measures of earthquakes

21
Measures Of Measures Of Earthquakes Earthquakes

Upload: gana-ahmed

Post on 18-Jan-2015

2.023 views

Category:

Documents


2 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Measures of earthquakes

Measures Of Measures Of EarthquakesEarthquakes

Page 2: Measures of earthquakes

How do scientists measure How do scientists measure earthquakesearthquakes??

•With a really big ruler? No, not quite. There areWith a really big ruler? No, not quite. There are twotwo waysways in which scientists quantify the size of in which scientists quantify the size of earthquakes: magnitude and intensityearthquakes: magnitude and intensity . .

•Magnitude is a measure of the amount of energy Magnitude is a measure of the amount of energy released during an earthquake, and you've released during an earthquake, and you've probably heard news reports about earthquake probably heard news reports about earthquake magnitudes measured using the Richter scale. magnitudes measured using the Richter scale. Something like, "A magnitude 7.3 earthquake Something like, "A magnitude 7.3 earthquake struck Japan today. Details at ten." Did you ever struck Japan today. Details at ten." Did you ever wonder why, if it's that important, they just don't wonder why, if it's that important, they just don't tell you right awaytell you right away??

Page 3: Measures of earthquakes

The Richter scale was invented, logically enough, in the 1930s by Dr. Charles Richter, a seismologist at the California Institute of Technology. It is a measure of the largest seismic wave recorded on a particular kind of seismograph located 100 kilometers (about 62 miles) from the epicenter of the earthquake.

Think of a seismograph as a kind of sensitive pendulum that records the shaking of the Earth. The output of a seismograph is known as a seismogram. In

Page 4: Measures of earthquakes

Different of intensty of Different of intensty of eartquakeseartquakes

Page 5: Measures of earthquakes

the early days, seismograms were produced using ink pens on paper or beams of light on photographic paper, but now it's most often done digitally using computers. The seismograph that Dr. Richter used amplified movements by a factor of 3000, so the waves on the seismograms were much bigger than those that actually occurred in the Earth. The epicenter of an earthquake is the point on the Earth's surface directly above the source, or focus, of the

movement that causes the quake.

Page 6: Measures of earthquakes

Dr. Richter studied records from many earthquakes in southern California, and realized that some earthquakes made very small waves whereas others produced large waves. So, to make it easier to compare the sizes of the waves he recorded, Richter used the logarithms of the wave heights on seismograms measured in microns (1/1,000,000th of a meter, or 1/1000th of a millimeter). Remember, you have to be using a particular kind of seismograph located 100 km from the epicenter when you make the measurement; otherwise, all sorts of complicated calculations have to be made. That's why seismologists spend so many years in college!

Page 7: Measures of earthquakes

A wave one millimeter (1000 microns) high on a seismogram would have a magnitude of 3 because 1000 is ten raised to the third power. In contrast, a wave ten millimeters high would have a magnitude of 4. For reasons that we won't go into, a factor of 10 change in the wave height corresponds to a factor of 32 change in the amount of energy released during the earthquake. In other words, a magnitude 7 earthquake would produce seismogram waves 10 x 10 = 100 times as high and release energy 32 x 32 = 1024 times as great as a magnitude 5 earthquake .

The Richter scale is open-ended, meaning there is no limit to how small or large an earthquake might be. Due to the nature of logarithms, it is even possible to have earthquakes with negative magnitudes, although they are so small that humans would never feel them. At the other end of the spectrum, there should never be an earthquake much above magnitude 9 on the Earth simply because it would require a fault larger than any on the planet. The largest earthquake ever recorded on Earth was a magnitude 9.5 that occurred in Chile in 1960, followed in size by the 1964 Good Friday earthquake in Alaska (magnitude 9.2), a magnitude 9.1 earthquake in Alaska during 1957, and a magnitude 9.0 earthquake in Russia during 1952. Two large earthquakes, one a magnitude 9.0 and one a magnitude 8.2, occurred on Dec. 26, 2004 and March 28, 2005, respectively, along the same fault zone off the coast of Sumatra, Indonesia.

Page 8: Measures of earthquakes

Prediction ofPrediction of earthquakes(simulation)earthquakes(simulation)

•The list of really largeThe list of really large earthquakes in the previous earthquakes in the previous paragraph bringsparagraph brings up another interesting point. Five up another interesting point. Five earthquakes of magnitude 9 or above have been recorded earthquakes of magnitude 9 or above have been recorded during the past 45 years, which averages out to one every during the past 45 years, which averages out to one every decade. It turns out that earthquake occurrences seem to decade. It turns out that earthquake occurrences seem to follow what is called a power-law distribution, meaning that follow what is called a power-law distribution, meaning that if there is on average on magnitude 9 earthquake every ten if there is on average on magnitude 9 earthquake every ten years somewhere in the world, then on average there years somewhere in the world, then on average there should be one magnitude 8 earthquake every year, 10 should be one magnitude 8 earthquake every year, 10 magnitude 7 earthquakes every year, and 100 magnitude 6 magnitude 7 earthquakes every year, and 100 magnitude 6 earthquakes every year. So, if someone "predicts" that a earthquakes every year. So, if someone "predicts" that a magnitude 6 earthquake will occur somewhere in the world magnitude 6 earthquake will occur somewhere in the world during the next week, don't be too impressed if it happens during the next week, don't be too impressed if it happens because random probability tells us that there should be a because random probability tells us that there should be a magnitude 6 earthquake somewhere in the world every magnitude 6 earthquake somewhere in the world every 365/100 = 3.65 days! In reality, things are a little more 365/100 = 3.65 days! In reality, things are a little more complicated. But, you get the picturecomplicated. But, you get the picture . .

Page 9: Measures of earthquakes

What did people do before the What did people do before the Richter scale was inventedRichter scale was invented??

•What did people do before the Richter scale was invented? What did people do before the Richter scale was invented? To some degree, one of the same things that we do today. To some degree, one of the same things that we do today. They observed the intensity or effects of an earthquake at They observed the intensity or effects of an earthquake at different locations. Whereas the magnitude of an different locations. Whereas the magnitude of an earthquake is a single number regardless of where it's felt, earthquake is a single number regardless of where it's felt, intensity will vary from place to place. In general, the intensity will vary from place to place. In general, the intensity will be much greater near the epicenter than at intensity will be much greater near the epicenter than at large distances from the epicenter. This decrease in large distances from the epicenter. This decrease in intensity with distance is known as attenuation. Imagine it intensity with distance is known as attenuation. Imagine it this way: If I drop a rock into a pool of water, the difference this way: If I drop a rock into a pool of water, the difference between magnitude and intensity is similar to the between magnitude and intensity is similar to the difference between the height of the splash exactly where I difference between the height of the splash exactly where I drop the rock and the height of the waves all over the pooldrop the rock and the height of the waves all over the pool..

Page 10: Measures of earthquakes

Earthquake intensity is most often measured using the modified Mercalli scale, which was invented by the Italian geologist Giuseppi Mercalli in 1902 and uses Roman numerals from I to XII. In the United States, we use the modified Mercalli scale, which was adjusted to account for differences in buildings between Italy and southern California. An earthquake intensity of I is generally not felt, and an intensity of XII represents total destruction of buildings. Some kinds of geologic deposits, most notably water saturated muds, amplify seismic waves and may produce intensities much greater than those for nearby areas underlain by bedrock. Thus, after an earthquake seismologists can interview people and make maps showing the intensity of an earthquake in different areas to better understand the influence of rock or soil type on seismic waves

Page 11: Measures of earthquakes

بعض واليكم شدته باختالف الزلزال تاثير بعض يختلف واليكم شدته باختالف الزلزال تاثير يختلفالزلزال الزلزال الصورلتاثير الصورلتاثير

Page 13: Measures of earthquakes
Page 14: Measures of earthquakes
Page 15: Measures of earthquakes
Page 16: Measures of earthquakes
Page 17: Measures of earthquakes
Page 18: Measures of earthquakes
Page 19: Measures of earthquakes
Page 20: Measures of earthquakes
Page 21: Measures of earthquakes

Thank youThank youfaculty of engineerringfaculty of engineerringcivilcivil engineeringengineering

student/student/ FathiaFathia Fawzy Fawzy WagdyWagdy ElkafrawyElkafrawy