matematica 3º bgu sp2016

55
SAN PEDRO DE RIOBAMBA COLEGIO PARTICULAR A DISTANCIA Acuerdo Ministerial Nro. 2899 10 de Noviembre de 2003 MÓDULO AUTOINSTRUCCIONAL DE MATEMÁTICA 3º DE BACHILLERATO GENERAL UNIFICADO Nombre del estudiante: ____________________________________ E-mail: _____________________________ Teléfono: ___________________________

Upload: victor-hugo-caiza

Post on 12-Jan-2017

379 views

Category:

Education


3 download

TRANSCRIPT

Page 1: Matematica 3º bgu sp2016

SAN PEDRO

DE RIOBAMBA

COLEGIO PARTICULAR

A DISTANCIA

Acuerdo Ministerial Nro. 2899 10 de Noviembre de 2003

MÓDULO

AUTOINSTRUCCIONAL

DE

MATEMÁTICA

3º DE BACHILLERATO

GENERAL UNIFICADO

Nombre del estudiante:

____________________________________

E-mail: _____________________________

Teléfono: ___________________________

Page 2: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.2

COMPILADO POR DR. VICT0R CAIZA Mgs.

El Colegio ―San Pedro de Riobamba‖, es una institución de educación a distancia cuya visión es la de

formar hombres de bien; ciudadanos comprometidos y participantes dinámicos de los cambios de la

comunidad y del país, propulsores de su cultura y su identidad, como importantes líderes con sólida

capacitación científico - tecnológica y altos valores humanos.

El presente módulo de trabajo dispone de un sustento teórico, con ejercicios y problemas propuestos en el

aula y para la casa, además las evaluaciones en cada uno de los bloques que están diseñados de acuerdo

a los planes y programas, fundamentado dialécticamente con una orientación y direccionalidad abierta hacia

la consolidación de una educación problematizadora, critica, reflexiva e innovadora, acorde a los avances

contemporáneos.

Objetivos de institución.- Formar al estudiante en todas sus manifestaciones, mediante el uso

adecuado de metodologías y valores, para convertirlo en un potencial ciudadano.

Objetivos de área.- Mantener y elevar el nivel académico en el área, mediante la actualización de conocimientos de los docentes, para participar a los estudiantes.

Objetivos de nivel.- El estudiante estará en capacidad de aprobar el primer año de bachillerato, dominando los contenidos de este período lectivo.

Objetivos de grado o de curso.- Reformular contenidos, sobre la base de un análisis pormenorizado, buscando su optimización para una promoción de estudiantes en los cuales se haya conseguido un aprendizaje significativo.

Para aprobar el módulo, tendrá que completar como mínimo 7 puntos. Si el estudiante tiene una nota entre

5 y 6,99 puntos, deberá presentarse a una evaluación recuperación sobre 10 puntos. A continuación se

describe la tabla de valores cuantificativos de evaluación:

DESCRIPCIÓN VALOR EN PUNTOS

Actividades individuales en casa (Tareas) 10

Actividades individuales en clase (Trabajo de módulo) 10

Desarrollo del Proyecto de Aula (proceso investigativo y expositivo) 10

Evaluación final escrita del modulo 10

Total (Promedio) 10

Adicionalmente, el módulo presenta secciones de autoevaluación para que el estudiante pueda desarrollar su

nivel de autoaprendizaje y autocrítica. Actividades extractase y cuestionario base para la evaluación final.

Lee y asimila los contenidos teóricos.

Contesta las secciones de autoevaluación y actividades extraclase.

Procura construir tu propio conocimiento (auto educación).

Entiende los contenidos y fortalécelos con investigación para relacionarlos con tu vida diaria. Pide asesoramiento al tutor.

UTILIZACIÓN DEL MODULO

EVALUACIÓN

CRITERIOS DE EVALUACIÓN

OBJETIVOS

PRESENTACIÓN

Recuerda que nunca es tarde para superarte y que tienes toda la capacidad para triunfar en

la vida, está en tus manos no desaproveches esta oportunidad.

Page 3: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.3

COMPILADO POR DR. VICT0R CAIZA Mgs.

CONTENIDO

Pág PRESENTACIÓN ......................................................................................................................................... 2

OBJETIVOS .................................................................................................................................................. 2

CRITERIOS DE EVALUACIÓN ................................................................................................................. 2

UTILIZACIÓN DEL MODULO EVALUACIÓN ......................................................................................... 2

BLOQUE 1 NÚMEROS Y FUNCIONES 4

TEMA 1: FUNCIONES ................................................................................................................................. 5

TEMA 2: FUNCIÓN EXPONENCIAL ........................................................................................................ 6

TEMA 3: FUNCION LOGARÍTMICA ......................................................................................................... 8

EVALUACIÓN EN CLASE Nº 1 ............................................................................................................... 10

TEMA 4: SUCESIONES ............................................................................................................................ 15

EVALUACIÓN EN CLASE Nº 2 ............................................................................................................... 18

EVALUACIÓN EN CASA Nº 1 ................................................................................................................. 21

BLOQUE 2 ALGEBRA Y GEOMETRÍA 23

TEMA 1: DEFINICIÓN DE UNA CÓNICA .............................................................................................. 24

TEMA 2: ECUACIÓN DE LA RECTA ..................................................................................................... 26

EVALUACIÓN EN CLASE Nº 3 ............................................................................................................... 28

TEMA 3: ECUACIÓN DE LA CIRCUNFERENCIA ............................................................................... 30

TEMA 4: ECUACIÓN DE LA PARÁBOLA ............................................................................................ 31

TEMA 5: ECUACIÓN DE LA ELIPSE .................................................................................................... 33

TEMA 2: ECUACIÓN DE LA HIPERBOLA ........................................................................................... 37

EVALUACIÓN EN CLASE Nº 4 ............................................................................................................... 40

EVALUACIÓN EN CASA Nº 2 ................................................................................................................. 44

BLOQUE 3 ESTADÍSTICA Y PROBABILIDAD 45

TEMA 1: DISTRIBUCIONES .................................................................................................................... 46

TEMA 2: REGRESIÓN LINEAL ............................................................................................................... 48

EVALUACIÓN EN CLASE Nº 5 ............................................................................................................... 50

EVALUACIÓN EN CASA Nº 5 ................................................................................................................. 52

EJEMPLO DEL INSTRUMENTO DE EVALUACIÓN 53

MI DIARIO ESTUDIANTIL 54

BIBLIOGRAFÍA 55

Page 4: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.4

COMPILADO POR DR. VICT0R CAIZA Mgs.

BLOQUE 1 NÚMEROS Y FUNCIONES

CONTENIDO OBJETIVOS

Funciones

Función exponencial

Función logarítmica.

Sucesiones

Actividades en

clase y

extraclase

Definir y diferenciar una relación de una función para

determinar el dominio y la imagen de una función.

Representar la función exponencial y diferenciar sus

leyes para resolver problemas.

Definir la función logarítmica y reconocer sus

propiedades.

Reconocer el tipo de sucesión para aplicar en

problemas de la vida real.

Identificar y Resolver los ejercicios propuestos

Page 5: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.5

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICIÓN DE FUNCIÓN

Se denomina función a la relación entre dos conjuntos de números reales, de forma que a cada elemento del conjunto inicial A, le corresponde un único elemento del conjunto final B.

Una función se denota con una letra como: f, g ó h y se usa la notación:

).(.:,: xfyYXfBAf

Se lee ―y es igual a f de x‖

La letra x se denomina variable independiente y se le puede asignar cualquier valor. La letra y se llama variable dependiente, porque depende de los valores que se le asigne a x.

Cuando el valor de una cantidad determina unívocamente el valor de una segunda cantidad, decimos que la segunda cantidad está en función de la primera.

Evaluación de funciones.- consiste en la sustitución del argumento de la función por un valor numérico o una expresión algebraica y la simplificación de los términos resultantes para hallar una expresión final reducida.

Definición de Dominio.- es el conjunto de todos los valores que puede tomar la variable independiente.

Definición de Rango.- es el conjunto de todos los valores que toma la variable dependiente.

Definición de función par.- una función f se denomina par si para todo ―x‖ y ―-x‖ en su

dominio se cumple: )()( xfxf .

Definición de función impar.- una función f se denomina impar si para todo ―x‖ y ―-x‖ en su

dominio se cumple: )()( xfxf .

Definición de función decreciente.- una función f es decreciente en un intervalo I de su

dominio si para cada par de elementos 1x , 2x de I con 21 xx se tiene )()( 21 xfxf .

Definición de función creciente.- una función f es creciente en un intervalo I de su dominio

si para cada par de elementos 1x , 2x de I con 21 xx se tiene )()( 21 xfxf .

Definición de función monótona.- una función f es monótona si es creciente o decreciente en todo su dominio.

Definición de función lineal.- una función que puede ser escrita en la forma bmxxf )( ,

donde m y b son números reales, se llama función lineal y su gráfico es una línea recta.

Definición de función cuadrática.- Toda función cuya expresión es la forma

cbxaxxf 2)( , donde a, b y c son números reales, se llama función cuadrática y su

gráfico es una parábola.

TEMA 1: FUNCIONES

Page 6: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.6

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICIÓN DE FUNCIÓN EXPONENCIAL

Si tenemos y=bx en donde la base a es positiva, a cada valor de x (racional o irracional) corresponde un valor bien determinado de y. Si b>0 y b 0, entonces la función exponencial de base b es la función f definida por:

f(x) = y = bx

Con objeto de presentar geométricamente las propiedades de la función exponencial vamos a construir los gráficos de las funciones:

Primer caso: Si b>1 entonces b =2 la función toma la forma: y = 2x

Ejemplo: Grafica de la función y= 2x

x y=2x (x.y)

3 y=23 = 8 (3,8)

2 y=22 = 4 (2,4)

1 y=21 = 2 (1,2)

0 y=20 = 1 (0,1)

-1 y=2-1 = 0.5 (-1,0.5)

-2 y=2-2 = 0.25 (-2,0.25)

-3 y=2-3 = 0.125 (-3,0.125)

Segundo caso: Si 0<b<1 entonces b =1/2 la función toma la forma: y = (1/2)x

Ejemplo: Grafica de la función y= (1/2)x

x y=(1/2)x (x.y)

3 y=(1/2)3 = 0.125 (3, 0.125)

2 y=(1/2)2 = 0.25 (2, 0.25)

1 y=(1/2)1 = 0.5 (1, 0.5)

0 y=(1/2)0 = 1 (0,1)

-1 y=(1/2)-1 = 2 (-1, 2)

-2 y=(1/2)-2 = 4 (-2, 4)

-3 y=(1/2)-3 = 8 (-3, 8)

TEMA 2: FUNCIÓN EXPONENCIAL

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x

y 8

7

6

5

4

3

2

1

0

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x

y 8

7

6

5

4

3

2

1

0

Page 7: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.7

COMPILADO POR DR. VICT0R CAIZA Mgs.

De los gráficos anteriores podemos manifestar las propiedades de los exponentes

1. La función exponencial es siempre positiva para todos los valores de ―x‖ 2. A cada valor de x le corresponde un valor de ―y‖. 3. Cualquiera que sea la base b≠0, la función toma el valor 1 para x=0 4. Si b>1 la función exponencial es creciente. 5. Si 0<b<1 la función exponencial es decreciente.

6. ,)( fDom ,0)( fRan

LEYES DE LOS EXPONENTES

LEYES EJEMPLOS

1. an = a.a.a.a………….a (n veces) 34 =3x3x3x3=81

2. a1= a 51 =5

3. a0 = 1 a 0 120 =1

4. a-n = na

1

3-2 = 9

1

3

12

5. an . am = an+m 94 x 910 = 914

6. an : am = an-m 47 : 45 = 47-5 = 42 =16

7. (an)m = an.m (23)4 = 23x4 = 212

8. (a.b)n = an . bn (5x3)2 = 52 x 32

9. (a : b)n = an : bn (7 : 4)3 = 73 : 43

10. m nm

n

aa 86444 2 32

3

Page 8: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.8

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICIÓN DE LOGARITMOS

Dado como base un número positivo y diferente de 1, se llama logaritmo de un número real y positivo N, con respecto a dicha base, al exponente x al cual se debe elevar la base a para obtener el número N.

Esto es si: ax = N Se escribe: loga N = x

Ejemplo: Log2 16 = x

Solución: 2x = 16 Se transforma a notación exponencial

2x = 24 Se simplifica las bases

x = 4

FUNCIÓN LOGARÍTMICA

La grafica de y = log x

De la observación del grafico anterior podemos indicar:

1. La función es positiva para todos los valores de ―x‖ mayores que 1 y negativa para los valores entre 0 y 1.

2. La función es creciente. 3. A cada número le corresponde un solo logaritmo. 4. No hay logaritmo de números negativos.

5. ,0)( fDom ,)( fRan

x y = Log x

0.5

1

10

20

30

40

50

100

10 20 30 40 50 60 70 80 90 100

2

1

0

-1

-2

-0.301

0

1

1,30

1,477

1,602

1,69

2

TEMA 3: FUNCION LOGARÍTMICA

Page 9: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.9

COMPILADO POR DR. VICT0R CAIZA Mgs.

PROPIEDADES DE LOS LOGARITMOS

PROPIEDADES EJEMPLOS

1. Loga a = 1 Log2 8 = 3

2. Loga 1 = 0 Log3 9 = 2

3. Loga A.B = Loga A + Loga B Log2 (8x4) = Log2 8 + Log2 4

4. Loga B

A = Loga A - Loga B Log5

25

125 = Log5 125 - Log5 25

5. Loga An = n. Loga A Log3 9

2 = 2. Log3 9

6. Loga n A =

n

1Loga A Log2

3 8 = 3

1Log2 8

ECUACIONES EXPONENCIALES Y LOGARÍTMICAS

Antes de resolver ecuaciones exponenciales y logarítmicas, ya que, en general, usaremos la base 10 y e, podemos omitir la escritura de dichas bases adoptando una convención sencilla. Así:

log10 N por log N

Ejemplo 1: 2x = 32 Aplicamos logaritmo a cada lado de la igualdad Solución: Log 2x = log 32 Aplicamos las propiedades de los logaritmos x log 2 = log 32 Despejamos x

x =2log

32log Utilizamos la calculadora

x = 5

Ejemplo 2: 3x+1 + 9x = 108 Aplicamos las propiedades de los exponentes Solución: 3x. 3 + 32x = 108 Reemplazamos 3x = m (cualquier letra) m . 3 + m2 = 108 Ordenamos una ecuación de segundo grado m2 + 3m – 108 = 0 Resolvemos una ecuación de segundo grado ( m + 12 )( m - 9 ) = 0 m + 12 = 0 m – 9 = 0 3x =m → 3x + 12 = 0 3x – 9 = 0 3x = -12 3x = 9 x = Sin solución x = 2

Ejemplo 3: log (x+1) – log x = log 3 Aplicamos las propiedades de los logaritmos

Solución: log

x

1x = log 3 Simplificamos log

x

1x = 3 Multiplicamos en cruz

x + 1 = 3x Resolvemos la ecuación de 1er grado x = ½

Page 10: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.10

COMPILADO POR DR. VICT0R CAIZA Mgs.

Gráfica las siguientes funciones exponenciales:

1) y = 3x Gráfico en el plano cartesiano

x y= (x,y)

3

2

1

0

-1

-2

-3

2) y = 4x Grafico en el plano cartesiano

x y= (x,y)

3

2

1

0

-1

-2

-3

EVALUACIÓN EN CLASE Nº 1 ________________________________________________________________________

Page 11: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.11

COMPILADO POR DR. VICT0R CAIZA Mgs.

3) y = 0.1x Grafico en el plano cartesiano

x y =0.1x (x,y)

3

2

1

0

-1

-2

-3

Aplicar las leyes de los exponentes

4)

2

3

2

1

.

)(

5

23

xx

xx

5)

11

1)(

yx

xy

6)

1

11

11

ba

ba

7)

2nn

1n

3

243

27

9

8)

32

2121

)2(4

842n

nnn

Page 12: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.12

COMPILADO POR DR. VICT0R CAIZA Mgs.

Hallar el logaritmo correspondiente

9) Log3 9= x

10) Log10 1000= x

11) Log5 125= x

12) Log6 6 = x

13) Log3 81= n

14) log3 1= x

15) log 0.001= x (Se sobreentiende la base 10)

16) log2 0.125= t

17) Log3 3 = y

18) Log8 2= x

Respuestas: 9)2 10)3 11)3 12)1 13)4 14)0 15)-3 16)-3 17)½ 18)1/3

Page 13: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.13

COMPILADO POR DR. VICT0R CAIZA Mgs.

Aplicar las propiedades de los logaritmos

19) log (4x5) =

20) log (3x4x5) =

21) log 4

5 =

22) log 94

252

=

23) log 125 =

24) log 78

532

32

=

25) log 5B

BAA =

26) log DC

AB2

3

=

27) log A 3

D

C=

28) log

5

3

ba

baA

=

Page 14: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.14

COMPILADO POR DR. VICT0R CAIZA Mgs.

Expresar mediante un solo logaritmo:

29) log A + log B – log C – log D =

30) 2 log B + 3 log F – 4 Log G =

31) 5 log A – ½ Log B –log C=

32) log + G log-L log2

1 =

33) b-abalog Alog 2 log35

1 =

34) log a2 + log a

1+ log a =

35) log28

27 + log 98 + log

9

8=

36) 2x

1xlog

4

12 x 3xlog

4

1 2

=

Respuestas:

29)Log AB/CD 30)Log B2 F3/G4 31)log A5 / B C 32)log L/G

33) log A2

5

3b-a

ba 34)

2

3log a 35)log 3 36)log 1x

Page 15: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.15

COMPILADO POR DR. VICT0R CAIZA Mgs.

Una sucesión de números es un conjunto ordenado de números formados de acuerdo con una ley, así por ejemplo:

3, 5, 7, 9, 11, 13, …...., 2n +1

Un requisito esencial para que exista una sucesión es que exista una ley o fórmula con la cual sea posible obtener cualquier elemento de la sucesión. Por ejemplo, si un representa el enésimo término de una sucesión, entonces debe existir una expresión para un en términos de n, es decir, dicho término enésimo debe ser una función de n. Así en el ejemplo dado anteriormente, un=2n+1, la cual es una fórmula que nos permite obtener cualquier término de la sucesión.

Si una sucesión tiene un último término se le llama sucesión finita; en caso contrario, es decir, si el número de términos es ilimitado, se lo llama sucesión infinita.

PROGRESIÓN ARITMÉTICA

Una progresión aritmética es una sucesión de números tal que cada uno de los términos posteriores al primero se obtiene añadiendo al término anterior un número fijo llamado la diferencia de la progresión.

Ejemplo: 2, 4, 6,.........., 2n

FORMULAS DE LA PROGRESIÓN ARITMÉTICA

an = a+(n-1)d

a = primer termino d = diferencia aritmética n = número de términos que compone la progresión an = enésimo o último término de la progresión Sn = suma de todos los términos de la progresión

2

na a

nSn

Ejemplo 1 : Dada la progresión aritmética 1, 3, 5, 7, ……… Hallar el 19º término y la suma de los términos.

Datos: a = 1; d= 2; n = 19; an = ? ; Sn = ?

Solución:

an = a+ (n-1)d = 1 + (19 – 1 )2 = 1 + (18)2 = 1 + 36 = 37

Sn =

2

a a nn =

2

37 119 =

2

3819= 361

TEMA 4: SUCESIONES

Page 16: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.16

COMPILADO POR DR. VICT0R CAIZA Mgs.

Ejemplo 2: La suma de los n primeros términos de una progresión aritmética vale 168. El primer término es 30 y la diferencia es -2 ¿De cuántos términos se compone la progresión?

Datos: a = 30; d = -2; Sn = 168; n = ?

Solución:

an = a+ (n-1)d = 30 +(n – 1 ) (-2) = 30 -2n + 2 = 32 – 2n Substituímos en:

Sn =

2

a a nn

168 =

2

2n-32 30 n

336 = n (62 – 2n)

336 = 62n – 2n2 Igualamos a cero y dividimos para 2

n2 – 31n + 168 = 0 Resolvemos la ecuación de 2º grado por la fórmula:

n =

24

7

2

1731

2

67296131

El problema admite dos soluciones y Las progresiones correspondientes son:

30, 28, 26, 24, 22, 20, 18. (n=7)

30, 28, 26,…….……….-12, -14, -16. (n=24)

PROGRESIÓN GEOMÉTRICA

Una progresión geométrica es una sucesión cuyos términos son tales que uno cualquiera de ellos, después del primero, es igual al término anterior multiplicado por un número fijo. Este número fijo, que se puede hallar dividiendo un término por el que le precede, se llama razón de la progresión y se representa por la letra r.

Ejemplos:

2, 4, 8, 16,……………… 1, 1/2, 1/4, 1/8,………….

Page 17: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.17

COMPILADO POR DR. VICT0R CAIZA Mgs.

FORMULAS DE LA PROGRESIÓN GEOMÉTRICA

an = a rn-1

a = primer término r = razón geométrica n = número de términos que compone la progresión an = enésimo o último término de la progresión Sn = suma de todos los términos de la progresión

1 -r

a -r annS

Ejemplo 1: Hallar el 6º término y la suma de los primeros 6 términos de la progresión geométrica: 3, 6, 12, 24,…….

Datos: a = 3; r = 2, n = 6; an = ? ; Sn = ?

Solución:

an = a rn-1 = 3 (2)6-1 = 3 (2)5 = 96

Sn = 1 -r

a -r a n=

1 - 2

3-(2) 96=

1

3-192=189

Ejemplo 2: En una progresión geométrica de 4 términos la razón vale 5 y la suma de los términos es 312. Hallar el primero y el último término.

Datos: a = ?; r = 5, n = 4; an = ? ; Sn = 312

Solución:

an = a rn-1 = a 53 = 125 a

Sn = 1 -r

a -r a n

312= 1-5

a - a(5)125

1248 = 625 a – a 1248 = 624 a

Page 18: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.18

COMPILADO POR DR. VICT0R CAIZA Mgs.

Resolver las Progresiones aritméticas:

1) Dada la progresión aritmética 2, 4, 6, ……. Hallar el noveno término y la suma de ellos.

2) Una progresión aritmética se compone de 50 términos. Si el primero es 91 y la diferencia es -3 ¿Cuánto vale el último?.

3) En la progresión aritmética 9, 7, 5,... calcular el término del lugar 14 y la suma de los primeros 14 términos.

4) Hallar el primer término de una progresión aritmética de 7 términos cuya diferencia es 4, sabiendo que el ultimo vale 39.

5) En una progresión aritmética el primer término es 8 y el último es 62. Si la diferencia es 6, ¿De cuántos términos se compone la progresión?

EVALUACIÓN EN CLASE Nº 2 ________________________________________________________________________

Page 19: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.19

COMPILADO POR DR. VICT0R CAIZA Mgs.

6) Una progresión aritmética se compone de 8 términos, el primero es 10 y el último es -4. Hallar la diferencia de la progresión.

7) En el siguiente ejercicio se dan tres de los cinco elementos de una progresión aritmética, calcular los otros dos elementos Sn= - 28, a=11 y d= - 2. Hallar n y an.

8) Un niño ahorra 50 centavos la primera semana, 1$ la segunda, 1,50$ la tercera, etc. Hasta que llega a ahorrar 4$ la semana. De aquí en adelante sigue ahorrando 4$ semanales. ¿Cuánto ahorrara en un año? (52 semanas).

Respuestas: 1) 18; 90. 2) -56 3) -17; -56 4) 15 5) 10 6)-2 7) 14; -15 8) 194$

Page 20: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.20

COMPILADO POR DR. VICT0R CAIZA Mgs.

Resolver las Progresiones aritméticas

9) Hallar el 5º termino y la suma de los 5 primeros términos de la progresión: 2, 6, 18………

10) Una progresión geométrica se compone de 5 términos. El primero es 512 y la razón es 1/4. ¿Cuánto vale el último?

11) En una progresión geométrica el primer término es 20 y el último es 640. Si la razón es 2, ¿De cuántos términos se compone la progresión?

12) En una progresión geométrica de 4 términos la razón vale 5 y la suma de los términos 312. Hallar el primero y el último término.

13) El primer término de una progresión geométrica es 8 y el último es 40,5. Si la razón de la progresión es 3/2, ¿De cuántos términos se compone esta?

14) Un padre proyecta depositar 1$ cuando su hijo cumpla un año y duplicar la cantidad en cada uno de sus cumpleaños. ¿Cuánto tendría depositado en la cuenta al cumplir 10 años su hijo?

Respuestas: 9) 162; 242 10) 2 11) 6 12) 2; 250 13) 5 14) $1023

Page 21: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.21

COMPILADO POR DR. VICT0R CAIZA Mgs.

Aplicar las leyes de los exponentes

1. (a4 b3 c-2 ) (a2 b-2 c4) =

2.

21123

532-3

)(

)(

baca

cbaab

3.

1

1

)( yx

x

4.

11

1

ba

a

5.

32

21

4281

36

16

9

83

42 nn

n

n

n

nn

Hallar el logaritmo:

6. log3 81

7. log5 125

8. log2 512

9. log2 0,125

10. log o,0001

11. log5 0,2

12. log16 8

13. log3 3

Aplicar las reglas de los logaritmos:

14. log (A2 B3 C)

15. logDC

BA4

32

16. logyx

yxA

17. log 52

3

PN

M

Expresar mediante un solo logaritmo

18. log 2 + log 6

19. log 5 + log A - log B

20. 3 log a + 5 log B - nlog C

21. 2

1(log2 + log M - log N)

22. log P - 4

1log Q + 2log S

23. log (a-b) - 2 log (a+b)

24. 2log E - 5log F + log (K-1)

25. log A + 3

1(log B - 2 log C)

Resolver las ecuaciones exponenciales

26. 2x =64

27. 7x = 100

28. 3x+1 = 45

29. 2x+1 = 52x-1

30. 25x = 518

31. 2x + 4x = 72

32. 3x+1 + 9x = 108

Resolver las ecuaciones Logarítmicas

33. log 5x = 4

34. log 5 = 2x

35. log (x-2) + log x = log 8

36. log (x2 -15x ) = 3

37. log x + log (x-1) = log 6

38. log (x+2) + log (x-1) = 1

EVALUACIÓN EN CASA Nº 1 _________________________________________________________________

Page 22: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.22

COMPILADO POR DR. VICT0R CAIZA Mgs.

* PROGRESIONES ARITMÉTICAS

39. La suma de los 8 primeros términos de una progresión es 96. La progresión comienza por -2;

¿Cuánto vale el último termino?

40. La suma de los n primero términos de una progresión vale 168. El primer término es 30 y la

diferencia es -2. ¿De cuántos términos se compone la progresión?

41. En una progresión aritmética cuya diferencia es 3, el primer término es 7 y el último es 49.

Hallar la suma de sus términos.

42. El quinto término de una progresión aritmética es 2 y el noveno término es -10. Obtener el

séptimo termino y la suma de los primeros 12 términos.

43. En una progresión aritmética el primer término es 5 y el último es 55. Si el número de

términos es 11, ¿Cuánto vale la diferencia?

44. Un joven ahorra cada mes 50 centavos más que en el mes anterior. En 10 años sus ahorros

suman 3690$. Determínese lo que ahorro el primer y el último mes?

* PROGRESIONES GEOMÉTRICAS

45. Hallar la suma de los 10 primeros términos de la progresión geométrica: 3, 6, 12, 24,…….

46. El primer término de una progresión geométrica es 3 y el último es -96. Si la progresión se

compone de 6 términos, ¿Cuánto vale la suma de de los términos?

47. Hallar el primer término de una progresión geométrica de 6 términos cuya razón es 2/3,

sabiendo que el ultimo término vale 320.

48. En una progresión de 3 términos el primer término es 250 y el último 10. ¿Cuánto vale la

razón?

49. En una progresión geométrica de 6 términos el primero es 5120. Determinar la razón y

construir la progresión.

50. Una ciudad tiene 800 000 habitantes. La tasa del crecimiento de esa población es de 6%

anual. ¿Cuántos habitantes tendrá dentro de 3 años?

Respuestas:

39)26 40)7 o 24 41)420 42) -4; -30 43)5 44)1$; 60,50$

45)3069 46)-63 47)2430 48) 51 49) 4 50)952813

Page 23: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.23

COMPILADO POR DR. VICT0R CAIZA Mgs.

BLOQUE 2 ALGEBRA Y GEOMETRÍA

CONTENIDO OBJETIVOS

Definición de una cónica

como lugar geométrico

Ecuación de la recta.

Ecuación de la

Circunferencia

Ecuación de la Elipse

Ecuación de la Parabola

Ecuación de la Hiperbola

Actividades en clase y

extraclase.

Reconocer una cónica a través de la ecuación

que la representa.

Determinar la ecuación de la recta.

Determinar la ecuación de la circunferencia y

relacionar con las demás cónicas.

Determinar la ecuación de la elipse y

relacionar con las demás cónicas.

Determinar la ecuación de la parábola y

relacionar con las demás cónicas.

Determinar la ecuación de la hipérbola y

relacionar con las demás cónicas.

Identificar y Resolver los ejercicios propuestos

Page 24: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.24

COMPILADO POR DR. VICT0R CAIZA Mgs.

GRÁFICA DE UNA ECUACIÓN Y LUGARES GEOMÉTRICOS

El conjunto de los puntos y solamente de aquellos puntos cuyas coordenadas satisfagan una ecuación se llama grafica de la ecuación o bien su lugar geométrico.

DISCUSIÓN DE UNA ECUACIÓN

Para trazar la gráfica de una ecuación evitando el mínimo de errores se sigue los siguientes pasos:

1. Determinación de las intercepciones con los ejes coordenados 2. Determinación de la Simetría de la curva con respecto a los ejes coordenados y al origen. 3. Determinación de la extensión de la curva 4. Determinación de las ecuaciones de las asíntotas verticales y horizontales 5. Calculo de las coordenadas de un número suficiente de puntos

Ejemplo: Graficar x2 y – x2 – y = 0

1. Determinación de las intercepciones con los ejes coordenados

Reemplazamos:

x=0, para la intercepción con el eje ―y‖ (0)2 y – (0)2 – y = 0 Entonces y=0

y=0, para la intercepción con el eje ―x‖ x2 (0) – x2 – (0) = 0 Entonces x=0

2. Determinación de la Simetría de la curva con respecto a los ejes coordenados y al origen.

Remplazamos:

x= - x

(-x)2 y – (-x)2 – y = 0

x2 y – x2 – y = 0 Es simétrica al eje ―y‖

y= - y

x2 (-y) – x2 – (-y) = 0

-x2 y – x2 + y = 0 No es simétrica al eje ―x‖

TEMA 1: DEFINICIÓN DE UNA CÓNICA

Page 25: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.25

COMPILADO POR DR. VICT0R CAIZA Mgs.

3. Determinación de la extensión de la curva. Despejamos la variable ―x‖ y ―y‖

1x

xy

2

2

No está definido para x 1

1y

yx

No está definido para y=1

4. Determinación de las ecuaciones de las asíntotas verticales y horizontales

De las ecuaciones despejadas igualamos a cero el denominador.

X2 - 1 = 0; x=1 y x=-1 hay dos asíntotas verticales en tales puntos

y-1=0; y=1 Hay una asíntota horizontal en dicho punto

5. Calculo de las coordenadas de un número suficiente de puntos para obtener una grafica adecuada y Trazado de la curva.

x y

0

1/4

1/2

3/4

2

3

0

-1/15

-1/3

-9/7

4/3

9/8

-3 -2 -1 0 1 2 3

3

2

1

-1

-2

x

y

Page 26: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.26

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICIÓN DE LA RECTA

Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera P1(x1 ,y1) y P2 (x2, y2) del lugar, el valor de la pendiente m es:

21

21

21 ; xxxx

yym

ECUACIÓN DE LA RECTA QUE PASA POR UN PUNTO Y TIENE PENDIENTE

La ecuación de la recta que pasa por el punto dado P1(x1 ,y1) y tiene pendiente ―m‖ es:

11 xxmyy

Ejemplo: Hallar la ecuación de la recta que pasa por el punto A(2, 3) y B(1, -4).

Solución: 712

)4(3

21

21

xx

yym

11 xxmyy

273 xy

7x - y - 11 = 0

FORMA GENERAL DE LA ECUACIÓN DE LA RECTA

La forma general de la ecuación de la recta es: Ax + By + C = 0

Despejando y tenemos: B

Cx

B

Ay

Donde la pendiente es: B

Am ; y la ordenada en el origen es:

B

C

Ejemplo: Hallar la pendiente y la ordenada de la recta cuya ecuación es 2x–3y + 7 =0.

Solución: 2x – 3y + 7 =0 Los coeficientes son: A=2; B=-3; C=7

3

2

3

2

B

Am ; y la ordenada en el origen es:

3

7

3

7

TEMA 2: ECUACIÓN DE LA RECTA

Page 27: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.27

COMPILADO POR DR. VICT0R CAIZA Mgs.

Ejemplo. Una recta pasa por el punto (-2,2) y se sabe que tiene la misma pendiente que la recta 2y – 4x – 10 = 0 Encontremos la ecuación, los intersectos, la gráfica y 5 puntos más de la recta

Solución: Nos dan la ecuación general de una recta paralela a la que buscamos. Son paralelas porque tienen la misma pendiente.

De la ecuación general sacamos la pendiente. ¿Cómo? Despejando y.

2y – 4x – 10 = 0 2y = 4x + 10 y = 2x + 5

La pendiente de la recta que buscamos es 2.

Con el punto que se tiene y la pendiente, encontramos la ecuación: y– y

1 = m (x- x1)

y–2 = 2 (x – (-2)) y– 2 = 2 (x + 2) y– 2 = 2x + 4 y = 2x + 6 Esta es la ecuación pendiente intersecto. El intersecto en y es: (0,6)

Para encontrar donde la recta corta al eje X, hacemos y igual a CERO. y = 2x + 6 0 = 2x + 6 2x = -6 x = -6/2 x = -3

El intersecto en X es: (-3,0)

El gráfico es el siguiente:

Para encontrar 5 puntos de la recta, le damos a “x” 5 valores.

Llenaremos una tabla de valores.

Los 5 puntos son: (1,8), (2,10), (3,12), (4,14) y (5,16)

6

-3

x y

1 8

2 10

3 12

4 14

5 16

Page 28: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.28

COMPILADO POR DR. VICT0R CAIZA Mgs.

En cada uno de los siguientes ejercicios, construir la curva correspondiente a la ecuación dada. 1. x y - 2 y - 3 = 0

2. x3 + x - y = 0

EVALUACIÓN EN CLASE Nº 3 ________________________________________________________________________

Page 29: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.29

COMPILADO POR DR. VICT0R CAIZA Mgs.

3. Hallar la ecuación en la forma general de la recta que pasa por el punto A(2,4) y tiene por

pendiente -2. Sol 2x+y-8=0

4. Hallar la ecuación de la forma ordinaria de la recta que pasa por el punto A(3, -4) y B(-2, 5).

Sol. y=-9/5x+7/5

5. Hallar la ecuación de la recta en la forma general que pasa por el punto E(-3, 1) y es paralela

a la recta 3x-4y+1=0. Sol: 3x-4y+13

Page 30: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.30

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICIÓN DE LA CIRCUNFERENCIA

La circunferencia es el lugar geométrico de un punto que se mueve en un plano de tal manera que se conserva siempre a una distancia constante de un punto fijo de ese plano. El punto fijo se llama centro de la circunferencia, y la distancia constante se llama radio.

ECUACIÓN DE LA CIRCUNFERENCIA

La circunferencia cuyo centro es el punto (h , k ) y cuyo radio es la constante r , tiene por ecuación:

222rkyhx ;

La circunferencia de centro en el origen y radio r tiene por

ecuación: 222 ryx

Ejemplo: Escribir la ecuación de la circunferencia de centro C ( - 3. - 7) y radio 4.

Solución: 167322 yx ;

FORMA GENERAL DE LA ECUACIÓN DE LA CIRCUNFERENCIA

Si desarrollamos la ecuación ordinaria: 222rkyhx ;

Tenemos: 022 22222 rkhkyhxyx ;

Lo cual puede escribirse en la forma: 022 FEyDxyx ;

Ejemplo. Reducir la ecuación 01561022 22 yxyx ; a la forma ordinaria de la ecuación de

la circunferencia. Si la ecuación representa una circunferencia, hállese su centro y su radio.

Solución: Primero dividimos la ecuación por 2 y completamos los cuadrados

→ 2

15)3()5( 22 yyxx ;

162

3

2

5

4

9

4

25

2

15

4

93

4

255

2

22

yx

yyxx

;

La ecuación dada representa una circunferencia cuyo centro es

2

3,

2

5; y cuyo radio es 4.

TEMA 3: ECUACIÓN DE LA CIRCUNFERENCIA

Page 31: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.31

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICIÓN DE LA PARARÁBOLA

Una parábola es el lugar geométrico de un punto que se mueve en un plano de tal manera que su distancia de una recta fija, situada en el plano , es siempre igual a su distancia de un punto fijo del plano y que no pertenece a la recta. El punto fijo se llama foco y la recta fija directriz de la parábola. La definición excluye el caso en que el foco esta sobre la directriz.

pxy

pxypx

PAFP

42

22

ECUACION ORDINARIA DE LA PARABOLA

pxy 42 pxy 42 pyx 42 pyx 42

)(42

hxpky )(42

hxpky )(42

kyphx )(42

kyphx

ECUACION GENERAL DE LA PARABOLA

Si desarrollamos la una ecuación ordinaria: )(42

hxpky ;

Tenemos: 0442 22 kphpxkyy ;

Lo cual puede escribirse en la forma: 02 FEyDxy ;

x

y

x

y

x

y

x

y

TEMA 4: ECUACIÓN DE LA PARÁBOLA

x=-p

x

A

y

P(x,y)

F(p,0) 0

l

Page 32: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.32

COMPILADO POR DR. VICT0R CAIZA Mgs.

Ejemplo 1: Una parábola cuyo vértice está en el origen y cuyo eje coincide con el eje Y pasa por el punto (4, - 2). Hallar la ecuación de la parábola, las coordenadas de su foco, la ecuación de su directriz y la longitud de su lado recto. Trazar la gráfica correspondiente.

Solución. La ecuación de la parábola es de la forma: pyx 42

Como la parábola pasa por el punto (4, - 2 ) , las coordenadas de este punto deben satisfacer la ecuación:

16 = 4p (- 2)

de donde, p = - 2, y la ecuación buscada es: x2 = - 8y.

el foco es el punto (0, p). o sea. (0, -2).

la ecuación de la directriz es y = - p; o sea, y = 2,

y la longitud del lado recto es: 84 p . En la figura se ha

trazado el lugar geométrico: foco, directriz y lado recto.

Ejemplo 2: redúzcase la ecuación 4y2- 48x - 20y =71, a la segunda forma ordinaria de la ecuación de la parábola, y hallar las coordenadas del vértice, del foco, las ecuaciones de la directriz y eje. y la longitud del lado recto.

Solución: Dividiendo para 4 y Completando el trinomio cuadrado perfecto tenemos

4

715122 yxy .

)2(122

5

24122

5

4

25

4

7112

4

255

2

2

2

xy

xy

xyy

.

Entonces h=-2, k=5/2, p=3

Las coordenadas de V(h,k) V(-2, 5/2), F(p+h,k) F(1, 5/2)

Ecuación de la directriz x=h-p; x=-5 y LR=I4pI=12

x

y

Page 33: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.33

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICIÓN DE LA ELIPSE

Una elipse es el lugar geométrico de un punto que se mueve en un plano de tal manera que la suma de sus distancias a dos puntos fijos de ese plano es siempre igual a una constante, mayor que la distancia entre los dos puntos. Los dos puntos fijos se llaman focos de la elipse. La definición de una elipse excluye el caso en que el punto móvil está sobre el segmento que une los focos .

ECUACIÓN ORDINARIA DE LA ELIPSE

Consideremos la elipse de centro en el origen y cuyo eje focal coincide con A' el eje X (fig.). Los focos F y F´ están sobre el eje X. Como el centro 0 es el punto medio del segmento FFt, las coordenadas de F y F´ serán, por ejemplo, (c , 0) y (-c , 0) , respectivamente, siendo c una constante positiva. Sea P (x, y) un punto cualquiera de la elipse. Por la definición de la curva, el punto P debe satisfacer la condición geométrica:

aPFFP 2´

aycxycx 22222

Para simplificar la ecuación, pasamos el segundo radical al segundo miembro, elevamos al cuadrado, simplificamos y agrupamos los términos semejantes. Esto nos da:

222 ycxacx Elevando al cuadrado ambos miembros nuevamente:

TEMA 5: ECUACIÓN DE LA ELIPSE

Page 34: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.34

COMPILADO POR DR. VICT0R CAIZA Mgs.

es: 22222222 caayaxca . En donde: 222 cab . Tenemos:

Dividiendo para: 22ba Finalmente la ecuación de la Elipse: 1

2

2

2

2

b

y

a

x.

12

2

2

2

b

y

a

x 1

2

2

2

2

a

y

b

x

1)()(

2

2

2

2

b

ky

a

hx 1

)()(2

2

2

2

a

ky

b

hx

También, para cada elipse, la longitud de cada lado recto es: a

b22

y la excentricidad está dada por la fórmula : a

ce

ECUACIÓN DE LA FORMA GENERAL DE LA ELIPSE

Si desarrollamos la ecuación ordinaria: 1)()(

2

2

2

2

b

ky

a

hx;

Tenemos: 022 222222222222 bakahbkyahxbyaxb ;

Lo cual puede escribirse en la forma: 022 FEyDxCyAx ;

x

y

F(0,c)

F´(0,-c)

A(b,0) A´(-b,0)

C(0,0)

V(0,a)

V´(0,-a)

x

y

F(c,0) F´(-c,0)

V(a,0) V´(-a,0)

C(0,0)

A(0,b)

A´(0,-b)

Page 35: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.35

COMPILADO POR DR. VICT0R CAIZA Mgs.

Ejemplo 1: Una elipse tiene su centro en el origen, y su eje mayor coincide con el eje Y. Si uno de los focos es el punto (0, 3) y la excentricidad es igual a x. hallar las coordenadas de otro foco, las longitudes de los ejes mayor y menor, la ecuación de la elipse y la longitud de cada uno de sus lados rectos.

Solución. Como uno de los focos es el punto (0, 3). tenemos c = 3, y las coordenadas del otro foco son (0, - 3). Como la excentricidad es ½ , tenemos

fórmula : 2

1

a

ce en donde, a = 6. Tenemos, también,

fórmula : 3336 2222 cab

Por tanto, las longitudes de los ejes mayor y menor son 2a = 12 y 362 b , respectivamente.

La ecuación de la elipse es: 13627

22

yx

La longitud de cada lado recto es: 96

2722 2

a

b

Page 36: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.36

COMPILADO POR DR. VICT0R CAIZA Mgs.

Ejemplo 2: Muestre a través de un gráfico que la ecuación 6y2x 22 representa una elipse.

Indique, su centro, longitud de los semi-ejes mayor y menor, longitud de los lados rectos, coordenadas de los focos y vértices, excentricidad y ecuación de las directrices.

Solución:

136

62

22

22

yx

yx

Donde se obtienen los datos:

6a ; 3b y 33622 bac

C(0,0)

V( 6 ,0) V´(- 6 ,0)

F( 3 ,0) F´(- 3 ,0)

A(0, 3 ) A´(0, - 3 )

La exentricidad: 2

2

2

1

6

3

a

ce

La longitud de cada lado recto es: 22

2

6

322 2

a

b

V( 6 ,0) V´(- 6 ,0) F( 3 ,0) F´(- 3 ,0)

A(0, 3 )

A(0, 3 )

Page 37: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.37

COMPILADO POR DR. VICT0R CAIZA Mgs.

DEFINICION DE HIPÉRBOLA

Una hipérbola es el lugar geométrico de un punto que se mueve en un plano de tal manera que el valor absoluto de la diferencia de sus distancias a dos puntos fijos del plano , llamados focos, es siempre igual a una cantidad constante, positiva y menor que la distancia entre los focos.

ECUACIÓN ORDINARIA DE LA HIPÉRBOLA.

Consideremos la hipérbola de centro en el origen y Y cuyo eje focal coincide con el eje x(fig.). Los focos F y F' están entonces sobre el eje x. Como el centro 0 es el punto medio del segmento FF ', las coordenadas de F Y F' serán (c , 0) y (- c, 0), respectivamente , siendo c una constante positiva. Sea P (x, y) un punto cualquiera de la hipérbola. Entonces, por la definici6n de la hipérbola, el punto P debe satisfacer la condici6n geométrica siguiente, que expresa que el valor absoluto de la diferencia de las distancias del punto a los focos es una cantidad constante:

aPFFP 2´

Por el mismo procedimiento usado al transformar y simplificar la ecuación para la elipse, podemos demostrar que las ecuaciones se reducen cada una a

es: 22222222 acayaxac . En donde: 222 acb . Tenemos:

Dividiendo para: 22ba Finalmente la ecuación de la Elipse: 1

2

2

2

2

b

y

a

x.

TEMA 2: ECUACIÓN DE LA HIPERBOLA

Page 38: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.38

COMPILADO POR DR. VICT0R CAIZA Mgs.

12

2

2

2

b

y

a

x 1

2

2

2

2

b

x

a

y

1)()(

2

2

2

2

b

ky

a

hx 1

)()(2

2

2

2

b

hx

a

ky

También, para cada elipse, la longitud de cada lado recto es: a

b22

y la excentricidad está dada por la fórmula : a

ce

ECUACIÓN DE LA FORMA GENERAL DE LA HIPÉRBOLA

Si desarrollamos la ecuación ordinaria: 1)()(

2

2

2

2

b

ky

a

hx;

Tenemos: 022 222222222222 bakahbkyahxbyaxb ;

Lo cual puede escribirse en la forma: 022 FEyDxCyAx ;

x

y F(0,c)

F´(0,-c)

A(b,0) A´(-b,0)

C(0,0)

V(0,a)

V´(0,-a)

x

y

F(c,0) F´(-c,0)

V(a,0) V´(-a,0)

C(0,0)

A(0,b)

A´(0,-b)

Page 39: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.39

COMPILADO POR DR. VICT0R CAIZA Mgs.

Ejemplo. Los vértices de una hipérbola son los puntos V(0, 3) y V1(0, -3). y sus focos los puntos F(0, 5) y F1(0, - 5). Hallar la ecuación de la hipérbola, las longitudes de sus ejes transverso y conjugado, su excentricidad y la longitud de cada lado recto.

Solución. Como los vértices y los focos están sobre el eje Y, el eje focal coincide con el eje Y. Además, el punto medio del eje transverso está, evidentemente, en el origen. Por tanto, la

ecuación de la hipérbola es de la forma: 12

2

2

2

b

x

a

y

La distancia entre los vértices es 2a= 6, longitud del eje transverso. La distancia entre los focos es 2c = 10. Por tanto, a = 3 y c = 5. de donde b2 = c2- a2 = 25 - 9 = 16, Por lo tanto. b = 4. y la longitud del eje conjugado es 2b = 8. La ecuación de la hipérbola es entonces

1169

22

xy

La exentricidad: 3

5

a

ce

La longitud de cada lado recto es: 3

32

3

422 22

a

b

Page 40: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.40

COMPILADO POR DR. VICT0R CAIZA Mgs.

1. Hallar la ecuación en la forma general de la circunferencia cuyo centro es el punto C (7, - 6) y que pasa por el punto A (2, 2). Sol: x2+y2-14x+12y-4=0

2. Hallar la ecuación de la circunferencia que pasa por el punto A (7, - 5) y cuyo centro es el

punto de intersección de las rectas 7x - 9 y - 10 =0 y 2x - 5y + 2 = 0.

3. Reducir la ecuación 2x2 + 2y2 - 6x + 10y + 7 = 0 a la forma ordinaria, determinar si representa

o no una circunferencia. Si la, respuesta es afirmativa, hallar su centro y su radio. 4. Hallar el área del circulo cuya ecuación es 9x2 + 9y2 + 72x - 12y + 103 = 0.

EVALUACIÓN EN CLASE Nº 4 ________________________________________________________________________

Page 41: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.41

COMPILADO POR DR. VICT0R CAIZA Mgs.

5. Hallar la ecuación de la parábola de vértice en el origen y foco el punto (3, 0). 6. Hallar la ecuación de la parábola cuyo vértice es el punto (3, 4) y cuyo foco es el punto (3, 2).

Hallar también la ecuación de su directriz y la longitud de su lado recto. 7. Demostrar que la ecuación 4x2 - 20x - 24y + 97 = 0 representa una parábola, y hallar las

coordenadas del vértice y del foco, la ecuación de su directriz y la longitud de su lado recto. 8. Determine la ecuación de la siguiente elipse, de forma que satisfagan las condiciones que se

indican: Focos (3, 0) y (3, 0), vértices (4, 0) y (4, 0).

Page 42: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.42

COMPILADO POR DR. VICT0R CAIZA Mgs.

9. Determine la ecuación de la elipse de centro (4. 1), uno de los focos en (1, 1) y que pasa por el punto (8, 0).

10. Muestre a través de un gráfico que las ecuaciones dadas representan elipses. Indique, para

cada una de ellas, su centro, longitud de los semi-ejes mayor y menor, longitud de los lados rectos, coordenadas de los focos y vértices, excentricidad y ecuación de las directrices.

a) 6y2x 22 .

b) 07y4x8yx4 22 .

Page 43: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.43

COMPILADO POR DR. VICT0R CAIZA Mgs.

11. Determine las ecuación de las hipérbola que satisfaga las siguientes condiciones:

Centro (0, 0), foco (8, 0), un vértice en (6, 0).

12. Represente gráficamente las hipérbolas cuyas ecuaciones se muestran a continuación

determinando, en cada caso, i) los vértices, ii) los focos, iii) la excentricidad, iv) la longitud del lado recto v) las ecuaciones de las asíntotas y vi) las ecuaciones de las directrices.

a) 180y45x4 22 . b) 25yx 22 .

Page 44: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.44

COMPILADO POR DR. VICT0R CAIZA Mgs.

1. Discútase la ecuación y trácese la gráfica de: xy – y – 1 = 0 2. Discútase la ecuación y trácese la gráfica de: 5x - 4y + 20 = 0 3. Hallar la ecuación de la recta que pasa por el punto E(-3, 1) y es perpendicular a la recta

4x+y-5=0.

4. Hallar la pendiente y la ordenada de la recta cuya ecuación es 4x – 2y - 9 =0.

5. Hallar la ecuación de los lados del triángulo que pasa por los puntos A(4,3); B(-3,2) y C(-3,-

2)

6. Hallar los valores de los coeficientes de la ecuación en la forma general de una recta que

pasa por los puntos. P(-1, 4) y Q(3, -2 ). Resp 3, 2 y -5

7. Los extremos de un diámetro de una circunferencia son los puntos A (2, 3) y B (- 4, 5 ) . Hallar la ecuación de la curva.

8. Una cuerda de la circunferencia x2 + y2 = 25 está sobre la recta cuya ecuación es x - 7y +25=0. Hállese la longitud de la cuerda.

9. Reducir la ecuación 16x2 + 16y2 - 64x + 8y + 177 = 0. a la forma ordinaria, determinar si representa o no una circunferencia. Si la, respuesta es afirmativa, hallar su centro y su radio.

10. Hallar la longitud de la circunferencia cuya ecuación es 25x2 +25x2 +30x -20y -62 = 0 11. Determine las coordenadas del foco, longitud del lado recto y la ecuación de la directriz de

las siguientes parábolas :

a) y8x2 . b) x4y3 2 . c) y2x2 .

12. Grafique las siguientes parábolas e indique las coordenadas del vértice. Las coordenadas del foco. La longitud del lado recto. La ecuación de la directriz.

a) 08y6x4x2 . b) 02y5x9x3 2 .

13. Muestre a través de un gráfico que las ecuaciones dadas representan elipses. Indique, para cada una de ellas, su centro, longitud de los semi-ejes mayor y menor, longitud de los lados rectos, coordenadas de los focos y vértices, excentricidad y ecuación de las directrices.

a) 123 22 yx . b) 036y24x36y4x9 22 .

14. Determine las ecuación de las hipérbola que satisfaga las siguientes condiciones: Vértice

los puntos (2, 0) y (2, 0), focos (3, 0) y (3, 0). 15. Represente gráficamente las hipérbolas cuyas ecuaciones se muestran a continuación

determinando, en cada caso, i) los vértices, ii) los focos, iii) la excentricidad, iv) la longitud del lado recto v) las ecuaciones de las asíntotas y vi) las ecuaciones de las directrices.

a) 36y9x4 22 b) 144y16x9 22

EVALUACIÓN EN CASA Nº 2 _________________________________________________________________

Page 45: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.45

COMPILADO POR DR. VICT0R CAIZA Mgs.

BLOQUE 3 ESTADÍSTICA Y PROBABILIDAD

CONTENIDO OBJETIVOS

Distribuciones Variables aleatorias: esperanza y desviación estándar.

Regresión lineal.

Resolución de problemas para estimar resultados futuros en experimentos mediante la regresión lineal.

Actividades en clase

Definir las variables aleatorias.

Calcular la regresión lineal para aplicar en

situaciones de la vida real.

Resolver problemas para aplicar en

situaciones de la vida real.

Identificar y Resolver los ejercicios

propuestos.

Page 46: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.46

COMPILADO POR DR. VICT0R CAIZA Mgs.

VARIABLES ALEATORIAS

Una variable aleatoria es una variable que toma valores numéricos determinados por el resultado de un experimento aleatorio. No hay que confundir la variable aleatoria con sus posibles valores. Ejemplos:

nº de caras al lanzar 6 veces una moneda (valores: 0, 1, 2…)

nº de llamadas que recibe un teléfono en una hora

tiempo que esperan los clientes para pagar en un supermercado…

Las variables aleatorias pueden ser discretas o continuas:

Discretas: el conjunto de posibles valores es numerable. Suelen estar asociadas a experimentos en que se mide el número de veces que sucede algo.

Continuas: el conjunto de posibles valores es no numerable. Puede tomar todos los valores de un intervalo. Son el resultado de medir.

Ejemplo: Clasificar como discretas o continuas las siguientes variables aleatorias:

a) nº de páginas de un libro → discreta b) tiempo que tarda en fundirse una bombilla → continua c) nº de preguntas en una clase de una hora → discreta d) cantidad de agua consumida en un mes → continua

En la práctica se consideran discretas aquellas variables para las que merece la pena asignar probabilidades a todos los posibles sucesos elementales.

DISTRIBUCIÓN DE UNA VARIABLE ALEATORIA

● Sea x una variable aleatoria discreta. Su distribución viene dada por los valores que puede tomar, x1, x2, x3, …, xk, y las probabilidades de que aparezcan p1, p2, p3, …, pk. Estas

cantidades p P x xi i { } reciben el nombre de función de probabilidad o función de masa.

Ejemplo: Variable aleatoria x=nº de caras al lanzar tres veces una moneda

Posibles valores de x: 0, 1, 2 y 3. Lanzar 3 veces moneda:

E={CCC,CCX,CXC,XCC,XXC,XCX,CXX,XXX}

La variable aleatoria x:

- Toma valor 0 cuando ocurre el suceso {XXX} - Toma valor 1 cuando ocurre el suceso {XXC,XCX,CXX} - Toma valor 2 cuando {CCX,CXC,XCC} - Toma valor 3 cuando {CCC}

TEMA 1: DISTRIBUCIONES

Page 47: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.47

COMPILADO POR DR. VICT0R CAIZA Mgs.

La función de probabilidad es:

p P x0 0 1 8 0125 { } / ,

p P x1 1 3 8 0 375 { } / ,

p P x2 2 3 8 0 375 { } / ,

p P x3 3 1 8 0125 { } / ,

Función de probabilidad de x:

¿Cuál será la probabilidad de que salgan al menos dos caras?

P x P x P x P x{ } { } { } { } , , ,

,

2 0 1 2 0 125 0 375 0 375

0 875

¿y la probabilidad de que el número de caras esté entre 1 y 2?

P x P x P x{ } { } { } , , ,1 2 1 2 0 375 0 375 0 75

● La probabilidad de que una variable aleatoria x tome un valor entre dos cantidades a y b será:

P a x b P x a P x a P x b P x b

P x xi

x a

b

i

{ } { } { } ... { } { }

{ }

1 1

● La función de probabilidad verifica que: p P x xi i { } 0

- p P x xi

i

k

i

i

k

1 1

1{ }

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3

Page 48: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.48

COMPILADO POR DR. VICT0R CAIZA Mgs.

INTRODUCCIÓN

El objeto de un análisis de regresión es investigar la relación estadística que existe entre una

variable dependiente (Y) y una o más variables independientes ( X X X1 2 3, , , ... ). Para poder

realizar esta investigación, se debe postular una relación funcional entre las variables. Debido a su simplicidad analítica, la forma funcional que más se utiliza en la práctica es la relación lineal. Cuando solo existe una variable independiente, esto se reduce a una línea recta:

bXaY ˆ

donde los coeficientes b0 y b1 son parámetros que definen la posición e inclinación de la recta.

(Nótese que hemos usado el símbolo especial Y para representar el valor de Y calculado por la recta. Como veremos, el valor real de Y rara vez coincide exactamente con el valor calculado, por lo que es importante hacer esta distinción.)

El parámetro b0, conocido como la ―ordenada en el origen,‖ nos indica cuánto es Y cuando X = 0.

El parámetro b1, conocido como la ―pendiente,‖ nos indica cuánto aumenta Y por cada aumento

de una unidad en X. Nuestro problema consiste en obtener estimaciones de estos coeficientes a partir de una muestra de observaciones sobre las variables Y y X. En el análisis de regresión, estas estimaciones se obtienen por medio del método de mínimos cuadrados.

Como ejemplo, consideremos las cifras del Cuadro 1, que muestra datos mensuales de producción y costos de operación para una empresa británica de transporte de pasajeros por carretera durante los años 1949-52 (la producción se mide en términos de miles de millas-vehículo recorridas por mes, y los costos se miden en términos de miles de libras por mes). Para poder visualizar el grado de relación que existe entre las variables, como primer paso en el análisis es conveniente elaborar un diagrama de dispersión, que es una representación en un sistema de coordenadas cartesianas de los datos numéricos observados.

En el diagrama resultante, en el eje X se miden las millas-vehículo recorridas, y en el eje Y se mide el costo de operación mensual. Cada punto en el diagrama muestra la pareja de datos (millas-vehículo y costos de operación) que corresponde a un mes determinado. Como era de esperarse, existe una relación positiva entre estas variables: una mayor cantidad de millas-vehículo recorridas corresponde un mayor nivel de costos de operación.

TEMA 2: REGRESIÓN LINEAL

180

200

220

240

260

280

2500 3000 3500 4000 4500

MILLAS

CO

ST

OS

Page 49: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.49

COMPILADO POR DR. VICT0R CAIZA Mgs.

Cuadro 1. Operaciones Mensuales en una Empresa de Transporte de Pasajeros. ———————————————————————————————————— Costos Millas- Costos Millas- Totales Vehículo Totales Vehículo (miles) (miles) (miles) (miles) Mes Nº Y X Mes Nº Y X ———————————————————————————————————— 1 213.9 3147 18 213.2 3338 2 212.6 3160 19 219.5 3492 3 215.3 3197 20 243.7 4019 4 215.3 3173 21 262.3 4394 5 215.4 3292 22 252.3 4251 6 228.2 3561 23 224.4 3844 7 245.6 4013 24 215.3 3276 8 259.9 4244 25 202.5 3184 9 250.9 4159 26 200.7 3037 10 234.5 3776 27 201.8 3142 11 205.9 3232 28 202.1 3159 12 202.7 3141 29 200.4 3139 13 198.5 2928 30 209.3 3203 14 195.6 3063 31 213.9 3307 15 200.4 3096 32 227.0 3585 16 200.1 3096 33 246.4 4073 17 201.5 3158 ———————————————————————————————————— Fuente: J. Johnston, Análisis Estadístico de los Costes (Barcelona: Sagitario, S. A., 1966), p. 118.

————————————————————————————————————

ESTIMACIÓN DE LA RECTA DE REGRESIÓN.

Para estimar los coeficientes por medio de mínimos cuadrados, se utilizan las siguientes fórmulas:

XxX

XyXYb

2 xbya

En nuestro ejemplo, aplicando estas fórmulas tenemos:

044674,0)113879(87,3450398855769

)113879(12,2193,25216020

b

a = 219.1242 – 0.044674(3,450.879) = 64.96

Expresando los resultados en términos de la recta de regresión, tenemos:

Y = 64.96 + 0.044674 X

Podemos concluir que por cada milla adicional recorrida, los costos de operación aumentan en aproximadamente 4.5 centavos, esto podría interpretarse como el ―costo marginal‖ para la empresa de recorrer una milla adicional, mientras que el coeficiente b

0 nos estaría indicando la

parte del costo mensual que no varía directamente con la cantidad de millas recorridas (aproximadamente 64,960 libras mensuales).

Page 50: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.50

COMPILADO POR DR. VICT0R CAIZA Mgs.

El gerente general de una planta de producción de materiales de construcción considera que la demanda de embarques de aglomerado puede estar relacionada con el número de permisos de construcción emitidos en el municipio durante el trimestre anterior.

El gerente ha recolectado los datos que se muestran en la tabla.

Si se pide determinar una estimación de los embarques cuando el número de permisos de construcción es 30.

En el siguiente diagrama de dispersión se puede ver que los datos no son perfectamente lineales; sin embargo, se puede hacer un enfoque lineal sobre este período corto.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45

Em

ba

rqu

es Y

Permisos X

Embarques de conglomerado

Embarques de conglomerado (Y)

Permisos de Embarques de

construcción (X) conglomerado (Y)

15 6

9 4

40 16

20 6

25 13

25 9

15 10

35 16

EVALUACIÓN EN CLASE Nº 5 ________________________________________________________________________

Page 51: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.51

COMPILADO POR DR. VICT0R CAIZA Mgs.

Realizar los cálculos en la siguiente tabla

n X Y XY X2 Y2

1 15 6

2 9 4

3 40 16

4 20 6

5 25 13

6 25 9

7 15 10

8 35 16

Totales 184 80

Se calcula las medias aritméticas de X y Y

X

Y

Se calculan los valores de la pendiente b y la intersección a:

22 Xnx

XYnxyb =

XbYa

Se plantea la ecuación de la regresión

Y = a + bX

Y =

Recordemos que X = permisos; Y = embarques.

Entonces, el número de embarques cuando el número de permisos de construcción es 30 se puede encontrar sustituyendo el valor en la ecuación.

X = 30

Y = 0.915 + 0.395(…….)

Y =

RESPUESTA: 13 embarques

Page 52: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.52

COMPILADO POR DR. VICT0R CAIZA Mgs.

1. La energía consumida en un proceso depende del ajuste de máquinas que se realice, realizar una regresión lineal con los datos siguientes y responder las preguntas.

Consumo energía Ajuste Máquina.

Y X

21.6 11.15

4 15.7

1.8 18.9

1 19.4

1 21.4

0.8 21.7

3.8 25.3

7.4 26.4

4.3 26.7

36.2 29.1

a) Trazar un diagrama de dispersión

b) Obtener la ecuación de regresión lineal

c) Estimar el consumo de energía para un ajuste de máquina de 20

EVALUACIÓN EN CASA Nº 5 _________________________________________________________________

Page 53: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.53

COMPILADO POR DR. VICT0R CAIZA Mgs.

INSTRUCCIONES: Lea detenidamente cada pregunta antes de contestar. Responder los ítems escribiendo al lado izquierdo de cada pregunta su respuesta. En los ejercicios de resolución debe constar el proceso. 1. Indique la veracidad (V) o falsedad (F) de las proposiciones siguientes:

Log(A+B) = Log A + Log B

Log (A/B) = Log A – Log B

Log A2 = 2Log A

Log ( A . B ) = Log A . Log B a) VVFF b) VVFV c) FVVF d) FFVV

2. Relacione los elementos de la primera columna con los de la segunda A) Preguntas de un examen

1) VARIABLE ALEATORIAS CONTINUAS B) Tiempo que dura un examen

2)VARIABLE ALEATORIAS DISCRETAS C) Agua consumida en un mes D) Estudiantes que asisten al examen

a) 1A, 1D, 2C, 2B b) 1B, 1C, 2A, 2D c) 1A, 1C, 2B, 2D d) 1D, 1C, 2B, 2A

3. Si b>1 la función exponencial es ……………………… y si 0<b<1 la función exponencial

es……………………………. a) Creciente; Decreciente b) Decreciente; Creciente c) Máxima; Mínima d) Constante; Nula

4. La ecuación general de la elipse es:

a) x2+y2+Dx+Ey+F=0 b)Ax2+By2+Dx+Ey+F=0 c) Ax2-By2+Dx+Ey+F=0 d) Ninguna 5. ¿Cuál es la ecuación ordinaria del siguiente Gráfico?

a) y2=4px b) y2=-4px c) x2=4py d) x2=-4py

EJEMPLO DEL INSTRUMENTO DE EVALUACIÓN

Page 54: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.54

COMPILADO POR DR. VICT0R CAIZA Mgs.

PRIMERA SEMANA FECHA:______________________________

Nº TEMA ACTIVIDAD OBSERVACIONES

1

2

3

REFUERZO

Nº TEMA ACTIVIDAD OBSERVACIONES

1

SEGUNDA SEMANA FECHA:_____________________________

Nº TEMA ACTIVIDAD OBSERVACIONES

1

2

3

REFUERZO

Nº TEMA ACTIVIDAD OBSERVACIONES

1

TERCERA SEMANA FECHA:_____________________________

Nº TEMA ACTIVIDAD OBSERVACIONES

1

2

3

REFUERZO

Nº TEMA ACTIVIDAD OBSERVACIONES

1

CUARTA SEMANA FECHA:______________________________

Nº TEMA ACTIVIDAD OBSERVACIONES

1

2

3

REFUERZO

Nº TEMA ACTIVIDAD OBSERVACIONES

1

QUINTA SEMANA FECHA:______________________________

Nº TEMA ACTIVIDAD OBSERVACIONES

1

2

3

REFUERZO

Nº TEMA ACTIVIDAD OBSERVACIONES

1

MI DIARIO ESTUDIANTIL

Page 55: Matematica 3º bgu sp2016

EDUCACION A DISTANCIA Y

Dirección: Espejo 17-19 y Colombia Teléfono: 2947-328

www.stanford.edu.ec

[email protected] Pág.55

COMPILADO POR DR. VICT0R CAIZA Mgs.

Matemática de 3° de Bachillerato General Unificado del Ministerio de Educación.

Aritmética de Reppeto II y III

Matemática Básica del 3° Año de Bachillerato de la ESPOL

BIBLIOGRAFÍA