mhd induction & dynamo

32
MHD induction & dynamo ENS LYON Laboratoire de Physique Ecole Normale supérieure Lyon (France) Jean-François Pinton [email protected] http://perso.ens-lyon.fr/jean- francois.pinton

Upload: monifa

Post on 06-Feb-2016

68 views

Category:

Documents


0 download

DESCRIPTION

ENS. LYON. MHD induction & dynamo. Laboratoire de Physique Ecole Normale supérieure Lyon (France) Jean-François Pinton. [email protected] http://perso.ens-lyon.fr/jean-francois.pinton. Collaboration with. Philippe Odier, Mickael Bourgoin , Romain Volk - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MHD induction & dynamo

MHDinduction & dynamo

ENS LYO

N

Laboratoire de PhysiqueEcole Normale supérieure

Lyon (France)

Jean-François Pinton

[email protected]://perso.ens-lyon.fr/jean-francois.pinton

Page 2: MHD induction & dynamo

Collaboration with

Philippe Odier, Mickael Bourgoin, Romain Volk

VKG : Stanislas Kripchenko, Petr Frick

VKS : François Daviaud, Arnaud Chiffaudel, Stephan Fauve, François Petrelis, Louis Marié

Numerics : Yanick Ricard, Yannick Ponty Hélène Politano

Page 3: MHD induction & dynamo

ENS LYO

N

Motivations and approach:

• Non-linear physics, fluid turbulence

• Induction mechanisms high Rm, low Pm

•Dynamo- `non - analytical’ dynamos?- bifuraction in the presence of

noise- saturation and dynamical

regime

Dynamo fields are self-tailored, and we wish we could control the flow !

Page 4: MHD induction & dynamo

Question addressed :

3D flowLiquid metal : Ga, Na

B-measurement

In situ

Mean induction ?

Fluctuations ?

Page 5: MHD induction & dynamo

Induction in mhd flows

B-eq. only : field is too small to modify imposed u

B0 imposed by external coils / currents

Boundary conditions : flow + vessel + outside

Page 6: MHD induction & dynamo

Equations & parameters

Liquid Gallium / Sodium

Turbulent flows

Weak applied field

Strong, non-linear induction

Page 7: MHD induction & dynamo

Measurement of induction in VK flows

Gallium at ENS-LyonSodium at CEA-Cadarache

•M. Bourgoin, et al., Phys. Fluids, 14 (9), 3046, (2001).•L. Marie et al., Magnetohydrodynamics, 38, 163, (2002).•F. Pétrélis et al., Phys. Rev. Lett., 90(17), 174501, (2003).•M. Bourgoin et al., Magnetohydrodynamics, in press, (2004).

Page 8: MHD induction & dynamo

Von Karman flows

Power

Velocityfeed-back

H=2R

RB0 B0//

3D Hallprobe

Pressureprobe

Motor 1

Motor 2

Power

Velocityfeed-back

Thermocouple

Page 9: MHD induction & dynamo

VKS1 experimentat CEA-Cadarache

Page 10: MHD induction & dynamo

von Karman counter-2D(differential rotation)

R

H=2R

-0.2 -0.1 0 0.1 0.2-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.2 -0.1 0 0.1 0.2-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Toroidal poloidal

Page 11: MHD induction & dynamo

Omega effect

R

H=2R

Twisting of mag field lines by shear

linear

saturation B1

induit

Page 12: MHD induction & dynamo

Vitesse azimutale

-0.2 -0.1 0 0.1 0.2-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x (m)

Vitesse poloïdale

-0.2 -0.1 0 0.1 0.2-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x (m)

z (m

)

mesuresLDV

H=2R

HzR

(L. Marié, CEA)

xy

z

Von Karman 1D(helicity)

Page 13: MHD induction & dynamo

« alpha » effect

0 10 20 30 40 50 60 700

1

2

3

4

5

6

7

8

9

H=2R

HzR

VKG

BIz

Rm

saturation

quadratic

quadratic

Na, Cadarache

Ga, Lyon

Page 14: MHD induction & dynamo

« alpha » effect

Parker’s stretch and twist mechanism

H=2R

HzR

R R R

Page 15: MHD induction & dynamo

Turbulent fluctuations

30 30.5 31 31.5 32 32.5 330

20

40

60

histogram10

110

210

310

410

5-20

0

20

40

60

0 10 20 30 40 50 60-20

0

20

40

60

time (s)

Bin

d,z (

G)

applied B0 mean induced bz

time (s)

Bz (G

)

Page 16: MHD induction & dynamo

Turbulent fluctuations

100

101

102

100

102

104

0 - 1

- 11/3

f (Hz)

b²~

ΩΩ/10

br

bz

3 particularregions

Page 17: MHD induction & dynamo

Mean induction:an iterative approach (assuming stationarity)

real boundary condition

An iterative study of time independent induction effects in mhdM. Bourgoin, P. Odier, J.-F. Pinton and Y. Ricard,

Physics of Fluids, in press (2004).

Page 18: MHD induction & dynamo

Iterative approach

avec

Induction in the presence of an applied field

+ C.L.

Page 19: MHD induction & dynamo

Solving for B, I,

CL Neumann :(CL insulating)

Page 20: MHD induction & dynamo

Ex.1: -effect in VK

Potentiel électrique

Page 21: MHD induction & dynamo

Ex.1: -effect in VK

linéaire

saturation

Page 22: MHD induction & dynamo

R

Ex.2: -effect in VK

Page 23: MHD induction & dynamo

Ex.2: -effect in VK

Page 24: MHD induction & dynamo

Ex.2: -effect in VK

Page 25: MHD induction & dynamo

Ex.3: boundary effect in VK

Page 26: MHD induction & dynamo

Turbulent fluctuations : a mixed LES - DNS scheme

periodic boundary condition

Simulation of induction at low magnetic Prandtl number Y. Ponty, H. Politano and J.-F. Pinton:,

Physal Review Letters, in press, (2004).

Page 27: MHD induction & dynamo

Turbulence : coupled LES-DNS

Include turbulence, but :viscous dissipative scale : = L/Re3/4

magnetic ohmic scale : B = L/Rm3/4

1/L 1/

PS

D

uB

DNS LES

1/B

Page 28: MHD induction & dynamo

Taylor-Green vortex flow- pseudo spectral code 1283

-Pm = 0.001, Rm=7, R=100

-Chollet-Lesieur cutoff(k,t) ≈ (a + b(k/Kc)8)sqrt(E(Kc,t)/Kc)

Page 29: MHD induction & dynamo

TG, local induction

Page 30: MHD induction & dynamo

TG, global mode

VKS exp.

TG simulLocal

Page 31: MHD induction & dynamo

TG, global mode

VKS exp.

TG simulB-energy

Page 32: MHD induction & dynamo

In progress

Earth dynamo

VKS dynamo

Turbulence & induction