vo

lum

e (

m2/m

)

Actual Predicted

Kostiakov Infiltration Model

R2=0.994 Fit Standar Error=0.0062

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 25 50 75 100 125 150 175 200

Time (min)

Infil

tra

ted

Vo

lum

e (

m2/m

)

Actual Predicted

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 20 40 60 80 100 120 140 160 180 200Distance (m)

Se

miv

ari

an

ce

(m

2)

Conventional Land Levelling

Laser Land Levelling (Zero Slope)

Laser Land Levelling (Residual Slope)

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 20 40 60 80 100 120 140 160 180 200Distance (m)

Se

miv

ari

an

ce

(m

2)

Conventional Land Levelling

Laser Land Levelling (Zero Slope)

Laser Land Levelling (Residual Slope)

STANDAR DESVIATION OF FIELD ELEVATIONSSTANDAR DESVIATION OF FIELD ELEVATIONS

•Conventional Land Levelling= 24.8 mm Conventional Land Levelling= 24.8 mm

•Laser Land Levelling (Zero Slope)= 12.4 mmLaser Land Levelling (Zero Slope)= 12.4 mm

•Laser Land Levelling (Residual Slope)= 18.8 mmLaser Land Levelling (Residual Slope)= 18.8 mm

STANDAR DESVIATION OF FIELD ELEVATIONSSTANDAR DESVIATION OF FIELD ELEVATIONS

•Conventional Land Levelling= 24.8 mm Conventional Land Levelling= 24.8 mm

•Laser Land Levelling (Zero Slope)= 12.4 mmLaser Land Levelling (Zero Slope)= 12.4 mm

•Laser Land Levelling (Residual Slope)= 18.8 mmLaser Land Levelling (Residual Slope)= 18.8 mm

Page 9: Modernization of Rice Irrigation and Drainage

Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods

40th International Course on Land Drainage40th International Course on Land Drainage

Id en tifica tion an d D esc rip tion

S im u la tion o f th e F irs t Irrig a tion

Moderniza tion Scena rios

N et P resen t V a lu e

S en s it ivity A n a lys is

Econom ic Ana lysis

C a libra tion a nd Va lida tion of a 2D S im ula tion Model

F ie ld E leva tion S u rveys

D isch arg e M easu rem en t

A d van ce D ata

Field D a ta C ollection

In filtra tion

F ie ld E leva tion s

D a ta Ana lysis Methods

Field SiteY u cayo F arm : F ie ld # 1 9

F ern á n d o E ch en iq u e R ice In te rp riseG ran m a P rovin ce , C u b a

B2D SURFACE IRRIGATION MODELB2D SURFACE IRRIGATION MODEL

• Developed by Playán et al. (1996)Developed by Playán et al. (1996)

• Solve the 2D hydrodinamic Saint Vennant equationsSolve the 2D hydrodinamic Saint Vennant equations

• Use an explicit finite-difference Leapfrog schemeUse an explicit finite-difference Leapfrog scheme

• Can accommodate spatially varied infiltration and soil elevationsCan accommodate spatially varied infiltration and soil elevations

B2D SURFACE IRRIGATION MODELB2D SURFACE IRRIGATION MODEL

• Developed by Playán et al. (1996)Developed by Playán et al. (1996)

• Solve the 2D hydrodinamic Saint Vennant equationsSolve the 2D hydrodinamic Saint Vennant equations

• Use an explicit finite-difference Leapfrog schemeUse an explicit finite-difference Leapfrog scheme

• Can accommodate spatially varied infiltration and soil elevationsCan accommodate spatially varied infiltration and soil elevations

CALIBRATION OF B2D MODELCALIBRATION OF B2D MODEL

• Computational grid of 5x5 mComputational grid of 5x5 m

• Manning’s n= 0.04Manning’s n= 0.04

CALIBRATION OF B2D MODELCALIBRATION OF B2D MODEL

• Computational grid of 5x5 mComputational grid of 5x5 m

• Manning’s n= 0.04Manning’s n= 0.04

Page 10: Modernization of Rice Irrigation and Drainage

Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods

40th International Course on Land Drainage40th International Course on Land Drainage

Id en tifica tion an d D esc rip tion

S im u la tion o f th e F irs t Irrig a tion

Moderniza tion Scena rios

N et P resen t V a lu e

S en s it ivity A n a lys is

Econom ic Ana lysis

C a libra tion a nd Va lida tion of a 2D S im ula tion Model

F ie ld E leva tion S u rveys

D isch arg e M easu rem en t

A d van ce D ata

Field D a ta C ollection

In filtra tion

F ie ld E leva tion s

D a ta Ana lysis Methods

Field SiteY u cayo F arm : F ie ld # 1 9

F ern á n d o E ch en iq u e R ice In te rp riseG ran m a P rovin ce , C u b a

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

R 8.17 Conventional NoR-a 8.17 Laser NoI-a 16.34 Conventional NoI-b 16.34 Laser NoI-c 32.68 Conventional NoI-d 32.68 Laser No

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

R 8.17 Conventional NoR-a 8.17 Laser NoI-a 16.34 Conventional NoI-b 16.34 Laser NoI-c 32.68 Conventional NoI-d 32.68 Laser No

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

II-a 65.36 Conventional No

II-b 65.36 Laser No

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

II-a 65.36 Conventional No

II-b 65.36 Laser No

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

II-c 65.36 Conventional Yes

II-d 65.36 Laser Yes

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

II-c 65.36 Conventional Yes

II-d 65.36 Laser Yes

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

III-a 141.09 Laser(ResidualSlopes)

No

III-b 141.06 Laser(ResidualSlopes)

Yes

Scenario Unit Inflow(L/s/ha)

Land Leveling Reuse Diagram

III-a 141.09 Laser(ResidualSlopes)

No

III-b 141.06 Laser(ResidualSlopes)

Yes

Page 11: Modernization of Rice Irrigation and Drainage

Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods

40th International Course on Land Drainage40th International Course on Land Drainage

Id en tifica tion an d D esc rip tion

S im u la tion o f th e F irs t Irrig a tion

Moderniza tion Scena rios

N et P resen t V a lu e

S en s it ivity A n a lys is

Econom ic Ana lysis

C a libra tion a nd Va lida tion of a 2D S im ula tion Model

F ie ld E leva tion S u rveys

D isch arg e M easu rem en t

A d van ce D ata

Field D a ta C ollection

In filtra tion

F ie ld E leva tion s

D a ta Ana lysis Methods

Field SiteY u cayo F arm : F ie ld # 1 9

F ern á n d o E ch en iq u e R ice In te rp riseG ran m a P rovin ce , C u b a

SIMULATION OF THE FIRST IRRIGATIONSIMULATION OF THE FIRST IRRIGATION

In direct-seeded rice with dry seeding technology there are:In direct-seeded rice with dry seeding technology there are:

• A strong correlation between the time of water standing on sur-A strong correlation between the time of water standing on sur-

face (first irrigation) and the rice germination percent.face (first irrigation) and the rice germination percent.

• A strong correlation between the time of water standing on sur-A strong correlation between the time of water standing on sur-

face (first irrigation) and the rice total yield.face (first irrigation) and the rice total yield.

SIMULATION OF THE FIRST IRRIGATIONSIMULATION OF THE FIRST IRRIGATION

In direct-seeded rice with dry seeding technology there are:In direct-seeded rice with dry seeding technology there are:

• A strong correlation between the time of water standing on sur-A strong correlation between the time of water standing on sur-

face (first irrigation) and the rice germination percent.face (first irrigation) and the rice germination percent.

• A strong correlation between the time of water standing on sur-A strong correlation between the time of water standing on sur-

face (first irrigation) and the rice total yield.face (first irrigation) and the rice total yield.

Y = -0.344X + 100

R2 = 0.9904

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

First Irrigation Inundation Time (h)

Ric

e G

erm

ina

tio

n (

%)

Y = -0.344X + 100

R2 = 0.9904

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

First Irrigation Inundation Time (h)

Ric

e G

erm

ina

tio

n (

%)

Time of Water Standing on Surface (First Irrigation) (h)

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

First Irrigation Innundation Time (h)

Tota

l Ric

e Y

ield

(t/

ha

)

Y=8.6-0.015X-9.6*X^2

R2=0.999

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

First Irrigation Innundation Time (h)

Tota

l Ric

e Y

ield

(t/

ha

)

Y=8.6-0.015X-9.6*X^2

R2=0.999

Time of Water Standing on Surface (First Irrigation) (h)

Page 12: Modernization of Rice Irrigation and Drainage

Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods

40th International Course on Land Drainage40th International Course on Land Drainage

Id en tifica tion an d D esc rip tion

S im u la tion o f th e F irs t Irrig a tion

Moderniza tion Scena rios

N et P resen t V a lu e

S en s it ivity A n a lys is

Econom ic Ana lysis

C a libra tion a nd Va lida tion of a 2D S im ula tion Model

F ie ld E leva tion S u rveys

D isch arg e M easu rem en t

A d van ce D ata

Field D a ta C ollection

In filtra tion

F ie ld E leva tion s

D a ta Ana lysis Methods

Field SiteY u cayo F arm : F ie ld # 1 9

F ern á n d o E ch en iq u e R ice In te rp riseG ran m a P rovin ce , C u b a ECONOMIC ANALYSISECONOMIC ANALYSIS

•Rehabilitation Cost= 20% Initial InvestmentRehabilitation Cost= 20% Initial Investment

•Rice Production Cost of Yucayo FarmRice Production Cost of Yucayo Farm

•Water Price = 0.005 USD/mWater Price = 0.005 USD/m33

•Modernization Cost (land levelling, new inflow andModernization Cost (land levelling, new inflow and

outflow structures, new levees, etc.)outflow structures, new levees, etc.)

•Rice Selling Price= 265 USD/TRice Selling Price= 265 USD/T

•Interest Rate = 12%Interest Rate = 12%

ECONOMIC ANALYSISECONOMIC ANALYSIS

•Rehabilitation Cost= 20% Initial InvestmentRehabilitation Cost= 20% Initial Investment

•Rice Production Cost of Yucayo FarmRice Production Cost of Yucayo Farm

•Water Price = 0.005 USD/mWater Price = 0.005 USD/m33

•Modernization Cost (land levelling, new inflow andModernization Cost (land levelling, new inflow and

outflow structures, new levees, etc.)outflow structures, new levees, etc.)

•Rice Selling Price= 265 USD/TRice Selling Price= 265 USD/T

•Interest Rate = 12%Interest Rate = 12%

Page 13: Modernization of Rice Irrigation and Drainage

Results (Validation of B2D Model)Results (Validation of B2D Model)Results (Validation of B2D Model)Results (Validation of B2D Model)

40th International Course on Land Drainage40th International Course on Land Drainage

0

15

30

45

60

75

90

105

120

135

150

165

0 15 30 45 60 75 90 105 120 135X (m)

Y (

m)

Simulado

Medido 10 min.

Medido 20 min.

Medido 35 min.

Medido 50 min.

Medido 110 min.

Medido 170 min.

Medido 200 min.

Medido 230 min.

10

10 min

20 min

20 min

35 min

35 min

50 min

50 min

110

110

170 min

200 min

230 min

50

0

15

30

45

60

75

90

105

120

135

150

165

0 15 30 45 60 75 90 105 120 135X (m)

Y (

m)

Simulado

Medido 10 min.

Medido 20 min.

Medido 35 min.

Medido 50 min.

Medido 110 min.

Medido 170 min.

Medido 200 min.

Medido 230 min.

10

10 min

20 min

20 min

35 min

35 min

50 min

50 min

110

110

170 min

200 min

230 min

50

Simulated

Measured 10 min.

Measured 20 min.

Measured 35 min.

Measured 50 min.

Measured 110 min.

Measured 170 min.

Measured 200 min.Measured 230 min.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

Simulated Advance Distances (m)

Me

as

ure

d A

dv

an

ce

Dis

tan

ce

s (

m)

Y = 0.983X - 1.728

R2 = 0.977

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

Simulated Advance Distances (m)

Me

as

ure

d A

dv

an

ce

Dis

tan

ce

s (

m)

Y = 0.983X - 1.728

R2 = 0.977

Page 14: Modernization of Rice Irrigation and Drainage

Results (Simulation Results)Results (Simulation Results)Results (Simulation Results)Results (Simulation Results)

40th International Course on Land Drainage40th International Course on Land Drainage

R-a I-a I-b I-c I-d II-a II-b II-c II-d III-a III-b

0

10

20

30

40

50

60

Pe

rce

nta

ge

Inc

rea

se

wit

h

Re

sp

ec

to t

o S

ce

na

rio

"R

"

Scenarios

Distribution Uniformity (%) Mean Germination (%)

R-a I-a I-b I-c I-d II-a II-b II-c II-d III-a III-b

0

10

20

30

40

50

60

Pe

rce

nta

ge

Inc

rea

se

wit

h

Re

sp

ec

to t

o S

ce

na

rio

"R

"

Scenarios

Distribution Uniformity (%) Mean Germination (%)

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

0 10 20 30 40 50 60 70 80 90100

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

R

I-c I-d

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

R-a

0 40 80 120 160 200 240 280 3200

20406080

100120140160180 I - a

0 40 80 120 160 200 240 280 3200

20406080

100120140160180 I - b

R i c e G e r m i n a t i o n ( % )

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

0 10 20 30 40 50 60 70 80 90100

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

R

I-c I-d

0 40 80 120 160 200 240 280 3200

20406080

100120140160180

R-a

0 40 80 120 160 200 240 280 3200

20406080

100120140160180 I - a

0 40 80 120 160 200 240 280 3200

20406080

100120140160180 I - b

R i c e G e r m i n a t i o n ( % )

R-a I-a I-b I-c I-d II-a II-b II-c II-d III-a III-b

0

10

20

30

40

50

60

70

Pe

rce

nta

ge

Re

du

cti

on

wit

h

Re

sp

ec

t t

o S

ce

na

rio

"R

"

Scenarios

Applied Volume (m^3) Mean Irrigation Depth (mm)

R-a I-a I-b I-c I-d II-a II-b II-c II-d III-a III-b

0

10

20

30

40

50

60

70

Pe

rce

nta

ge

Re

du

cti

on

wit

h

Re

sp

ec

t t

o S

ce

na

rio

"R

"

Scenarios

Applied Volume (m^3) Mean Irrigation Depth (mm)

Page 15: Modernization of Rice Irrigation and Drainage

Results (Modernization Actions)Results (Modernization Actions)Results (Modernization Actions)Results (Modernization Actions)

40th International Course on Land Drainage40th International Course on Land Drainage

0

10

20

30

40

50

60

70

80

90

Pe

rce

nta

ge

Inc

rea

se

(+

) o

r P

erc

en

tag

e R

ed

uc

e (

-)

AppliedVolume (-)

MeanIrrigationDepth (-)

DistributionUniformity (+)

Germination(+)

Irrigation andDewatering

Time (-)

R-Ia Ra-Ib R-Ic Ra-Id R-IIa Ra-IIb

Compared Scenarios Comparados

0

10

20

30

40

50

60

70

80

90

Pe

rce

nta

ge

Inc

rea

se

(+

) o

r P

erc

en

tag

e R

ed

uc

e (

-)

AppliedVolume (-)

MeanIrrigationDepth (-)

DistributionUniformity (+)

Germination(+)

Irrigation andDewatering

Time (-)

R-Ia Ra-Ib R-Ic Ra-Id R-IIa Ra-IIb

Compared Scenarios Comparados

Water ManagementWater Management

0

5

10

15

20

25

30

35

40

Pe

rce

nta

ge

Inc

rea

se

(+

) o

r P

erc

en

tag

e R

ed

uc

e (

-)

AppliedVolume (-)

MeanIrrigationDepth (-)

DistributionUniformity (+)

Germination(+)

Irrigation andDewatering

Time (-)

R-Ra Ia-Ib Ic-Id IIa-IIb IIc-IId

Compared Scenarios

0

5

10

15

20

25

30

35

40

Pe

rce

nta

ge

Inc

rea

se

(+

) o

r P

erc

en

tag

e R

ed

uc

e (

-)

AppliedVolume (-)

MeanIrrigationDepth (-)

DistributionUniformity (+)

Germination(+)

Irrigation andDewatering

Time (-)

R-Ra Ia-Ib Ic-Id IIa-IIb IIc-IId

Compared Scenarios

Laser Land LevellingLaser Land Levelling

0

2

4

6

8

10

12

Pe

rce

nta

ge

Inc

rea

se

(+

) o

r P

erc

en

tag

e R

ed

uc

e (

-)

Applied Volume (-) Mean IrrigationDepth (-)

Germination (+) Irrigation andDewatering Time

(-)

IIa-IIc IIb-IId IIIa-IIIb

Compared Scenarios

0

2

4

6

8

10

12

Pe

rce

nta

ge

Inc

rea

se

(+

) o

r P

erc

en

tag

e R

ed

uc

e (

-)

Applied Volume (-) Mean IrrigationDepth (-)

Germination (+) Irrigation andDewatering Time

(-)

IIa-IIc IIb-IId IIIa-IIIb

Compared Scenarios

Reuse SystemReuse System

Page 16: Modernization of Rice Irrigation and Drainage

Results (Economic Analysis)Results (Economic Analysis)Results (Economic Analysis)Results (Economic Analysis)

40th International Course on Land Drainage40th International Course on Land Drainage

0

200

400

600

800

1000

1200

1400

1600

1800N

PV

(U

SD

/ha

)

III-b III-a II-d II-b II-c II-a I-d I-c I-b I-a R-a R

Scenarios

0

200

400

600

800

1000

1200

1400

1600

1800N

PV

(U

SD

/ha

)

III-b III-a II-d II-b II-c II-a I-d I-c I-b I-a R-a R

Scenarios

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

NP

V (

$/h

a)

R R-a I-a I-b I-c I-d II-a II-b II-c II-d III-a III-b

Scenarios

0.06 $/m^3 0.05 $/m^3 0.01 $/m^3 Present Price (0.005 $/m^3)

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

NP

V (

$/h

a)

R R-a I-a I-b I-c I-d II-a II-b II-c II-d III-a III-b

Scenarios

0.06 $/m^3 0.05 $/m^3 0.01 $/m^3 Present Price (0.005 $/m^3)

Page 17: Modernization of Rice Irrigation and Drainage

ConclusionsConclusionsConclusionsConclusions

40th International Course on Land Drainage40th International Course on Land Drainage

1.- The performance of the rehabilitation scenarios is low. Distri-1.- The performance of the rehabilitation scenarios is low. Distri-

bution Uniformity and Germination Percent have been estimatedbution Uniformity and Germination Percent have been estimated

as 66% and 65% respectively.as 66% and 65% respectively.

1.- The performance of the rehabilitation scenarios is low. Distri-1.- The performance of the rehabilitation scenarios is low. Distri-

bution Uniformity and Germination Percent have been estimatedbution Uniformity and Germination Percent have been estimated

as 66% and 65% respectively.as 66% and 65% respectively.

2.- Relatively simple mordernization actions as change in water2.- Relatively simple mordernization actions as change in water

management, laser land levelling and introduction of reuse sys-management, laser land levelling and introduction of reuse sys-

tems, can increase the Distribution Uniformity by about 20% and tems, can increase the Distribution Uniformity by about 20% and

the Mean Germination by 50%, as well as, reduce the Appliedthe Mean Germination by 50%, as well as, reduce the Applied

Volume of Water by more than 60%.Volume of Water by more than 60%.

2.- Relatively simple mordernization actions as change in water2.- Relatively simple mordernization actions as change in water

management, laser land levelling and introduction of reuse sys-management, laser land levelling and introduction of reuse sys-

tems, can increase the Distribution Uniformity by about 20% and tems, can increase the Distribution Uniformity by about 20% and

the Mean Germination by 50%, as well as, reduce the Appliedthe Mean Germination by 50%, as well as, reduce the Applied

Volume of Water by more than 60%.Volume of Water by more than 60%.

Page 18: Modernization of Rice Irrigation and Drainage

ConclusionsConclusionsConclusionsConclusions

40th International Course on Land Drainage40th International Course on Land Drainage

3.- Of all modernization actions, change in water management 3.- Of all modernization actions, change in water management

(increase the irrigation discharge of the first irrigation at rice basin(increase the irrigation discharge of the first irrigation at rice basin

level) has the highest positive impact on the performance of irri-level) has the highest positive impact on the performance of irri-

gation and drainage systems.gation and drainage systems.

3.- Of all modernization actions, change in water management 3.- Of all modernization actions, change in water management

(increase the irrigation discharge of the first irrigation at rice basin(increase the irrigation discharge of the first irrigation at rice basin

level) has the highest positive impact on the performance of irri-level) has the highest positive impact on the performance of irri-

gation and drainage systems.gation and drainage systems.

4.- From the technical and economical points of view, sloping 4.- From the technical and economical points of view, sloping

basin with reuse systems (Scenario III-b), is the best suited mo-basin with reuse systems (Scenario III-b), is the best suited mo-

dernization scenario for the predominant conditions in Field 19 ofdernization scenario for the predominant conditions in Field 19 of

Yucayo Farm.Yucayo Farm.

4.- From the technical and economical points of view, sloping 4.- From the technical and economical points of view, sloping

basin with reuse systems (Scenario III-b), is the best suited mo-basin with reuse systems (Scenario III-b), is the best suited mo-

dernization scenario for the predominant conditions in Field 19 ofdernization scenario for the predominant conditions in Field 19 of

Yucayo Farm.Yucayo Farm.

Page 19: Modernization of Rice Irrigation and Drainage

ConclusionsConclusionsConclusionsConclusions

40th International Course on Land Drainage40th International Course on Land Drainage

5.- Increase the price of water could be a stimulating measure 5.- Increase the price of water could be a stimulating measure

for introducing more efficient irrigation and drainage systems in for introducing more efficient irrigation and drainage systems in

the rice production sector of Cuba.the rice production sector of Cuba.

5.- Increase the price of water could be a stimulating measure 5.- Increase the price of water could be a stimulating measure

for introducing more efficient irrigation and drainage systems in for introducing more efficient irrigation and drainage systems in

the rice production sector of Cuba.the rice production sector of Cuba.