mathematical preliminaries

40
Mathematical Preliminaries

Upload: harlan-hawkins

Post on 31-Dec-2015

23 views

Category:

Documents


0 download

DESCRIPTION

Mathematical Preliminaries. Matrix Theory. Vectors n th element of vector u : u(n) Matrix m th row and n th column of A : a(m,n). column vector. Lexicographic Ordering(Stacking operation). Row-ordered form of a matrix Column-ordered form of a matrix. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mathematical Preliminaries

Mathematical PreliminariesMathematical Preliminaries

Page 2: Mathematical Preliminaries

2

Matrix TheoryMatrix Theory

Vectors nth element of vector u : u(n)

Matrix mth row and nth column of A : a(m,n)

)(

)2(

)1(

)}({

Nu

u

u

nuu

N

NMaMaMa

a

Naaa

nma aaaA

21

),()2,()1,(

)1,2(

),1()2,1()1,1(

)},({

column vector

Tk kMakakawhere )],(),2(),1([ a

Page 3: Mathematical Preliminaries

3

Row-ordered form of a matrix

Column-ordered form of a matrix

TNMxMxNxxNxxx )],()1,(),2()1,2(),1()2,1()1,1([ x ,2

1

Mr

r

r

TNkxkxkx

vectorrowwhere

k)],()2,()1,([ r

),()2,()1,(

)1,2(

),1()2,1()1,1(

NMxMxMx

x

Nxxx

),()2,()1,(

)1,2(

),1()2,1()1,1(

NMxMxMx

x

Nxxx

TNMxNxMxxMxxx )],(),1()2,()2,1()1,()1,2()1,1([ x ,2

1

Mc

c

c

TkMxkxkx

vectorcolumnwhere

k)],(),2(),1([ c

Lexicographic Ordering(Stacking operation) Lexicographic Ordering(Stacking operation)

Page 4: Mathematical Preliminaries

4

Page 5: Mathematical Preliminaries

5

Transposition and conjugation rules

Toeplitz matrices

Circulant matrices

***11

**

][,][][

][,][

AABAA

ABABAATT

TTTTT

0121

1

2

2101

110

tttt

t

t

tttt

ttt

N

N

N

T

0121

12

2101

1210

cccc

cc

cccc

cccc

N

NN

N

C

nmtnmt ),(

)modulo)((),( Nnmcnmc )%)(( Nnmc

Page 6: Mathematical Preliminaries

6

1

0

)()()()()(xN

k

kxknhnxnhny

hNnnfornh ,0,0)(

)0()0()()()0(0

1

0

xhkxknhyn

N

k

x

)1()0()0()1()()1()()()1(1

01

1

0

xhxhkxkhkxknhykn

N

k

x

)()0()1()1()0()()()()()()(0

1

0

lxhxlhxlhkxklhkxknhlyl

kln

N

k

x

xNnnfornx ,0,0)(

Linear convolution using Toeplitz matrix

Page 7: Mathematical Preliminaries

7

)1(

)1(

)0(

)1(000000000

)2()1(00000000

)0()1()1(00

0)0()1()2()2()1(0

00)0()1()2()1(

0000000)0()1()2(

00000000)0()1(

000000000)0(

)2(

)2(

)1(

)0(

x

h

hh

h

hh

hh

xh

Nx

x

x

Nh

NhNh

hhNh

hhhNhNh

hhNhNh

hhh

hh

h

NNy

y

y

y

xN

1 xh NN

Hxy

y H x(Toepliz matrix)

Page 8: Mathematical Preliminaries

8

N-point circular convolution :

otherwise

Nnkxknhnxnhny

N

k

,0

0,)()(~

)()()(

1

0

1

1

1

00

1

0

)()()0()0()()(~

)()(~

)0(N

k

N

kn

N

k

kxkNhxhkxkhkxknhy

,)()(~

k

kNnhnh

1

2

1

01

1

0

)()()1()0()0()1()()1(~

)()(~

)1(N

k

N

kn

N

k

kxkNhxhxhkxkhkxknhy

1

1

1

0

1

0

)()()()0()1()1()0()(

)()(~

)()(~

)(

N

lk

N

kln

N

k

kxkNhlxhxlhxlh

kxklhkxknhly

Nnnfornx ,0,0)(

h(n) N x(n)

N

Circular convolution using circulant matrixCircular convolution using circulant matrix

Page 9: Mathematical Preliminaries

9

)1(

)2(

)2(

)1(

)0(

)0()1()2()2()1(

)1()0()1()2()2(

)1()0()1()2(

)2()2()1()0()1(

)1()2()2()1()0(

)1(

)2(

)2(

)1(

)0(

Nx

Nx

x

x

x

hhhNhNh

NhhhhNh

Nhhhh

hNhNhhh

hhNhNhh

Ny

Ny

y

y

y

Hxy

y H x(circulant matrix)

Circular convolution + zero padding linear convolution

Circular convolution with the period : 1 hx NNN

the same result with that of linear convolution

,,0,0)( hNnnfornh xNnnfornx ,0,0)(

Page 10: Mathematical Preliminaries

10

4

0

)()()()()(k

kxknhnxnhny

)4(

)3(

)2(

)1(

)0(

10000

01000

10100

01010

00101

00010

00001

)5(

)4(

)3(

)2(

)1(

)0(

)1(

x

x

x

x

x

y

y

y

y

y

y

y

4),()(,3)( NNnhnhnnh

)3(

)2(

)1(

)0(

3012

2301

1230

0123

)3(

)2(

)1(

)0(

x

x

x

x

y

y

y

y

(ex) Linear convolution as a Toeplitz matrix operation

(ex) Circular convolution as a circulant matrix operation

11,)( nnnh

10,)()()(1

0

NnkxknhnyN

k

71351 LNM

Page 11: Mathematical Preliminaries

11

Orthogonal and unitary matrices Orthogonal : Unitary :

TAA 1 IAAAA TTorT*1 AA

Positive definiteness and quadratic forms is called positive definite, if is a Hermitian matrix and

is called positive semidefinite(nonnegative), if is a Hermitian matrix andTheorem

if is a symmetric positive definite matrix, then all its eigenvalues are positive and the determinant of satisfies

IAAAA TT **or

0xAxx ,0*TQ

A

A

N

k

N

kk kka

11

),(|| A

A A

A0xAxx ,0*TQ

A

Page 12: Mathematical Preliminaries

12

Diagonal forms For any Hermitian matrix there exists a unitary matrix

such that

Eigenvalue and eigenvector

RT*

R

: diagonal matrix containing the the eigenvalues of R

Nkkkk ,,1, R

k : eigenvalue k : eigenvector

)( Ror

]|||[ 21 Nwhere

Page 13: Mathematical Preliminaries

13

nmmm

n

n

,2,1,

,22,21,2

,12,11,1

AAA

AAA

AAA

A

20,30,)','()','(),(2

0'

1

0'

nmnnmmhnmxnmym n

(ex) 352

141

11

11

m

n

m

n

),( nmx ),( nmh

1 5 5 1

3 10 5 2

2 3 -2 -3

n

m

y(m,n)

][

13

45

12

10 xxX

1

4

1

3

5

2

x

210 yyyY

123

552

5103

132

2

1

0

y

y

y

y

Column; Stacking Operation

Block MatricesBlock Matrices

Block matrices : elements are matrices

Page 14: Mathematical Preliminaries

14

1

0n'nn'nn xHy

where )},,'({ nmmh nH ,30 m 2'0 m

,

100

110

011

001

0H

100

110

011

001

1H

1

0

1

01

0

2

1

0

x

x

H0

HH

0H

y

y

y

Hxy

block matrix

Let xn and yn be the column vector, then

Page 15: Mathematical Preliminaries

15

BB

BB

BBA

),()1,(

),1()1,1(

}),({

111

1

MMaMa

Maa

nma

(ex)

43

21,

11

11BA

4433

4433

2211

2211

,

4343

2121

4343

2121

ABBA

Definition

Properties(Table2.7)

)()())(( BDACDCBA

operationsNONO )()(:))(( 46 DCBA

operationsNO )(:)()( 4BDAC

Kronecker ProductsKronecker Products

Page 16: Mathematical Preliminaries

16

Separable transformationTransformation on an NXM image

TAUBV

U

uBAv )( row-ordered form

m

Tmmk

m

Tm

T mkathenk

uBABuv ,][])[,(

VUuv andofvectorsrowLet mk:,

uv )(][ 21 BAvvv TTM

TT

m n

m n

nlbnmumka

nmlktnmulkv

),(),(),(

),;,(),(),(

Consider the transformation

),(),(),;,( nlbmkanmlkt , if

: matrix form

: vector form

Page 17: Mathematical Preliminaries

17

Page 18: Mathematical Preliminaries

18

Definitions Random signal : a sequence of random variables Mean : Variance : Covariance :

Cross covariance :

Autocorrelation :

Cross correlation :

)]([)( nuEnu

]|)()([|)( 22 nnuEnu

)',()]'(),([ 2 nnnunuCovuu

)]}'()'()][()({[ ** nnunnuE

)',()]'(),([ 2 nnnvnuCovuv

)]}'()'()][()({[ ** nnvnnuE vu

)]'()([)',( * nunuEnnruu )'()()',( *2 nnnnuu

)'()()',()]'()([)',( *2* nnnnnunuEnnr vuuv uv

Random SignalsRandom Signals

Page 19: Mathematical Preliminaries

19

u)}({][ nE μu : Nx1 vector

)}',({])μ)(μ[(][ 2** nnECov uuT Cuuu

)}',({])μ)(μ[(],[ 2** nnECovuvuv

Tvu Cvuvu

: NxN matrix

: NxN matrix

μ : mean vector C : covariance matrix

Gaussian(or Normal) distribution

}2

||exp{

2

1)(

2

2

2

u

upu

Gaussian random processesGaussian random process if the joint probability density of any finite sub-sequence is a Gaussian distribution

)}μ()μ(2/1exp{]||)2[(),,,()( 1*12/12/21 uuuuupup TN

N CCuu

: covariance matrixC

Representation for an NX1 vector

Page 20: Mathematical Preliminaries

20

Stationary process Strict-sense stationary if the joint density of any partial sequence

is the same as that of the shifted sequence

Wide-sense stationary if

Gaussian process : wide-sense = strict sense

}),({ klnlx }),({ 0 klnnlx

constantμ)]([ nuE

)'()]'()([ * nnrnunuE uu : covariance matrix is Toeplitz

),,,,(

),,,(

000000 1)(,),1(),(

1)(,),1(),(

nknnnnnkxnnxnnx

knnkxnxnx

xxxF

xxxF

knnfor ,, 0

Page 21: Mathematical Preliminaries

21

Orthogonal : Independent : Uncorrelated :

(ex) Covariance matrix of a first-order stationary Markov sequence u(n)

nn nuu ,1||,)( ||2

1

1

1

2

12

N

N

C : Toeplitz

)()(),(, ypxpyxp yxyx

0][ * xyE

0]))([(][][][ *** yx yxEoryExExyE

Markov processesp-th order Markov

]),2(),1(|)([ nununuprob

npnununuprob )],(,),1(|)([

Page 22: Mathematical Preliminaries

22

Karhunen-Loeve(KL) transform KL transform of

Property

The elements of y(k) are orthogonal is called the KL transform matrix The rows of are the conjugate eigenvectors of

,* xy T : NxN unitary matrix

x

Rxxyy TTTT EE **** ][][

)()]()([ * lklykyE k

T*T* R

Page 23: Mathematical Preliminaries

23

Definitions Discrete random field

Each sample of a 2-D sequence is a random variable Mean : Covariance :

White noise field

Symmetry

),()],([ nmnmuE

)',';,()]','(),,([ 2 nmnmnmunmuCovuu

)]}','()','()][,(),({[ ** nmnmunmnmuE

)','(),()',';,( 22 nnmmnmnmnm xxxx

),;','()',';,(*22 nmnmnmnm uuuu

Discrete Random FieldDiscrete Random Field

Page 24: Mathematical Preliminaries

24

Separable and isotropic image covariance functions Separable

Separable stationary covariance function

Nonseparable exponential function

)',()',()',';,( 222

21nnmmnmnmxx (Nonstationary case)

(Stationary case)

1||,1||,),( 21||

2||

122 nm

xx nm

}exp{),( 22

21

22 nmnmxx 21

2222 ,,),( nmdnm dxx

(isotropic or circularly symmetric)

Estimation mean and autocorrelation

M

m

N

n

nmuMN 1 1

),(1̂

mM

m

nN

nxxxx nnmmunmu

MNnmnm

1 1

22 ]ˆ)','(][ˆ)','([1

),(ˆ),(

)()(),( 222

21nmnmxx

Page 25: Mathematical Preliminaries

25

n

uuu fnjnfSnu )2exp()()()}({SDF 2

5.0

5.0

2 )2exp()()( dffnjfSn uuu

2-D case

m n

uuu vnumjnmvuSnmu )](2exp[),(),()},({SDF 2

dudvvnumjvuSnm uuu

5.0

5.0

5.0

5.0

2 )](2exp[),(),(

Average powerdudvvuSuuu

5.0

5.0

5.0

5.0

2 ),()0,0(

SDF(spectral density function)SDF(spectral density function)

Definition Fourier transform of autocorrelation function

1-D case

Page 26: Mathematical Preliminaries

26

(ex) the SDF of stationary white noise field

),(),( 22 nmnmxx 2),( vuS

Page 27: Mathematical Preliminaries

27

Estimate the random variable x by a suitable function g(y), such that

dxdyyxfygxgE ),()]([]|)([| 22xyyx is min.

but )()|(),( yfyxfyxf yxxy

dxdyyxfygxyfgE )|()]([)(]|)([| 22xyyx

the integrand is non-negative ; it is sufficient to minimize

dxyxfygx )|()]([ 2x for every y

]|[)|()(ˆ yxyx x Edxyxxfg

Estimation TheoryEstimation Theory

Mean square estimates

Page 28: Mathematical Preliminaries

28

minimum mean square estimate (MMSE)

also ][]]|[[)]([]ˆ[ xyxyx EEEgEE

unbiased estimator

◆ Theorem

Let y △ tnyyyy 321 and x be jointly Gaussian with zero mean.

The MMSE estimation is

N

iii yaE

1

]|[ yx , where ai is chosen, such that

0])[(1

k

N

iii yyaE x ∀ all k = 1, 2, … , N

(Pf) The random variable

N

iii ya

1

)(x nyyy ,,,, 21 are jointly Gaussian.

But the first one is uncorrelated with all the rest, it is independent of them.

Thus, the error

N

iii ya

1

)(x is independent of the random vector y.

Page 29: Mathematical Preliminaries

29

0][][][]|)[(111

N

iii

N

iii

N

iii yEaEyaEyaE xxyx

N

iii

N

ii ayEaE

11

]|[]|[ yyx

N

iii yaE

1

]|[ yx

][min])ˆ[(min 2

)}({

2

)}({eEE

nn xx

where

N

n

xnyne1

)()( : estimation error

0)(

][ 2

n

eE

yields

0)]([ neyE , n = 1, 2, … , N

Page 30: Mathematical Preliminaries

30

The estimation error is minimized if

0)]([ neyE , n = 1, 2, … , N

orthogonality principle

If x and {y(n)} are independent

][]|[ˆ xyx EEx

If zero mean Gaussian random variables

N

n

nyn1

)()(ˆ x : linear combination of {y(n)}

is determined by solving linear equations)(n

Page 31: Mathematical Preliminaries

31

Orthogonality principle The minimum mean square estimation error vector is

orthogonal to every random variable functionally related to the observations, i.e., for any ))(,),2(),1(()( Nyyygg y

0)]()ˆ[( yxx gEx

x̂ )(yg

xx ˆ

)]([]|)([[)]()|([)](ˆ[ yxyyxyyxyx gEgEEgEEgE

Since is a function of x̂ y

N

n

nyn1

)()(ˆ xsubstitute

NnnxyEnykyEnN

n

,,1)],([)]()([)(1

matrix notation

0]ˆ)ˆ[( xxxE 0)]ˆ()ˆ[( xxx gE,

)]})([{)},({(,1 nyEn xyxyy xrrR

Page 32: Mathematical Preliminaries

32

Minimum MSE : If x,y(n) are nonzero mean r.v.

If x,y(n) are non-Gaussian, the results still give the best linear mean square estimate.

xyT

x rα 22

N

nyxx nnyn

1ˆ )]()()[(ˆˆ xx

Page 33: Mathematical Preliminaries

33

Information TheoryInformation Theory

Information

]bits[log2 kk pI

kk rLkp messagetindependeniesprobabilit:,,1,

Entropy]gebits/messa[log

12

L

kkk ppH

]bits[log1

log1

max 21

2 LLL

HL

kpk

p

)( pH

0 5.0 1

For a binary source, i.e., 10,1,,2 121 pppppL

)1(log)1(log 22 ppppH

Page 34: Mathematical Preliminaries

34

Let x be a discrete r.v. with Sx={1, 2, … , K}

△ {x=k}

uncertainty of Ak is low, if pk is close to one,

with pk=Pr[x=k] let event Ak

and it is high, if pk is small.

uncertainty of event :

0)(

1ln)(

kPkI

r xx if Pr(x=k) = 1

entropy :

)(

1ln)()]([

1 kPkPkIEH

r

K

krx

x

xx

unit : bit when the logarithm is base 2

Information Theory

Page 35: Mathematical Preliminaries

35

Consider the event Ak, describing the emission of symbol sk

by the source with probability pk

1) if pk=1 and pi=0 all ∀ i≠k

no surprise no information when s⇒ k is emitted by the source

2) if rk is low

more surprise information when s⇒ k is emitted by the source

kk p

sI1

log)( ; amount of information gained

after observing the event sk

)]([ kx sIEH ; average information per source symbol

Entropy as a measure of information

Page 36: Mathematical Preliminaries

36

16 balls :

2 balls “3”, 2 balls “4”

1 ball “5”, “6”, “7”, “8”

4 balls “1”, 4 balls “2”

Question : Find out the number of the ball

through a series of yes/no questions.

ballbitH x /16

44

4

1log

4

1

4

1log

4

122

x=1 ?

yes

x=2 ?

yes

x=7 ?

yes

Ex)

1)

x=8

x=1 x=2 x=7

no no no

the average number of question asked :

16

51)

16

1(7)

16

1(7)

16

1(6)

16

1(5)

8

1(4)

8

1(3)

4

1(2)

4

1(1][ LE

Page 37: Mathematical Preliminaries

37

x≤2 ?

yes

x≤4 ?

yes

x=7 ?

yes

2)x=8

x=1 x=2

x=7

no no nox≤6 ?

yes

x=1 ?

yes

no

x=3 x=4

x=3 ?

yes

no

x=5 x=6

x=5 ?

yes

no

no

16

44)

16

1(4)

16

1(4)

16

1(4)

16

1(4)

8

1(3)

8

1(3)

4

1(2)

4

1(2][ LE

⇒ The problem of designing the series of questions to identify x

is exactly the same as the problem of encoding the output

of information source.

Page 38: Mathematical Preliminaries

38

x=1 0 0 0 yes / yes 1 1 ⇒

x=2 0 0 1 yes / no 1 0 ⇒

x=3 0 1 0 no / yes / yes 0 1 1 ⇒

x=4 0 1 1 no / yes / no 0 1 0 ⇒

x=5 1 0 0 no / no / yes / yes 0 0 1 1 ⇒

x=6 1 0 1 no / no / yes / no 0 0 1 0 ⇒

x=7 1 1 0 no / no / no / yes 0 0 0 1 ⇒

x=8 1 1 1 no / no / no / no 0 0 0 0 ⇒

3 bit / symbol variable length code pk

⇒ Huffman code

⇒ short code to frequency source symbol

average number of bits required to identify the outcome of x

⇒ entropy of x represent the max.

long code to rare source symbol

41

41

81

81

161

161

161

161

Page 39: Mathematical Preliminaries

39

Noiseless Coding Theorem (1948, Shannon) min(R) = H(x) +ε bit / symbol

when R is the transmission rate and ε is a positive quantity that can be arbitrarily close to zero by sophisticated coding procedure utilizing an appropriate amount of encoding delay.

Page 40: Mathematical Preliminaries

40

Rate distortion function Distortion

])[( 2yxED 2x : Gaussian r.v of variance

y : reproduced value

Rate distortion function of x

)](log2

1,0max[

0

),(log2

1 2

22

22

2

DD

DDRD

DR

D

Rate distortion function for a Gaussian source

For a fixed average distortion D

1

0

2

2 )](log2

1,0max[

1 N

k

kD N

R

: Gaussian r.v.’s)}1(,),1(),0({ Nxxx : reproduced values)}1(,),1(),0({ Nyyy

where is determined by solving

1

0

2 ],min[1 N

kkN

D