megawatt solid-state electronics gan thyristors and...

58
MEGAWATT SOLID-STATE ELECTRONICS University of Florida / MCNC / SRI / Sandia National Laboratories GaN Thyristors and MOSFETs University of Florida: Device Design Process Development Device Fabrication (In Collaboration with Sandia) High Rate GaN Epitaxy Novel Gate Dielectrics Characterization SRI: High Field Transport Device Design MCNC: Packaging Commercialization

Upload: truongdien

Post on 15-May-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

GaN Thyristors and MOSFETs

• University of Florida: Device DesignProcess DevelopmentDevice Fabrication (In

Collaboration with Sandia)High Rate GaN EpitaxyNovel Gate DielectricsCharacterization

• SRI: High Field TransportDevice Design

• MCNC: PackagingCommercialization

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

• Low Power MOSFET + Thyristor →→ GTO Thyristor

• GTO + Power Diodes + Packaging →→ Inverter Module

• Approach is to Make Devices in Parallel withMaterials Development, Modelling and PackageDevelopment

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

TASK LIST• GaN MOSFET (achieved)• GaN HBT – precursor to thyristor (achieved)• GaN Thyristor (25 kV, 3 kA)• new RTP Furnace for wide bandgap processing

(delivered)• fiber-compatible emission from GaN (well-

advanced)• improved implant doping/isolation processes for

SiC and GaN (achieved for GaN)• understanding of critical process integration

issues for megawatt power devices• determination of transport and band parameters

of optimum device performance• full-wafer heat-sink technology for wide bandgap

power devices• flip-chip bonding advances and direct on-chip

temperature measurement

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

TEAM OBJECTIVES

• reference table of band offsets, velocity-field characteristics, barrier heights,saturation velocities, breakdown fields and thermal conductivities

• WCx and WN-based contact scheme or doped SiC and GaN• refractory metal schemes on graded layers for low resistance contacts on both

n- and p-type GaN• optimized procedure for contacting Ga2O3, AlN and other gate insulators on

SiC and GaN (preclean, deposition conditions, metallization)• process for high quality (Dit⋅~2x1010 cm-2 eV-1) gate oxide formation on GaN

(substrate clean, deposition conditions, anneal)• bias-temperature stress protocol for AlN gate insulators on GaN• dry etch chemistries for high-rate, low-damage trench formation in SiC and

GaN and for selective etching of one nitride relative to another• post-etch, in-situ dry clean process for removal of etch residues• implantation species, doses and annealing conditions for creation of high-

resistivity regions for optical or electrical isolation in GaN and optimized n- andp-type doping

• careful evaluation of packaging approaches for ultra high-power electronics

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Highlights

• GaN/AlGaN HBT (precursor to thyristor)- operates at 300oC, ∃∃ = 10

• Further characterization of GaN MOSFET- operates at 400oC

• Velocity-Field characteristics for GaN

• Packaging approaches for megawatt electronics

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

0.1µm i-GaN

0.3µm p-GaN

Al2O3 Substrate

LT GaN

3µm n-GaN

Ni/Pt/Au

Ti/Al/Pt/Au

Dry Etch Damage In GaN p-n Junctions

Minority carrier devices are generallyexpected to be more susceptible todry etch damage

Deposit and alloy p-metal

Etch mesa using different ion energiesand fluxes

Deposit non-alloyed n-metal

Measure IR and RC

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Effect Of Ion Energy OnReverse Leakage CurrentOf A GaN p-n Junction

32Cl2/8BCl3/5Ar2 mTorr500 W ICP Power

Little effect of bias below-250V dc -”Safe” operating region

dc Bias (-V)

0 100 200 300 400

I R a

t -30

V (

nA)

0

1

2

3

Etc

h R

ate

(Å/m

in)

102

103

104

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

ICP Power (W)

0 400 800 1200

I R a

t -3

0V (

nA)

10-1

100

101

102

103

Etc

h R

ate

(Å/m

in)

1000

2000

3000

4000

Effect Of Ion Flux OnReverse Leakage Of AGaN p-n Junction

32Cl2/8BCl 3/5Ar2 mTorr-100 V dc

Little effect below 250Wsource power; falls againat higher values due tofaster etch rate

Balance of damage creationand removal

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Data Summary for Plasma Surface Damage Experiment

PlasmaCondition

Ga/N(Auger)

RC

(ΩΩ-mm)∆∆C

(ΩΩ-cm2)∆∆S

(ΩΩ/sq)Comments RMS

(nm)none 0.49 variable 2.8ICP: 25Ar 1.36 0.19 2.9x10-5 13.2 2.8ICP: 22.5Cl2/2.5H2 0.94 0.28 3.37x10-5 23.5 2.9ICP: 5Cl2/20H2 1.36 0.24 3.86 x10-5 15.1 2.9ICP: 22.5Cl2/2.05N2 0.7 nonlinear very rough surface 8.6ICP: 5Cl2/20N2 1.9 0.41 3.2 x10-5 50.9 hazy surface 4.7ECR: 25Ar 0.71 0.245 4.53 x10-5 18.5 2.6ECR: 22.5Cl2/2.5H2 0.45 0.37 7.21 x10-5 19.6 rough surface 7.4ECR: 5Cl2/20H2 0.51 0.263 4.79 x10-5 17.2 3.1ECR: 22.5Cl2/2.5N2 0.46 nonlinear very rough surface 9.2ECR: 5Cl2/20N2 0.71 0.72 3.21 x10-4 17.8 slight pitting 3.3

Hall on as-grown sample∆C = 13.7 Ω/sqn = 9.8x1018 cm-3 (assuming a film thickness of 4 microns)µC = 115 cm2/V s

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

CHARACTERISTICS OF DIFFERENT IMPLANTED DOPANTS IN GaN

DONORS MAX ACHIEVABLE DOPING LEVEL (cm -3)

DIFFUSIVITY(cm2⋅⋅s-1)

IONIZATION LEVEL(meV)

Si 5××1020 <2 ××10 -13 (1500 oC) 28

S 5××1018 <2 ××10 -13 (1400 oC) 48

Se 2××1018 <2 ××10 -13 (1450 oC)

Te 1××1018 <2 ××10 -13 (1450 oC) 50

O 3××1018 <2 ××10 -13 (1200 oC) 30

ACCEPTORS

Mg ~5 ××10 18 * <2 ××10 -13 (1450 oC) 170

Ca ~5 ××10 18 * <2 ××10 -13 (1450 oC) 165

Be <5 ××10 17 DEFECT-ASSISTED

C n-type <2 ××10 -13 (1400 oC)

* Acceptor Concentration

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

EFFECT OF ULTRA-HIGH TEMPERATURE ANNEALING ON ION-IMPLANTED GaN

Si, 5××1015 cm-2, 150 keV→→ GaN

1100 oC anneal 1400 oC anneal

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Summary

• Fabricated GaN/AlGaN Heterojunction Bipolar Transistor- Gain of 10 at 300oC- Performance limited by base resistance

• GaN MOSFET- Further development of GdOX, AlN

• High temperature stable WSix Ohmic contacts

• Dry etch damage study

• Velocity-Field characteristics in hexagonal GaN

• Packaging strategies

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Motivation

• High breakdown voltage and high temperature device

• Develop lower ohmic contact resistivity, thermal

stability, surface morphology, and edge definition

• Gate Recess Process

• Schottky gate vs. MOS gate - complementary circuits,

low power consumption, and single supply voltage

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

• The composite metal layers for the n-type GaN -Au/Ti/WSi/Ti/GaN (60/25/50/40nm)-Au/Ti/WSi/Ti-Al/GaN (60/25/50/10-30nm)

• The composite metal layers for the p-type GaN-Au/Ti/WSi/Pd/GaN (60/25/50/30nm)-Au/Ti/WSi/Ni/GaN (60/25/50/30nm)

• Au, Ti, Al, Pd, Ni deposited by e-beam deposition

• WSi sputtered from composite target with Arplasma

Experimental for Ohmic Contacts

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

-2 -1 0 1 2- 1 0

-5

0

5

10

Au/Ti/WSi/Ti-Al/GaN

As Deposi t

Cu

rren

t ( µµ

A)

Voltage (V)

-2 -1 0 1 2-1.0

-0.5

0 . 0

0 . 5

1 . 0

Au/T i /WS i /T i /GaN

As Depos i t

400°C

600°C

Cu

rren

t ( µµA

)

Voltage (V)

I-V Characteristics for n-Contacts

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 01 E - 5

1 E - 4

1 E - 3

0 . 0 1

0.1

Au/T i /WSi /T i -A l /GaN

Sp

ecific

Co

nta

ct R

esis

tivi

ty (

ΩΩ c

m 2

)

Annealling Temperature (°C)0 200 400 600 800 1000

1E-5

1E-4

1E-3

0.01

0.1

Au/Ti/WSi/Ti/GaN

Sp

ecif

ic C

on

tact

Res

isti

vity

( ΩΩ

cm

2 )

Annealling Temperature (°C)

Specific Contact Resistivity vs. Annealing Temperature for n-Contacts

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

0 50 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 01E-4

1E-3

0.01

0.1

Chuck Temperature (°C)

Sp

ecifi

c C

on

tact

Res

istiv

ity (

ΩΩ c

m 2

)

5 0 0

7 0 0

9 0 0

1100

1300

1500

Au/Ti/WSi/Ti-Al/n-GaN

Annealled @400°C

Sh

eet Resistan

ce ( Ω/

Ω/ sq

uare)

1 5 0 2 0 0 2 5 0 3 0 0 3 5 01 E - 4

1 E - 3

0.01

0 . 1

Chuck Temperature (°C)

Sp

ecif

ic C

on

tact

Resis

tivit

y (

ΩΩ

cm

2 )

5 0 0

7 0 0

9 0 0

1100

1300

1500

A u / T i / W S i / T i / n - G a N

A n n e a l l e d @ 4 0 0 ° C

Sh

eet R

esis

tan

ce ( ΩΩ/ sq

uare )

Specific Contact Resistivity And Sheet Resistance vs. Chuck Temperature for n-Contacts

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

R = RC + RM

RC = (KB/qααT)exp(qΦΦ/KBT)

RM = AT

ΦΦTi-Al = 0.325eV

ΦΦTi = 0.368eV

0 1 0 0 2 0 0 3 0 01 E - 4

1 E - 3

0.01

0 . 1

Annealed @ 400°C

Au/T i /WSi /T i

Au/Ti /WSi/Ti-Al

Sp

ecif

ic C

on

tact

Res

isti

vity

( ΩΩ c

m 2

)

Chuck Temperature ( °C)

Specific Contact Resistivity And Sheet Resistance vs. Chuck Temperature for n-Contacts

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Auger Depth Profile of Au/Ti/WSi/Ti on n-GaN

0 1000 2000 3000 4000 50000

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

G a

T i

Au

Au

W

T i

Au/Ti/WSi/Ti/GaN

Annealed @900°C

Gold

Titanium

Tungstun

Galium

Pea

k H

eig

ht (

Arb

itra

ry U

nit

s)

Sputter Time (Sec)

0 5 0 0 1000 1500 20000

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

G a

T i

W

T i

Au

Au/Ti/WSi/Ti/GaN

As Deposit

Gold

Titanium

Tungstun

Galium

Pea

k H

eig

ht (

Arb

itra

ry U

nit

s)

Sputter Time (Sec)

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

- 1 0 -5 0 5 1 0- 1 0

-5

0

5

1 0

Au/Ti/WSi/Ni/GaN

As Deposit

400°C

600°C

800°C

Cur

rent

( µµA)

Voltage (V)

- 1 0 -5 0 5 1 0- 1 0

-5

0

5

1 0

Au/Ti/WSi/Pd/GaN

As Deposit

400°C

600°C

800°C

Cur

rent

( µµA)

Voltage (V)

I-V Characteristics for p-Contacts

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

-2 -1 0 1 2-10

-5

0

5

1 0

Voltage (V)

Ni/WSi/Ni/Au

Annealled @ 400°C

As Deposit

101°C

193°C

332°C

Cu

rre

nt

( µµA

)

Specific Contact Resistivity vs. Chuck Temperature for p-Contacts

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

As Deposit 800 °C Annealed

SEM of Au/Ti/WSi/Ni on p-GaN

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

0 5 0 0 1000 1500 20000

5000

10000

15000

20000

25000

30000

35000

Ga

N i

W

Au

T iAu/Ti/WSi/Ni/GaN

As Deposit

Gold

Titanium

Tungstun

Nicke l

Gall ium

Pea

k H

eigh

t (A

rbitr

ary

Uni

ts)

Sputter Time (Sec)

0 1000 2000 3000 40000

15000

30000

45000

60000

75000

90000

G a

W

N i

Au

T i

Au/Ti/WSi/Ni/GaN

Annealed @900°C

Gold

Titanium

Tungstun

Nicke l

Gall ium

Pea

k H

eigh

t (A

rbitr

ary

Uni

ts)

Sputter Time (Sec)

Auger Depth Profile of Au/Ti/WSi/Ni on n-GaN

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

• BCl3/N2; ECR 200 W; RF 50 W• 400 °C Anneal for 4 mins• PT/Ti/Pt/Au Gate Contacts

-12 -10 - 8 - 6 - 4 - 2 0 2-50

-40

-30

-20

-10

0

10

20

30

40

50

BCl3/N

2

ECR Power 200 W

RF Power 50 W

As Etched

Ga

te C

urr

en

t (µ

A)

GAte Voltage (V)

- 1 2 - 1 0 - 8 - 6 - 4 - 2 0 2- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

10

20

30

40

50

BCl3/N

2

ECR Power 200 W

RF Power 50 W

5 min 400 °C Annealed

Gat

e C

urre

nt (

µA

)

Gate Voltage (V)

Au/Pt/Ti/Pt Gate Characteristics on n-GaN

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

0 1 21E-11

1E-10

1 E - 9

1 E - 8

1 E - 7

1 E - 6

1 E - 5

1 E - 4

T

2 7 ° C

5 0 ° C

7 5 ° C

1 0 0 ° C

1 5 0 ° C

2 0 0 ° C

P t / G a2O

3( G d

2O

3) /GaN

Dio

de

Crr

en

t (A

)D i o d e V o l t a g e ( V )

0.0 0.2 0.4 0.6 0.81 E - 1 1

1 E - 1 0

1 E - 9

1 E - 8

1 E - 7

1 E - 6

1 E - 5

1 E - 4

T

27 °C

50 °C

75 °C

100 °C

150 °C

200 °C

P t / G a N

Gat

e C

urre

nt (A

)

Gate Voltage (V)

Temperature Effect on Gate Characteristics

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Material GaN SiO2 Ga2O3/Gd2O3 AlN

Bandgap(eV) 3.4 9 ? 6.2

Breakdown 5 7 6 5Field(106 V/cm)

Thermal 1.3 0.014 2.9 3.2Conductivity(W/cm)

Dielectric 9 3.9 10.4-14.2 8.5Constant

Comparison Potential Insulators for GaN

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Experimental: Oxide

• MBE desorb native oxides at 580-600 °C

• Use RHEED to monitor GaN surface

• in-situ electron beam deposited Ga2O3/Gd2O3

from a single crystal Gd3Ga5O15 at 350-550 °C

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

-4 -2 0 2 4

1 E - 1 3

1 E - 1 2

1 E - 1 1

1 E - 1 0

1 E - 9

1 E - 8

1 E - 7

1 E - 6

1 E - 5

1 E - 4

1 E - 3

Au/Pt /T i /Pt /GaN

Au/Pt /T i /P t /Ox ide /GaN

Dio

de

Cu

rren

t (A

)

Diode Voltage (V)

I-V Characteristics of GaN Diode

• Au/Pt/Ti/Pt• 400 Å Ga2O3(Gd2O3)• 6 MV/cm

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

-3 -2 -1 0 1 20

2 0 0

4 0 0

6 0 0

8 0 0

100Hz 1KHz 10 KHz

Cap

acita

nce

(pF)

Voltage (V)

C-V Characteristics of GaN Diode

• Au/Pt/Ti/Pt• 400 Å Ga2O3(Gd2O3)• 6 MV/cm

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

• Varian Gas Source Gen II MOMBE System• Desorb native oxides at 600 °C under RF

nitrogen plasma• Reduce substrate temperature to 325°C• Deposit 400Å AlN from dimethylethylamine

alane (DMEAA) and RF nitrogen plasma (SVTAssoc. plasma source)

Experimental: AlN

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Comparison of Schottky And AlN MIS Diodes on GaN

0 1 2 3 4 5 60

5

10

15

20

AlN MIS Schottky

Cur

rent

(µA

)

Voltage (V)

• MOCVD Grown Si-doped GaN 2 × 1017 cm-3

• MOMBE Grown 400 Å AlN• Pt/Ti/Pt/Au

Å

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

-4 -2 0 2 4

0.00E+000

5.00E+019

1.00E+020

1.50E+020

2.00E+020

AlN/GaN

Slope = -4.363e19

ND = 1.2e17 cm

-3

LD = 1.0e-6 cm

1/C

2

Voltage (V)

C-V Characteristics of AlN/GaN MIS Diode

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

C-V Characteristics of AlN/GaN MIS Diode

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1.0

0.47 V

ND IT

= 1.1e12 cm-2

VFB

= o.47 V

εεi = 8.5

CFB

/Ci = 0.794

Pt/Ti/Pt/Au

C/C

i

Voltage (V)

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Gate Dielectric

GateContactSource

Contact

2 µm GaN n --Layer

Drain Contact

Cross-Sectional View of d-MOSFET

Sapphire Substrate

0.8 µm n-GaN

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

GaN MOSFET

•Operate to ≥400oC

•GdGa2O3 Gate Oxide

•External MOSFET plus Gate-Turn Off

Thyristor

→ GaN MTO

→ Plus Power Diodes and Packaging

→ Inverter Module

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

0.1 1 100

5

10

15

20

Umax

h21

Gai

n (d

B)

Frequency (GHz)

rf Performance of GaN DMOSFET

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Emitter Ohmic Metallization Base Mesa Etching

Emitter Mesa Dry Etching Collector Metal Contact

Base Metallization Device Isolation

Process Flow For GaN/AlGaN HBT

Substrate

PR

PR

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

GaN/AlGaN HBT

• large area device (~90 µµm emitter dimension)

• emitter metal Ti/Al/Pt/Au

• base metal Ni/Pt/Au

• mesas formed by Cl2/Ar dry etch

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Base Contact I-V

•p-Ohmic is really a leaky Schottky-barrier at room temperature

•Best characteristics obtained after annealing Ni/Au at 700oC, 20 secs

•Morphology roughens after annealing (Reacted contact)

•RC~10-2 Ohm-cm-2

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Voltage (V)

-0.4 -0.2 0.0 0.2 0.4

WSi/p-GaNC

urr

ent

(A)

W/p-GaN

Au/Ni/p-GaN

-4 x 10-6

0

4 x 10-6

1.2 x 10-5

0

-1.2 x 10-5

2 x 10-5

0

-2 x 10-5

RT

100 oC

150 oC

200 oC

250 oC

300 oC

Temperature (oC)

0 100 200 300

Ion

izat

ion

eff

icie

ncy

(%)

0

10

20

30

40

50

60

EF-E

V (

meV

)

120

140

160

180

200

220

240

Mg in GaN 1x1018 cm-3

EA - EV = 171 meV

p-OHMIC CONTACT

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

GaN/AlGaN HBT

• Bipolar devices necessary for ultra-high power applications due to much lower on-resistance compared to unipolardevices (Conductivity modulation due to minority carrier injection)

• Demonstrating a Heterojunction Bipolar Transistor is the precursor to making a thyristor (npn vs npnp)

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Gummel Plot• Gain at 25oC is 3• Gain at 300oC is 10

-Improvement in baseresistance

• Improved performance-Piezoelectric stress →→higher hole concentration in base-Lower gap material for base (InGaN, SiC?). InGaN has tendency for high -N-type background; Al acceptor on SiC has large ionization level (0.2 eV).-Selective regrowth of extrinsic base region

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Novel Self-Aligned AlGaN/GaN HBT Process

(a) Emitter Metal Deposition

(f) SiO 2 Patterning and Extrinsic Base Growth

(b) SiO 2 Deposition and Etch Back

(c) Emitter GaN Etch

(d) SiNx Deposition and Etch Back

(e) Low Damage Emitter AlGaN Dry Etch and Wet Etch

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Novel Self-Aligned AlGaN/GaN HBT Process (cont.)

(g) SiO2 Etch and Base Metal Deposition

(h) He+ Implant Isolation

(i) Base Mesa Etch and Collector Via Etch

(j) Collector Metal Deposition

He+ He+

PR

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Dev Palmer, Principal Investigator

MCNC/Electronic Materials and Devices

3021 Cornwallis Road

Research Triangle Park, NC [email protected] 919/248-1837 919/248-1455 FAX

http://www.mcnc.org

MCNC

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Information Technologies

• North Carolina Research and Education Network– Internet, Internet 2, Network Security

• North Carolina Supercomputing Center– Heterogeneous, high performance computing

environment for academic/industrial users

– Time is available on a CPU-hour basis

– Cray Research T916 parallel vector processor

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Electronic Technologies• Electronic Materials and Devices

– AES, SIMS, XPS, and TEM composition and structure analysis

– Design and fabrication facilities

• Advanced Packaging and Interconnect– Thermal, Mechanical, and Electrical modeling

software

– Reliability test facilities

• Corporate– Marketing experience and expertise

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Team Members• Dev Palmer - Principal Investigator

• Dorota Temple - Materials Scientist

• Richard LaBennet - Packaging Engineer

• Mark Ray - AES/SIMS Analyst

• John Lannon - XPS Analyst

• Mike Lamvik - TEM Microscopist

• Jesko von Windheim - Marketing

• Gary McGuire - Director, Electronic Materials And Devices

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Team FocusYear 1 – Analysis of film microstructure and morphology

– Dopant depth profiling

– Market analysis

Year 2 – Materials analysis

– Test structure and device layout

– High-power package design

– Market applications analysis

Year 3 – Materials analysis

– Test structure and device fabrication

– Device packaging

– Customer development

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Ni Ta

Au C u

Analytical Capabilities

Spectroscopic techniques to determine the surface and bulk chemical properties of materials

– SIMS

– AES– XPS– EDS, WDS

Multi - e lement EDS mapp ing

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

Analytical Imaging Capabilities

Imaging techniques to reveal the surface and interior structure of materials

– SEM, TEM– AFM/STM

– Profilometry– X-Ray Radiography

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

New Process AndStructure Development

• Anisotropic etching of Si

• Liftoff patterning

• Ion beam sputter deposition

• High aspect ratio reactive ion etching

• Sub-micron photolithograpy T E M micrograph of Pt- coated Si emitter tip

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Advanced Packaging and Interconnect

• MCNC is a leader in electroplated flip chip technology

• Bump sizes from 50 µm to 800 µm

• Commercial wafer bumping services available fromUnitive Electronics, an MCNC spinoff company

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Advanced Packaging and Interconnect• PADS (Plasma Assisted Dry Soldering)• “One of the 100 most technologically

significant new products of the year,” R&D Magazine 1996

• Commercially available through IEI Inc., an MCNC spinoff company

• Plasma pretreatment• No flux

• No post-solder cleaning• Compatible with chip-to-chip or chip-

to-board on ceramic, organic, and flexible PWBs

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Advanced Packaging and Interconnect

• 3-D assembly of smart memory chips to bus chip carrier

• Increased memory capacity per unit volume

• MRAM cube technology for space and military applications

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Advanced Packaging and Interconnect

• Modeling

• Design

• Fabrication

• Analysis

• Reliability testing

MCNC Bumped D i e Tes t Veh i c l e (BDTV)

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

MCNC Corporate DivisionTrack record in successful technology marketing and

commercialization• Alternate Realities Corporation

– “The Vision Dome” http://www.virtual-reality.com/• Integrated Electronic Innovations Incorporated

– PADS fluxless soldering 1-800-4FLUXLESS

• One Room Systems Incorporated– Interactive multimedia systems http://www.oneroomsystems.com

• Secant Network Technologies– ATM communications systems http://www.secantnet.com

• Unitive Electronics Incorporated– Full-service flip chip supplier http://www.unitive.com/

MEGAWATT SOLID-STATE ELECTRONICS

University of Florida / MCNC / SRI / Sandia National Laboratories

AcknowledgmentsThis work is funded under subcontract number UF-EIES-9809002-MCN to the University of Florida for the study “Materials, Processes, and Device Development for SiC and GaN MCTs,” which is in turn funded under a Coordinated Research Agreement between DARPA/ETO and EPRI (Prime Agreement WO8069-07)