misg 2011, problem 1: coal mine pillar extraction · misg 2011, problem 1: coal mine pillar...

30
MISG 2011, Problem 1: Coal Mine pillar extraction Group 1 and 2 January 14, 2011 Group 1 () Coal Mine pillar extraction January 14, 2011 1 / 30

Upload: hoanganh

Post on 15-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

MISG 2011, Problem 1:

Coal Mine pillar extraction

Group 1 and 2

January 14, 2011

Group 1 () Coal Mine pillar extraction January 14, 2011 1 / 30

Group members

• C. Please, D.P. Mason, M. Khalique, J. Medard.

• A. Hutchison, R. Kgatle , B. Matebesse, K.R. Adem, E. Yohana, A.R. Adem, B. Bekezulu, M. Hamese, B. Khumalo.

• Industry representative: Halil Yilmaz

Group 1 () Coal Mine pillar extraction January 14, 2011 2 / 30

1 Introduction

2 Model for pillar stress calculation

3 Buckling of a Strut

4 Euler-Bernoulli Beam

5 Combined Beam-Strut

6 Conclusion

Group 1 () Coal Mine pillar extraction January 14, 2011 3 / 30

Introduction

A small coal mining developpement

Group 1 () Coal Mine pillar extraction January 14, 2011 4 / 30

Introduction

Introduction

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

• Cutting pillars to make snooks

• QUESTION: How do snooks collapse in order to have a safe andcontrolled collapse of the rock?

Group 1 () Coal Mine pillar extraction January 14, 2011 5 / 30

Introduction

Two approaches

• How do snooks collapse? “ The pillar problem”

• How stable is the roof when snooks collapse ’strut-beam analysis’

Group 1 () Coal Mine pillar extraction January 14, 2011 6 / 30

Model for pillar stress calculation

The set up

0

z = −H

z = H

τ(x)τ(x)

τ(x)τ(x)

τzx (x, H)

ROOF

FLOOR

τxx (x,−H)

x

z

τzz (x,−H)

τzz (x, H)

1 2

τxx

Figure: The stresses in a pillar

Group 1 () Coal Mine pillar extraction January 14, 2011 7 / 30

Model for pillar stress calculation

Governing equations

The stresses are considered in the xz-plane in the form

τxx = τxx(x , z), τxz = τxz(x , z), τzz = τzz(x , z)

and the average stress is defined as

τ̄ik(x) =1

2H

∫ H

−H

τik(x , z)dz .

The equations of static equilibrium in 2D reads

∂xτxx +

∂zτzx = 0 (1)

∂xτxz +

∂zτzz = 0 (2)

Taking the averages in the previous equations, we arrive at

d

dxτ̄xx +

1

2H[τzx(x ,H) − τzx(x ,−H)] = 0 (3)

d

dxτ̄xz +

1

2H[τzz(x ,H) − τzz(x ,−H)] = 0 (4)

Group 1 () Coal Mine pillar extraction January 14, 2011 8 / 30

Model for pillar stress calculation

Governing equations and BCs for Region 1

• For −1 ≤ x̄ ≤ 0,

d2

dx̄2τ̄

(1)xx +

3

µ

L

H

d

dx̄τ̄

(1)xx + 3m

(

L

H

)2

τ̄(1)xx = −3

(

L

H

)2

(5)

with

m =[

(1 + µ2)12 + µ

]2> 1 (6)

and µ the coefficient of internal friction, x̄ = xL.

τ̄zz = c0 + µτ̄xx .

and the boundary condition

τ̄(1)xx (−1) = 0

d τ̄(1)xx

dx̄(0) = 0. (7)

Group 1 () Coal Mine pillar extraction January 14, 2011 9 / 30

Model for pillar stress calculation

Governing equations and BCs for Region 2

• For 0 ≤ x̄ ≤ 1,

d2

dx̄2τ̄

(2)xx − 3

µ

L

H

d

dx̄τ̄

(2)xx + 3m

(

L

H

)2

τ̄(2)xx = −3

(

L

H

)2

(8)

with the boundary condition

τ̄(2)xx (1) = 0. (9)

Moreover, the following compatibility conditions hold

τ̄(1)xx (0) = τ̄

(2)xx (0) (10)

d τ̄(2)xx

dx̄(0) = 0. (11)

Group 1 () Coal Mine pillar extraction January 14, 2011 10 / 30

Model for pillar stress calculation

Solution of the Mohr-Coulomb constitutive equations

From the characteristic equations of the ODEs, we get the critical value ofµ,

µcrit

.=

3

4(1 +√

3)≈ 0.52394565828751.

• µ < µcrit,

τ̄(1)xx =

1

m

λ2exp(−λ1x̄) − λ1exp(−λ2x̄)

λ2exp(λ1) − λ1exp(λ2)− 1

m, (12)

and

τ̄(2)xx =

1

m

λ1exp(λ2x̄) − λ2exp(λ1x̄)

λ1exp(λ2) − λ2exp(λ1)− 1

m, (13)

Group 1 () Coal Mine pillar extraction January 14, 2011 11 / 30

Model for pillar stress calculation

Solution of the Mohr-Coulomb constitutive equations

• If µ = µcrit,

τ̄(1)xx =

1 + αx̄

m(1 − α)e−α(1+x̄) − 1

m, (14)

and

τ̄(2)xx =

1 − αx̄

m(1 − α)e−α(1−x̄) − 1

m, (15)

• If µ > µcrit,

τ̄(1)xx =

β̃ cos β̃x̄ + α sin β̃x̄

m(β̃ cos β̃ − α sin β̃)e−α(1+x̄) − 1

m, (16)

and

τ̄(2)xx =

β̃ cos β̃x̄ − α sin β̃x̄

m(β̃ cos β̃ − α sin β̃)e−α(1−x̄) − 1

m. (17)

Group 1 () Coal Mine pillar extraction January 14, 2011 12 / 30

Model for pillar stress calculation

Analytical solutionsCase 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

x

stre

ss

Group 1 () Coal Mine pillar extraction January 14, 2011 13 / 30

Model for pillar stress calculation

Analytical solutionsCase 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

stre

ss

Group 1 () Coal Mine pillar extraction January 14, 2011 14 / 30

Model for pillar stress calculation

Analytical solutionsCase 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

stre

ss

Group 1 () Coal Mine pillar extraction January 14, 2011 15 / 30

Buckling of a Strut

Buckling of a Strut

v

p p

x

y

• Two equations for the bending moment at point x along the strut

EId2v

dx2= M(x), M(x) = −pv(x). (18)

• These equations gives

d2v

dx2+

p

EIv(x) = 0. (19)

• Solving (19) with the corresponding boundary conditions

v(0) = 0, v(L) = 0,

gives

v(x) = A sin(nπ

Lx), n = 1, 2, 3, · · · (20)

Group 1 () Coal Mine pillar extraction January 14, 2011 16 / 30

Buckling of a Strut

Buckling of a StrutNumerical results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

defle

ctio

n

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

defle

ctio

n

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

defle

ctio

n

Group 1 () Coal Mine pillar extraction January 14, 2011 17 / 30

Euler-Bernoulli Beam

Euler-Bernoulli Beam

w

������������������

������������������

���������������������������

���������������������������

At x = 0 At x = L

x = 0 x = L

w = 0 w = 0

wdx

= 0 wdx

= 0q

d2

dx2(EI

d2w

dx2) = q (21)

Assumptions

• Mass is uniformly distributed.

• The beam is composed of an isotropic material.

− EId2w

dx2= M Bending moment (22)

− d

dx(EI

d2w

dx2) = Q Shear force on the beam (23)

Group 1 () Coal Mine pillar extraction January 14, 2011 18 / 30

Euler-Bernoulli Beam

Euler-Bernoulli Beam

• Now the deflection of the beam satisfies the equation

d4w

dx4=

q

EI(24)

• subject to the boundary conditions

w(0) = w(L) = 0dw

dx(0) =

dw

dx(L) = 0 (25)

• The solution is found as

w(x) =q

24EIx2(x − L)2. (26)

• The curvature is given by

C = | − q L2 − 6 q x L + 6 q x2

12|

• A plot of C reveals that the beam always breaks at the end points.

Group 1 () Coal Mine pillar extraction January 14, 2011 19 / 30

Combined Beam-Strut

A combined beam and strutMotivation

����������������

����������������

����������������

����������������

pp

q

x = 0 x = L

Figure: A combined beam and strut

Group 1 () Coal Mine pillar extraction January 14, 2011 20 / 30

Combined Beam-Strut

A combined beam and strutGoverning equations

• Use the Euler-Bernoulli equation and the theory of Euler strut.

• For a unified model, we use the previous two models to have theequation

d4w

dx4+

p

EI

d2w

dx2= − q

EI. (27)

• with the boundary conditions

w(0) = 0, dwdx

(0) = 0 at x = 0;

w(L) = 0, dwdx

(L) = 0 at x = L.(28)

• The nondimensional form of the model is

d4w̄

d x̄4+

pL2

EI

d2w̄

d x̄2= −qL4

EIs. (29)

Group 1 () Coal Mine pillar extraction January 14, 2011 21 / 30

Combined Beam-Strut

A combined beam and strutGoverning equations

• Define the so called Mason number M and s such that

M2 =pL2

EI, s =

qL4

EI(30)

• The problem reduces to

d4w̄

d x̄4+ M2 d2w̄

d x̄2= −1. (31)

• with the boundary conditions

w̄(0) = 0, dw̄dx̄

(0) = 0 at x = 0;

w̄(1) = 0, dw̄dx̄

(1) = 0 at x = 1.(32)

Group 1 () Coal Mine pillar extraction January 14, 2011 22 / 30

Combined Beam-Strut

A combined beam and strutSolution to the Governing equations

• The solution of the previous equation is found as

w̄(x) =1

2M2

(

1

4− (x − 1

2)2

)

+1

2M3 sin M2

(

cosM

2− cos(M(x − 1

2))

)

.

(33)

• The curvature is mesured with the help of

|w̄ ′′(x)| =

− 1

M2+

cos(M(x − 12))

2M sin M2

.

Group 1 () Coal Mine pillar extraction January 14, 2011 23 / 30

Combined Beam-Strut

A combined beam and strutNumerical Solution to the Governing equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0x 10

−3

x

defle

ctio

n

Figure: A plot of the deflection for different values of M , M = 0.3 − 3.

Group 1 () Coal Mine pillar extraction January 14, 2011 24 / 30

Combined Beam-Strut

A combined beam and strutNumerical Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

curv

atur

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xcu

rvat

ure

Figure: A plot of the curvature |w ′′(x)| for different values of M .

Group 1 () Coal Mine pillar extraction January 14, 2011 25 / 30

Combined Beam-Strut

A combined beam and strutNumerical Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

curv

atur

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

xcu

rvat

ure

Figure: A plot of the curvature |w ′′(x)| for different values of M .

Group 1 () Coal Mine pillar extraction January 14, 2011 26 / 30

Combined Beam-Strut

A combined beam and strutNumerical Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

curv

atur

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−3

−2.5

−2

−1.5

−1

−0.5

0

0.5x 10

−3

x

defle

ctio

n

Figure: A plot of the deflection and the curvature M = 0.8 and M = 8.

Group 1 () Coal Mine pillar extraction January 14, 2011 27 / 30

Combined Beam-Strut

A combined beam and strutImportant results

• It appear that for small (M < 2π) values of M, the beam break at theend points.

• We never recover the first mode of the solution of the Euler strutequation.

• This is due to the fact that for the beam we have 4 boundaryconditions and only 2 for the Euler strut. The equivalent fourth orderODE associated with the Euler strut has different boundaryconditions.

Group 1 () Coal Mine pillar extraction January 14, 2011 28 / 30

Conclusion

Conclusions

• Snook collapse• Stress is dependent of the quantity L

H. This ration of height to width of

the pillar is crucial. In general mining practices, LH≥ 5; but for

secondary mining operations, we can have LH

< 5.• In this later case, the stress is confined to boundary layers and the

problem correspond to singularly perturbed problem.

• Roof stability• We found a critical ratio, M , for the roof to buckle or to break.• When M < 2π, what happen in most of the cases, the roof always

break next to the snook.

Group 1 () Coal Mine pillar extraction January 14, 2011 29 / 30

Conclusion

Thank you

Thank you

THANK YOU

Group 1 () Coal Mine pillar extraction January 14, 2011 30 / 30