microstrip patch antennas - em labemlab.utep.edu/ee4382_antennaengineering/topic 5 -- microstrip...

58
Microstrip Patch Antennas EE-4382/5306 - Antenna Engineering

Upload: lykien

Post on 12-Aug-2019

397 views

Category:

Documents


17 download

TRANSCRIPT

Page 1: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas

EE-4382/5306 - Antenna Engineering

Page 2: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Outline• Introduction

– Basic Characteristics– Feeding Methods

• Rectangular Patch– Transmission-Line Model– Conductance and Input Impedance– Matching Techniques– Fields– Directivity

• Quality Factor, Bandwidth, and Efficiency• Antennas for Mobile Communications

– Planar Inverted-F Antenna– Slot Antenna– Inverted-F Antenna

2Microstrip Patch Antennas

Page 3: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Introduction

3

Page 4: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Antennas -Introduction

Slide 4

A microstrip patch antenna is a metallic strip or patch mounted on a dielectric layer (substrate) over a ground plane.Useful for high performance in extreme applications: aircraft, satellite, missiles, cellphones and electronic devices.

PROS:They are low profile, conformable, simple and inexpensive to manufacture, mechanically robust, and very versatile

CONS:Low efficiency, low power, high Q, poor polarization purity, poor scanning properties, spurious radiation, very narrow frequency bandwidth, still large dimensions at high frequencies

Microstrip Patch Antennas

Page 5: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 5

Page 6: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 6

Basic characteristics

𝜆03< L <

𝜆02

2.2 ≤ 𝜖𝑟 ≤ 12W is tuned to get

desired impedance

Page 7: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 7

t ≪ 𝜆0ℎ ≪ 𝜆0

(0.003𝜆0 ≤ ℎ ≤ 0.05𝜆0)

Basic characteristics

Page 8: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Introduction to Antennas Slide 8

Basic Characteristics

© antenna.mppa.gr

Page 9: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Basic Characteristics

Introduction to Antennas Slide 9

http://antsim.elmag.org/patches/

Page 10: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Basic Characteristics

Introduction to Antennas Slide 10

Page 11: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 11

Basic characteristics

Page 12: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Feeding Methods

Microstrip Patch Antennas Slide 12

• Easy to fabricate• Simple to match• Low spurious radiation• Narrow bandwidth• Good for low h

Page 13: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Quarter Wave Transformer

Microstrip Patch Antennas Slide 13

https://www.cst.com/academia/examples/quarter-wave-transformer

𝑍1 = 𝑍0𝑅𝐿

Page 14: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 14

Feeding Methods

• Easy to fabricate• Simple to match• Low spurious radiation• Matching is easily done by

changing feed position• Narrow Bandwidth• Difficult to model & simulate

Page 15: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 15

Feeding Methods

• Ground plane between substratesisolates the feed from the radiating element, minimizinginterference

• Simple to match• Moderate spurious radiation• Matching is easily done by

changing feed position• Narrow Bandwidth• Easy to model & simulate• Most difficult to fabricate• Independent optimization

of feed and radiating element

Page 16: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 16

Feeding Methods

• Low Spurious Radiation• Largest Bandwidth• Easy to model & simulate• More difficult to fabricate• Length of feeding stub and

width-to-line ratio of patch can control match

Page 17: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch

17

Page 18: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch Analysis

Microstrip Patch Antennas Slide 18

The rectangular patch is the most widely used configuration for microstrip patch antennas.

Transmission-Line ModelIt is the easiest approach to model and analyze the microstrip patch antenna. It is also less accurate, but gives a good physical insight.

EM Cavity ModelIt is more complex than the transmission line model, and it is more accurate. It also gives physical insight.

Full-Wave ModelIt is the most accurate, versatile, and easiest to simulate of all three models. It is also the most complex and has less physical insight.

Page 19: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Transmission-Line Model

Microstrip Patch Antennas Slide 19

The transmission-line model represents the microstrip antenna by two slots, separated by a low-impedance 𝑍𝑐 transmission line of length L.Looking at a cross section of the antenna (x-y plane), this is effectively a non-homogeneous transmission line. Fringing effects make the microstrip line look wider than it is. Effective dielectric constant is introduced to account for this.

Page 20: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Fringing Effects -Effective dielectric

Microstrip Patch Antennas Slide 20

Static Values 𝜖𝑟𝑒𝑓𝑓 =𝜖𝑟+1

2+

𝜖𝑟−1

21 + 12

𝑤

−1

2

Page 21: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Effective Length, Resonant Frequency, and Effective Width

Microstrip Patch Antennas Slide 21

Because of the fringing effects, the patch of the antenna is electrically longer than the physical dimensions. We take care of this by adding an electrical distance ΔL which is a function of the effective dielectric

constant 𝜖𝑟𝑒𝑓𝑓 and width-to-height ratio 𝑊

Δ𝐿

ℎ= 0.412

𝜖𝑟𝑒𝑓𝑓 + 0.3𝑊ℎ+ 0.264

𝜖𝑟𝑒𝑓𝑓 − 0.258𝑊ℎ+ 0.8

𝐿𝑒𝑓𝑓 = 𝐿 + Δ𝐿

Page 22: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 22

Effective Length, Resonant Frequency, and Effective Width

Page 23: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 23

Effective Length, Resonant Frequency, and Effective WidthThe resonant frequency in the dominant TM010 mode is

𝑓𝑟010 =1

2𝐿 𝜖𝑟 𝜇0𝜖0=

𝑐02𝐿 𝜖𝑟

Accounting for fringing effects,

𝑓𝑟𝑐010 =1

2𝐿𝑒𝑓𝑓 𝜖𝑟𝑒𝑓𝑓 𝜇0𝜖0=

1

2 𝐿 + 2Δ𝐿 𝜖𝑟𝑒𝑓𝑓 𝜇0𝜖0

= 𝑞1

2𝐿 𝜖𝑟 𝜇0𝜖0= 𝑞

𝑐02𝐿 𝜖𝑟

𝑞 =𝑓𝑟𝑐010𝑓𝑟010

Page 24: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Antenna Design

Microstrip Patch Antennas Slide 24

This procedure assumes we know the dielectric constant of the substrate 𝜖𝑟 , the resonant frequency 𝑓𝑟 , and the height of the substrate ℎ.1. Determine 𝑊

𝑊 =1

2𝑓𝑟 𝜇0𝜖0

2

𝜖𝑟 + 1=

𝑐02𝑓𝑟

2

𝜖𝑟 + 1

2. Determine the effective dielectric constant 𝜖𝑟𝑒𝑓𝑓3. Determine the extension of Δ𝐿4. Determine the actual length 𝐿 of the patch

𝐿 =1

2𝑓𝑟 𝜖𝑟𝑒𝑓𝑓 𝜇0𝜖0− 2Δ𝐿

Approximate lengths of the microstrip vary between 0.47 − 0.49𝜆0

𝜖𝑟

Page 25: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch Design - Example

Microstrip Patch Antennas Slide 25

Design a rectangular microstrip antenna using a substrate (RT/Duroid5880) with dielectric constant of 2.2, ℎ = 0.1588 cm and resonant frequency of 10 GHz.

Page 26: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 26

Rectangular Antenna Conductance and Input Impedance

Page 27: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Conductance and Input Impedance

Microstrip Patch Antennas Slide 27

𝑌1 = 𝐺1 + 𝑗𝐵1

𝐺1 =𝑊

120𝜆01 −

1

24𝑘0ℎ

2ℎ

𝜆0<

1

10

𝐵1 =𝑊

120𝜆01 − 0.636 ln(𝑘0ℎ)

𝜆0<

1

10

𝑌2 = 𝑌1, 𝐺2 = 𝐺1, 𝐵2 = 𝐵1

Page 28: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Conductance and Input Impedance

Introduction to Antennas Slide 28

At resonance෨𝑌2 = ෨𝐺2 + 𝑗 ෨𝐵2 = 𝐺1 − 𝑗𝐵1

𝑌𝑖𝑛 = 𝑌1 + ෨𝑌2 = 2𝐺1

𝑍𝑖𝑛 = 𝑅𝑖𝑛 =1

𝑌𝑖𝑛=

1

2𝐺1

This formula does not take into account mutual effects between the slots.

Page 29: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Conductance and Input Impedance

Introduction to Antennas Slide 29

To take into account mutual effects between the slots, we introduce 𝐺12

where ‘+’ is used with odd (antisymmetric) resonant voltage distribution beneath the patch and between the slots and ‘–’ is used for modes with even (symmetric) resonant voltage distribution.

𝐺12 =1

𝑉02𝑅𝑒 ඵ

𝑆

𝐸1 × 𝐻2∗ ∙ 𝑑𝑠

𝐸1 - E-field radiated by slot 1𝐻1 - H-field radiated by slot 2𝑉0 - Voltage across the slot

𝑅𝑖𝑛 =1

2(𝐺1±𝐺12)

Page 30: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Conductance and Input Impedance

Introduction to Antennas Slide 30

𝐺12 =1

120𝜋2න0

𝜋 sin𝑘0𝑊2 cos 𝜃

cos 𝜃

2

𝐽0 𝑘0𝐿 sin 𝜃 sin3(𝜃) 𝑑𝜃

Where 𝐽0 is the Bessel function of the first kind of order zero.

Page 31: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Patch Input Impedance- Example

Microstrip Patch Antennas Slide 31

A rectangular microstrip antenna has a width-to-height ratio of 𝑊

ℎ= 5,

where the width has half-wave resonant dimensions 𝑊 =𝜆0

2.

Determine the input impedance of the antenna. Do not take into account mutual effects.

Page 32: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Matching Techniques – Inset feed

Microstrip Patch Antennas Slide 32

𝑅𝑖𝑛 𝑦=𝑦0 =

𝑅𝑖𝑛(𝑦=0) cos2𝜋

𝐿𝑦0

Page 33: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Antenna Patch Design - Example

Microstrip Patch Antennas Slide 33

A square patch has an input resistance at resonance of 260 Ω. Determine the inset feeding distance so that the input resistance is 50 Ω.

Now consider the feeding point to be 𝑦0 = 0.4𝐿. Determine the input resistance.

Page 34: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Line Characteristic Impedance

Introduction to Antennas Slide 34

𝑍𝑐 =

60

𝜖𝑟𝑒𝑓𝑓ln

8ℎ

𝑊0+𝑊0

4ℎ,

𝑊0

ℎ≤ 1

120𝜋

𝜖𝑟𝑒𝑓𝑓𝑊0ℎ+ 1.393 + 0.667 ln

𝑊0ℎ+ 1.444

,𝑊0

ℎ> 1

Page 35: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Matching Techniques – Inset feed

Microstrip Patch Antennas Slide 35

Page 36: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 36

A microstrip antenna with overall dimensions of 𝐿 = 0.906 cm and 𝑊 = 1.186 cm, substrate with height ℎ = 0.1588 cm and dielectric constant 𝜖𝑟 = 2.2, is operating at 10 GHz. Find:

(a) The input impedance. Do not take into account mutual effects between slots.

(b) The position of the inset feed point where the input impedance is 50 ohms.

(c) Taking into account mutual effects and new calculations, the admittance between slots is calculated as G1 = 1.57 × 10−3, 𝐺12 =6.1683 × 10−4. Calculate the input impedance and the distance of the inset feed point. Compare with parts (a) and (b)

Rectangular Patch - Example

Page 37: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch - Fields

Introduction to Antennas Slide 37

𝑓 𝜃, 𝜙 =sin

𝑘𝑊2

sin 𝜃 sin 𝜙

𝑘𝑊2

sin 𝜃 sin 𝜙cos

𝑘𝐿

2sin 𝜃 cos 𝜙

𝐹𝐸 𝜃 = cos𝑘𝐿

2sin 𝜃 , 𝜙 = 0°

𝐹𝐻 𝜃 = cos(𝜃)sin

𝑘𝑊2 sin 𝜃

𝑘𝑊2

sin 𝜃, 𝜙 = 90°

Page 38: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch - Fields

Microstrip Patch Antennas Slide 38

Radiation Efficiency: 36.72%

Page 39: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch - Fields

Introduction to Antennas Slide 39

Page 40: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch Antenna Measurements & Simulation

Introduction to Antennas Slide 40

Page 41: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Rectangular Patch - Directivity

Microstrip Patch Antennas Slide 41

𝐷0 =𝑈𝑚𝑎𝑥

𝑈0=4𝜋𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑

Single Slot 𝑘0ℎ ≪ 1

𝑈𝑚𝑎𝑥 =𝑉0

2

2𝜂0𝜋2

𝜋𝑊

𝜆0

2

𝑃𝑟𝑎𝑑 =𝑉0

2

2𝜂0𝜋2න0

𝜋 sin𝑘0𝑊2

cos 𝜃

cos 𝜃

2

sin3(𝜃) 𝑑𝜃

Two Slots 𝑘0ℎ ≪ 1

𝐷2 =2𝜋𝑊

𝜆0

2𝜋

𝐼2

𝐼2 = න0

𝜋

න0

𝜋 sin𝑘0𝑊2

cos 𝜃

cos 𝜃

2

sin3(𝜃) cos2𝑘0𝐿𝑒2

sin 𝜃 sin 𝜙 𝑑𝜃𝑑𝜙

Page 42: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Quality Factor, Bandwidth, and Efficiency

42

Page 43: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

The quality factor, bandwidth, and efficiency are interrelated figures-of-merit, and cannot be independently optimized.

𝑄 = 𝜔𝑟Stored Energy

Dissipated Power

The quality factor is representative of the antenna losses. These are radiation, conduction (ohmic), dielectric, and surface-wave losses.

Where

𝑄𝑡 = Total Quality Factor𝑄𝑟𝑎𝑑 = Quality Factor due to radiation (space-wave) losses.𝑄𝑐 = Quality Factor due to conduction (ohmic) losses.𝑄𝑑 = Quality Factor due to dielectric losses𝑄𝑠𝑤 = Quality Factor due to surface waves (negligible for thin substrates)

Microstrip Patch Antennas Slide 43

Quality Factor

1

𝑄𝑡=

1

𝑄𝑟𝑎𝑑+

1

𝑄𝑐+

1

𝑄𝑑+

1

𝑄𝑠𝑤

Page 44: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Quality Factor

Microstrip Patch Antennas Slide 44

For very thin substrates (𝑘 ≪ ℎ0) of arbitrary shapes, there are approximate formulas to represent the quality factors.

𝑄𝑐 = ℎ 𝜋𝑓𝜇𝜎

𝑄𝑑 =1

tan(𝛿)

𝑄𝑟𝑎𝑑 =2𝜔𝜖𝑟ℎ 𝐺𝑡/𝑙

𝐾

𝐾 =𝑎𝑟𝑒𝑎

𝐸 2𝑑𝐴

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟ׯ𝐸 2𝑑𝑙

For rectangular aperture in the dominant 𝑇𝑀010𝑥 mode

𝐾 =𝐿

4𝐺𝑡

𝑙=

𝐺𝑟𝑎𝑑

𝑊conductance per unit length of radiating aperture

Page 45: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 45

The fractional bandwidth of the antenna is inversely proportional to the 𝑄𝑡 of the antenna

Δ𝑓

𝑓0=

1

𝑄𝑡

Δ𝑓

𝑓0= Fractional Bandwidth

𝑓2−𝑓1

𝑓0, 𝑓0 =

𝑓1+𝑓2

2

Δ𝑓

𝑓0=𝑉𝑆𝑊𝑅 − 1

𝑄𝑡 𝑉𝑆𝑊𝑅

𝑓1 =𝑓0

1 + 1/𝑄𝑡, 𝑓2 = 𝑓0 1 + 1/𝑄𝑡

An approximate expression of the bandwidth for VSWR ≤ 2, Γ ≤1

3,

BW = 3.771𝜖𝑟 − 1

𝜖𝑟2

𝜆0

𝑊

𝐿

Quality Factor – Bandwidth

Page 46: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Quality Factor – Dimensions and Bandwidth

Microstrip Patch Antennas Slide 46

Page 47: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Quality Factor, Bandwidth, and Efficiency – Example

Microstrip Patch Antennas Slide 47

The fractional bandwidth at a center frequency of 10 GHz of a rectangular patch antenna whose substrate is RT/Duroid 5880 𝜖𝑟 = 2.2 with height ℎ = 0.1588 cm is about 5% for a VSWR of 2: 1. Within that bandwidth, find resonant frequencies associated with the two lengths of the rectangular patch antenna, and relative ratio of the two lengths.

Page 48: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Introduction to Antennas Slide 48

Antennas for Mobile Communications

Page 49: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Planar Inverted F Antenna

Microstrip Patch Antennas Slide 49

Page 50: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 50

Planar Inverted F Antenna

Page 51: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Microstrip Patch Antennas Slide 51

Planar Inverted F Antenna

Page 52: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Planar Inverted F Antenna

Introduction to Antennas Slide 52

Page 53: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Slot Antenna

Introduction to Antennas Slide 53

Page 54: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Inverted F Antenna

Introduction to Antennas Slide 54

Page 55: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Inverted F Antenna

Introduction to Antennas Slide 55

Page 56: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

Inverted F Antenna

Introduction to Antennas Slide 56

Page 57: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

3D Inverted F Antenna

Introduction to Antennas Slide 57

Page 58: Microstrip Patch Antennas - EM Labemlab.utep.edu/ee4382_AntennaEngineering/Topic 5 -- Microstrip Patch Antenna.pdf · Microstrip Antennas - Introduction Slide 4 A microstrip patch

3D Inverted F Antenna

Introduction to Antennas Slide 58