manual indoor

218
Calculux Indoor Calculux I n d o o r Version 5.0

Upload: vmartinezk

Post on 18-Apr-2015

61 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Manual Indoor

Calculux Indoor

Calculux

Indoor

Version 5.0

Page 2: Manual Indoor

Calculux Indoor

Page 3: Manual Indoor

Calculux Indoor

Contents

Page 4: Manual Indoor

Calculux Indoor

Page 5: Manual Indoor

Contents

Calculux Indoor

1 Introduction 1.1 1.1 Philips - your partner in lighting 1.1 1.2 What Calculux does 1.1 1.3 What you can do with Calculux Indoor 1.2 1.4 Tailor make your indoor design 1.2 1.5 Choose from a wide range of luminaires 1.2 1.6 Easy luminaire positioning individually or as a group 1.3 1.7 Symmetry lighting installation 1.3 1.8 Graphical manipulation of generated luminaires and/or aiming positions 1.3 1.9 Calculation Grids 1.3 1.10 Switching Modes 1.4 1.11 Light Regulation Factor (LRF) 1.4 1.12 Save money by optimising cost-effectiveness 1.4 1.13 See your lighting design develop on screen 1.4 1.14 Impress your customers with attractive reports 1.4 1.15 Installation and operating platform 1.5

2 Getting Started 2.1 2.1 Installing the program 2.1 2.2 Installing the database 2.1 2.3 What is new in Calculux Indoor 5.0 2.2 2.4 Installing other report languages 2.2 2.5 File structure 2.3 2.6 Environment settings and preferences 2.3

3 Background Information 3.1 3.1 Project Info and Vignette file 3.1

3.1.1 Project Info.....................................................................................................................................................3.1 3.1.2 Vignette file ....................................................................................................................................................3.1

3.2 Room Characteristics 3.2 3.2.1 Surfaces: dimensions and reflectance...............................................................................................3.2 3.2.2 Interreflection accuracy ...........................................................................................................................3.2 3.2.3 Quick Estimate.............................................................................................................................................3.3 3.2.4 UF Method.....................................................................................................................................................3.3 3.2.5 Zones................................................................................................................................................................3.4 3.2.6 Room Grids ...................................................................................................................................................3.5

3.3 Application Fields 3.6 3.3.1 General ............................................................................................................................................................3.6 3.3.2 Connections with calculation Grids..................................................................................................3.7

3.4 Luminaire Photometric Data 3.8 3.4.1 Luminaire Database...................................................................................................................................3.8 3.4.2 ASCII data file ...............................................................................................................................................3.8

Page 6: Manual Indoor

Contents

Calculux Indoor

3.5 Luminaire Positioning and Orientation 3.9 3.5.1 Luminaire Positioning ...............................................................................................................................3.9

XYZ-coordinates ........................................................................................................................................3.9 C-γ coordinate system.............................................................................................................................3.9

3.5.2 Luminaire Orientation........................................................................................................................... 3.10 Aiming types............................................................................................................................................... 3.10 Luminaire orientation order .............................................................................................................. 3.12 Conversion of Aiming types .............................................................................................................. 3.13 Selecting Aiming Presentation types ............................................................................................. 3.14 Aiming offset (Floodlights).................................................................................................................. 3.15

3.5.3 Number of luminaires per position (Luminaire Quantity) ................................................ 3.16 3.6 Individual Luminaires 3.17

3.6.1 General ......................................................................................................................................................... 3.17 3.6.2 Luminaire Definition............................................................................................................................... 3.17

Luminaire List............................................................................................................................................. 3.17 3.6.3 View................................................................................................................................................................ 3.18

3.7 Luminaire Arrangements 3.19 3.7.1 General ......................................................................................................................................................... 3.19

Arrangement Definition....................................................................................................................... 3.19 Luminaire Definition............................................................................................................................... 3.20 Luminaire List............................................................................................................................................. 3.20 View................................................................................................................................................................ 3.20

3.7.2 Room Block Arrangement.................................................................................................................. 3.20 Arrangement Definition....................................................................................................................... 3.20 Luminaire Definition............................................................................................................................... 3.22

3.7.3 Block Arrangement................................................................................................................................. 3.23 Arrangement Definition....................................................................................................................... 3.23 Luminaire Definition............................................................................................................................... 3.25

3.7.4 Polar Arrangement ................................................................................................................................. 3.26 Arrangement Definition....................................................................................................................... 3.26 Luminaire Definition............................................................................................................................... 3.28

3.7.5 Line Arrangement ................................................................................................................................... 3.30 Arrangement Definition....................................................................................................................... 3.30 Luminaire Definition............................................................................................................................... 3.33

3.7.6 Free Arrangement................................................................................................................................... 3.34 Arrangement Definition....................................................................................................................... 3.34 Luminaire Definition............................................................................................................................... 3.34

3.7.7 Ungrouping a luminaire arrangement........................................................................................... 3.35 3.7.8 Convert into a Free Arrangement ................................................................................................. 3.35

3.8 Symmetry 3.36 3.8.1 General ......................................................................................................................................................... 3.36 3.8.2 X-Symmetry ............................................................................................................................................... 3.38 3.8.3 Y-Symmetry................................................................................................................................................ 3.38 3.8.4 XY-Symmetry ............................................................................................................................................ 3.39

3.9 Grids 3.40 3.9.1 General ......................................................................................................................................................... 3.40 3.9.2 Generated grids........................................................................................................................................ 3.40

Calculux standard grids ........................................................................................................................ 3.40 Room Surfaces .......................................................................................................................................... 3.41 NEN standard grids................................................................................................................................ 3.41 DIN standard grids ................................................................................................................................. 3.42 CIBSE standard grids.............................................................................................................................. 3.42

Page 7: Manual Indoor

Contents

Calculux Indoor

3.9.3 User defined (Free added) grids ..................................................................................................... 3.43 Size and position of a grid: points A, B and C ......................................................................... 3.43 Calculation points in a grid ................................................................................................................. 3.45 Default side................................................................................................................................................. 3.46 Grid coupling ............................................................................................................................................. 3.46 Normal vector of a grid ....................................................................................................................... 3.50 Presentation of results .......................................................................................................................... 3.50

3.10 Shapes 3.52 3.10.1 Pre-defined shapes.................................................................................................................................. 3.52 3.10.2 User-defined shapes............................................................................................................................... 3.52

Set of points ............................................................................................................................................... 3.53 Rectangle...................................................................................................................................................... 3.53 Polygon ......................................................................................................................................................... 3.54 Arc................................................................................................................................................................... 3.55

3.10.3 Symmetry..................................................................................................................................................... 3.56 3.11 Lighting control (Switching Modes / Light Regulation Factor) 3.57

3.11.1 Switching Modes ...................................................................................................................................... 3.57 3.11.2 Light Regulation Factor (LRF) ........................................................................................................... 3.57

3.12 Drawings 3.58 3.13 Light-technical Calculations 3.59

3.13.1 Plane Illuminance...................................................................................................................................... 3.59 3.13.2 Glare............................................................................................................................................................... 3.62

UGR................................................................................................................................................................ 3.63 3.13.3 Indirect contribution .............................................................................................................................. 3.65 3.13.4 Calculating the numbers of luminaires needed ....................................................................... 3.65

Quick Estimation...................................................................................................................................... 3.65 Utilisation Factor (UF)........................................................................................................................... 3.66 Uniformity Check .................................................................................................................................... 3.67

3.13.5 Quality Figures .......................................................................................................................................... 3.67 Minimum ...................................................................................................................................................... 3.67 Maximum..................................................................................................................................................... 3.67 Minimum/maximum............................................................................................................................... 3.67 Minimum/average .................................................................................................................................... 3.67

3.14 Report Setup 3.68 3.15 Cost Calculations 3.69

3.15.1 Total Investment ...................................................................................................................................... 3.69 3.15.2 Annual costs ............................................................................................................................................... 3.70

3.16 Maintenance Factor/New Value Factor 3.72 3.16.1 General Project Maintenance Factor ............................................................................................ 3.72 3.16.2 Luminaire Type Maintenance Factor............................................................................................. 3.72 3.16.3 Lamp Maintenance Factor .................................................................................................................. 3.72

Page 8: Manual Indoor

Contents

Calculux Indoor

Appendix

A1 My First Project Contains a step-by-step tutorial that takes you through the process of creating an Indoor field lighting project.

A2 My Second Project Contains a step-by-step tutorial that takes you through the process of adding furniture and additional lighting to the indoor lighting installation.

A3 My Third Project Contains a step-by-step tutorial that takes you through the process of creating a director room, with furniture and additional lighting.

A4 My First Project printed report Contains a printed report of your first project. When you complete and print out My First Project this is what you should get.

A5 My Second Project printed report Contains a printed report of your second project. When you complete and print out My Second Project this is what you should get.

A6 My Third Project printed report Contains a printed report of your third project. When you com-plete and print out My Third Project this is what you should get.

A7 Index

Page 9: Manual Indoor

Calculux Indoor

Chapter 1

Introduction

Page 10: Manual Indoor

Calculux Indoor

Page 11: Manual Indoor

Chapter 1 Introduction

Calculux Indoor

- 1.1 -

1 Introduction

This chapter describes the main features of Calculux Indoor and explains what you can expect from the package. Calculux Indoor is a software tool which can help lighting designers select and evaluate lighting systems for office and industrial applications. Speed, ease of use and versatility are features of the package from Philips Lighting, the world's leading supplier of lighting systems. Running under the Microsoft Windows operating system, Calculux Indoor includes even more options than its popular predecessor, Calculux for DOS. Calculux Indoor is part of the Philips Calculux line, covering indoor, area and road applications.

1.1 Philips - your partner in lighting

Philips Lighting, established over a century ago, has vast experience in helping customers to select the optimum solutions for their lighting applications, in terms of quality, performance and economy. Our customer partnership philosophy means that we can support you from the planning, design and commissioning of projects, right through to realisation and aftersales support. This philosophy maximises cost-efficiency by ensuring the ability to choose the most suitable equipment for your application. Philips Lighting Design and Application Centres situated throughout the world offer extensive consultancy, training and demonstration services. Our lighting specialists can recommend existing solutions or develop new tailor made solutions for your application. Because Philips Lighting is the leading supplier, you're assured of getting the best support available. Calculux is part of that support. For consultants, wholesalers and installers wishing to develop lighting designs, it's the ideal tool; saving time and effort, providing the most advanced lighting solutions available and guaranteeing satisfied customers.

1.2 What Calculux does

Calculux is a very flexible system which offers lighting designers a wide range of options: • You can use the package to simulate real lighting situations and analyse different lighting

installations until you find the solutions which suits your technical as well as your financial and aesthetic requirements best.

• Calculux uses luminaires from an extensive Philips database and photometric data which is stored in the Philips Phillum external formats. Additionally other luminaire data formats can be imported (CIBSE/TM14, IES, EULUMDAT and LTLI).

• Simple menus, logical dialogue boxes and a step by step approach help you to find the most efficient and cost-effective solutions for your lighting applications.

Page 12: Manual Indoor

Chapter 1 Introduction

Calculux Indoor

- 1.2 -

1.3 What you can do with Calculux Indoor

• Perform lighting calculations (including direct, indirect, total and average illuminance) within orthogonal rooms;

• Predict financial implications including energy, investment, lamp and maintenance costs for different luminaire arrangements;

• Select luminaires from an extensive Philips database or from specially formatted files for luminaires from other suppliers;

• Specify room dimensions, luminaire types, maintenance factors, interreflection accuracy, calculation grids and calculation types;

• Compile reports displaying results in text and graphical formats; • Support Switching modes and Light regulation factors; • Support multiple languages.

The logical steps used for project specification save you time and effort, while the report facility gives you the opportunity to keep permanent records of the results.

1.4 Tailor make your indoor design

Calculux Indoor is designed for use with six-sided orthogonal rooms. The dimensions of the room and the reflectance of each surface are entered by the user. Calculation grids can be defined anywhere in the room. You can also enter the maintenance factor and the required interreflection accuracy. These values will be used in all subsequent calculations.

1.5 Choose from a wide range of luminaires

Calculux is supplied with an extensive Philips database which includes the most advanced luminaires. For each luminaire you can view luminaire data, including the type of distributor, lamp type, output flux efficiency factors and power consumption. The light distribution can be shown in a Polar, Cartesian or Isocandela diagram, together with the luminaire quality figures. Apart from the Philips database, the following other well known luminaire data formats from other suppliers can be used in Calculux:

• CIBSE/TM14; • EULUMDAT; • IES; • LTLI.

Page 13: Manual Indoor

Chapter 1 Introduction

Calculux Indoor

- 1.3 -

1.6 Easy luminaire positioning individually or as a group

After you've made your luminaire selection, you can position and orientate luminaires individually or in groups, anywhere in a room. Luminaire data, including the type of distributor, lamp type, output flux and power consumption can be viewed at any time. In many lighting designs luminaires are often grouped in arrangements such as blocks, lines or circles. Calculux Indoor contains an option to define a number of arrangements. The position of the luminaires in such an arrangement is controlled by the arrangement rule but the orientation of each luminaire within an arrangement can be altered. It's even possible to free the luminaires positions so that they're no longer connected via the arrangement rule. This feature proves very useful e.g. when in a preliminary design a number of luminaires are placed on a line, but in the final stage one of the luminaires in the line doesn't entirely fulfil the line arrangement rule.

1.7 Symmetry lighting installation

Many designs contain a symmetric lighting installation. This simplifies luminaire arrangement entries where one or more of the luminaires have the same orientation. Calculux offers the possibility to include symmetry in the installation or a part of the installation.

1.8 Graphical manipulation of generated luminaires and/or aiming positions

Having defined luminaires as individuals or in arrangements, Calculux enables graphical manipulation (with a mouse) of the position and orientation of the luminaires. Graphical manipulation operates with the same arrangement rules.

1.9 Calculation Grids

After setting the luminaire arrangement, you're able to choose a preset grid or define your own for which the lighting calculations will be carried out. For example you wish to know if a particular combination of luminaires provides a sufficient level of light for a secretary's desk. By defining the desktop as a grid, the illuminance can be calculated and the results viewed on screen or printed. There's even a possibility to specify the number of points on the desktop at which the illuminance is calculated. On the other hand, if you don't want to define your own grid, frequently used grids corresponding to the room's six surfaces and the working plane are predefined to save you time. In many situations the indirect illuminance can be calculated by considering the room surfaces as diffuse sources which reflect the same amount of light at every point. When more accuracy is required, Calculux Indoor allows you to divide the room surfaces into cells which may reflect varying amounts of light. Up to 800 cells can be defined to give an extremely high level of accuracy. Calculux Indoor also provides a quick estimate of the number of luminaires of a particular type needed to provide a certain level of illuminance using the Utilisation Factor method.

Page 14: Manual Indoor

Chapter 1 Introduction

Calculux Indoor

- 1.4 -

1.10 Switching Modes

Calculux Indoor enables you to develop a lighting design in different switching modes. You can first generate a design for a conference room for video presentation and then by adding luminaires go on to generate a design for a conference situation.

1.11 Light Regulation Factor (LRF)

This Calculux option enables you to dim luminaires or luminaire arrangements

1.12 Save money by optimising cost-effectiveness

Cost is a major consideration when specifying a lighting installation. Calculux provides a breakdown of the costs you can expect to incur with a particular installation, both in terms of initial investment and annual running costs. Thus it's possible to support you in the decision making process by comparing the cost-effectiveness of different lighting arrangements.

1.13 See your lighting design develop on screen

A special view menu is provided to enable you to monitor the development of your project on screen. A 3-D as well as a number of 2-D project overviews can be displayed on screen. All overviews allow graphical manipulation of the luminaires (position and orientation). The view facility can also be used to study the calculated results in text and graphic format. Tables listing the calculated values are displayed. The view facility can also provide isotropic contours, mountain plots and graphic tables of the results.

1.14 Impress your customers with attractive reports

When you've finished a project you're able to generate attractive reports giving the results of the calculations. All you have to do is use the menu to select the elements which you wish to include in your report and they will be added automatically. For example, you can incorporate:

• A table of contents; • 2-D and 3-D project overviews; • Summary; • Luminaire information (including Polar or Cartesian diagram); • Detailed information about the calculation results (in textual table, graphical presentation

and/or Iso contour); • Financial data.

It's also possible to add supplementary text. A convenient feature if you wish to comment on or draw conclusions from the results presented in the report.

Page 15: Manual Indoor

Chapter 1 Introduction

Calculux Indoor

- 1.5 -

1.15 Installation and operating platform

Calculux for indoor, area and road applications are supplied with the installation program and database. The following target operating platform is recommended:

• CPU: Pentium 350; • RAM: 128 Mb; • Hard disk: 100 Mb free disk space; • Operating system: Windows 98 or later; • Other: SVGA monitor, mouse, Windows supported graphics printer or plotter.

Page 16: Manual Indoor

Chapter 1 Introduction

Calculux Indoor

- 1.6 -

Page 17: Manual Indoor

Calculux Indoor

Chapter 2

Getting Started

Page 18: Manual Indoor

Calculux Indoor

Page 19: Manual Indoor

Chapter 2 Getting Started

Calculux Indoor

- 2.1 -

2 Getting Started

This section tells you which steps you should follow to install Calculux on your personal computer. The installation procedure of Calculux consists of two steps:

2.1 Installing the program

In order to install Calculux correctly, please stop all other applications before starting the installation. To install the program:

• Start Windows. • Insert the CD in the CD-ROM drive of your computer. • From the Windows Start menu, select Run. • When the Run dialogue box appears, click Browse. • On your CD-ROM drive, select setup. • Click OK. • Follow the instructions on screen.

��You can also use Windows Write to read the Readme file, which is stored in the Calculux directory.

Uninstalling the package: • From the Windows Start menu, select Settings > Control Panel. • Double click the Add/Remove Programs icon. • Select Calculux Indoor, click on the Add/Remove button and follow the instructions.

2.2 Installing the database

To install the database, you need the CD labeled 'Database'. • Start Windows. • Insert the CD in the CD-ROM drive of your computer. • From the Windows Start menu, select Run. • When the Run dialogue box appears, click Browse. • On your CD-ROM drive, select setup. • Click OK. • Follow the instructions on screen.

Page 20: Manual Indoor

Chapter 2 Getting Started

Calculux Indoor

- 2.2 -

2.3 What is new in Calculux Indoor 5.0

Calculux Indoor 5.0 is an upgrade of Calculux Indoor 4.0. Major new and enhanced features are:

• Import luminaire data formats from other suppliers (CIBSE/TM14, EULUMDAT, IES and LTLI);

• Copy and paste feature for table input data; • Copy graphical output to the clipboard to be used in other programs; • Generate shapes for the Ice-hockey field; • In/outbound polygon shapes; • Shape definition in xy coordinates; • Draw luminaire object with geometrical or optical luminaire dimensions; • Use preferred lamp colour from luminaire database.

��Project files (*.CIN) are upwards compatible. They can be used in the new releases. However, after saving, they cannot be used anymore in previous releases.

2.4 Installing other report languages

Calculux supports run-time selection of the report language. To do so, each language requires an additional language file to be installed in the application folder of Calculux Indoor. All available report languages are installed automatically during installation. When an extra language must be installed, the required file (named CIN_*.RPT) must be copied into this folder (e.g. C:\Program Files\Calculux\Indoor).

��In Windows 98 it can be necessary to enable Multilanguage Support:

• Choose Add/Remove Programs in the Control Panel. • Go to Windows Setup and enable Multilanguage Support.

Page 21: Manual Indoor

Chapter 2 Getting Started

Calculux Indoor

- 2.3 -

2.5 File structure

During the installation procedure a number of directories will be created. The default directory structure, which should be created during the installation of the program and the database, is described below. C: \PROGRAM FILES\CALCULUX

\INDOOR \DB \MULTLANG \PHILLUM \PROJECT \VIGNETTE

• In the INDOOR directory, the program and its necessary files are stored. • In the DB directory, the database is installed. • In the MULTLANG directory, the different language versions of the package (if available)

are stored. • In the PHILLUM directory, the individual photometric data files, not available in the

database, (i.e. Phillum) are stored. The program is supplied with a few test Phillum files. • In the PROJECT directory, the projects can be stored. • In the VIGNETTE directory, the files (Vignette files) containing the company names and

addresses are stored. The program is supplied with a few test vignettes. For more detailed information relating to each of the above directories, use the Readme icon.

2.6 Environment settings and preferences

When the program and database are installed successfully, you can start the application and use the Environment Options in the Option menu to set the environment directories and database settings. The environment directories and database settings can be checked at any time. You are now ready to start developing your first lighting project.

Page 22: Manual Indoor

Chapter 2 Getting Started

Calculux Indoor

- 2.4 -

Page 23: Manual Indoor

Calculux Indoor

Chapter 3

Background Information

Page 24: Manual Indoor

Calculux Indoor

Page 25: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.1 -

3 Background Information

This chapter describes in detail the background principles used in Calculux.

3.1 Project Info and Vignette file

3.1.1 Project Info When you start a new project in Calculux, it can be beneficial to enter summary information. This can include remarks and statistics about the project, e.g. name, date and designer, as well as customer details.

3.1.2 Vignette file Calculux enables you to include details about yourself and your company in your reports. The information will be printed on the cover page of the reports and can be used for reference at any time. This provides the customer with contact details, should they need to consult you over the contents of the report. If you create what is called a Vignette file you can save the information to a disk. This eliminates the need to enter the same company information every time you open a new project. You can simply select the Vignette file to be included in your next project.

Page 26: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.2 -

3.2 Room Characteristics

3.2.1 Surfaces: dimensions and reflectance Calculux Indoor assumes that the room in which the luminaires are to be positioned is rectangular. Rooms are defined by using an XYZ-coordinate system in which the width is parallel to the x-axis, the length is parallel to the y-axis and the height is parallel to the z-axis. For positioning of the room the X and Y coordinates of the front bottom left corner of the room can be entered (P) you can press the 'Centre' button to place the centre of the room in the origin of the coordinate system O (0, 0, 0). This last option can be usefull, for example, when you want to apply symmetry.

AB

O (o,o,o)

Z Y

X

PrefP C

A = width B = length C = height

3.2.2 Interreflection accuracy Each of the room's six surfaces is considered to have a uniform reflectance. The interreflection accuracy you set obviously depends on how important interreflection is to your lighting design. If you choose a higher level of accuracy each room surface is divided into a number of subsurfaces (cells; max. 800) at which the lighting calculations will be performed. This requires longer calculation times.

Page 27: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.3 -

3.2.3 Quick Estimate If you wish you can enter a value for the Required Illuminance Level of the room in the Quick Estimate field of the Room dialogue box, e.g. enter "500lux." Later when you select a luminaire for your lighting design using the Add Room Block Arrangement dialogue box, an estimation of the number of this luminaires needed is provided. This estimation is done according to the CIE UF method.

��More detailed information about 'Quick estimate' can be found in chapter 'Lighttechnical Calculations', section 'Quick Estimation'.

3.2.4 UF Method When you add a luminaire from a database or PHILLUM file, the number of luminaires needed to provide the required illuminance level as entered in the Room dialogue box is automatically entered and displayed. The calculation is performed using the so called Utilisation Factor (UF) method described in CIE reports 40 and 52. If you click on the Generate button and you have entered a value for the 'number of luminaires needed' which is lower then the requested one, the program once more positions them according to the UF method. If no solution can be found, Calculux Indoor informs you, i.e. you'll receive a warning that the number of luminaires doesn't fit in the room. In some cases the database contains information about the maximum advisable spacing to height ratios of luminaires, in order to provide uniformity. If the number of luminaires calculated using the UF method doesn't comply with this ratio, then Calculux Indoor adds extra luminaires until it does. For example, suppose that by accident you've chosen a powerful industrial luminaire for use in an office. The UF method tells you that the number of luminaires needed to provide the required average illuminance level is 1. When you choose generate the view panel will display 4 luminaires necessary to comply with the spacing to height ratio. This would be very inefficient, so another luminaire should be chosen.

Page 28: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.4 -

3.2.5 Zones By using the Zones option and entering a value for the Border Zones you're able to define a working plane smaller than the room floor. Entering a value for a zone (left, right, front or back) will specify the distance between one of the walls and the working plane. The previous generated working plane calculations are now automatically spread over the reduced working plane.

A BW

D

C

A = border zone left B = border zone right C = border zone front D = border zone back W = working plane

Page 29: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.5 -

3.2.6 Room Grids To perform lighting calculations Calculux uses grids. A grid is a set of points in a 2 dimensional plane, at which the lighting calculations will be carried out. A grid must always be rectangular in shape and can be in any plane in space (horizontal, vertical or sloping). The size, position and the number of grid points can be specified by the user. Some special plane grids on walls and working planes (= Room Grids) will automatically be generated according to a standard. A standard defines the minimum number of grid points that is used for the lighting calculations. It also defines how these grid points are divided over the application area. The following standards are available:

• Calculux; • NEN; • DIN; • CIBSE.

��More detailed information about (Room) grids and the grid standards can be found in chapter 'Grids'.

Page 30: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.6 -

3.3 Application Fields

3.3.1 General In Calculux an application field is represented by a 2-Dimensional rectangular shape. Application fields can be used to graphically mark the area of interest for lighting calculations. Calculux includes a number of different applications. To differentiate between the types, they contain zero or more predefined lines and/or markings that are associated with the different applications. The outlines of the built-in sports fields have already been drawn, requiring only the name, dimensions and centre position to be entered. You can choose from:

• Tennis Court; • Basketball Ground; • Volleyball Ground; • Indoor hockey Field; • Ice hockey Field; • Five-a-side football Pitch; • Handball Court; • Korfball Court; • Badminton Court; • Squash Court; • Table Tennis Table; • General Field.

In Calculux, for each type of application field the default dimensions and grid settings can be entered. This allows local standards to be set, limiting the input requirements of the designer. Upon selection, Calculux automatically draws the application field using the default values. Calculux also generates a grid and a surface illuminance calculation on this grid. You are then free to change the dimensions, if necessary, to suit your personal design requirements. The general application field is an empty rectangular field. It can be used when you wish to perform calculations for an application not included in the above list. A general field operates like any other application field. You can connect a grid to a general field, ensuring that any changes made to the field parameters automatically change the grid parameters.

Page 31: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.7 -

The following figure shows a basketball ground (dimensions 15 x 28 m.) with a calculation grid (grid spacing is 2m.) connected to it.

0

0

Y

X

3.3.2 Connections with calculation Grids A calculation grid usually lies within an application field. Calculux enables you to connect a grid to an application field, ensuring that any changes made to the field parameters automatically change the grid parameters. You can set a calculation grid for each application field. For an example demonstrating this feature see chapter 'Grids', section 'Grid Coupling'.

Page 32: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.8 -

3.4 Luminaire Photometric Data

Calculux can retrieve luminaire photometric data from two different sources: • A luminaire database; • A specially formatted ASCII data file.

3.4.1 Luminaire Database The luminaire database is supplied with Calculux and contains a wide range of luminaires from your supplier. The luminaire database, of which you want to select your project luminaires, can be selected in the Select Database dialogue box. When a database is selected, luminaire types for a particular application area can be selected in the Application Area dialogue box. For each luminaire, details about housing, light distributors, colour, lamps and luminous flux intensity are presented on screen in a logical, step-by-step way so that choosing a suitable luminaire for an application is easy. The default luminaire database and directory in which the luminaire database is stored is set in the Database tab of the Environment Options dialogue box (Options menu). If you wish to extend the range of luminaires you can save more than one database in this directory.

3.4.2 ASCII data file Calculux is supplied with an extensive Philips luminaire database. New Philips luminaires that are not yet available in the database are sometimes supplied in specially formatted ASCII data file, the PHILips LUMinaires data format (PHILLUM). Apart from the Philips database and the PHILLUM format, Calculux allows you to use photometric data from other suppliers. The following other well known formats can be used in Calculux:

• CIBSE/TM14; • EULUMDAT; • IES; • LTLI.

Luminaire files are stored in the default directory. You can set the location of the default directory in the Directories tab of the Environment Options dialogue box (Options menu).

��The interpretation of the above luminaire formats can differ. You should pay attention when using them.

Page 33: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.9 -

3.5 Luminaire Positioning and Orientation

3.5.1 Luminaire Positioning XYZ-coordinates

To position a luminaire, Calculux requires the use of the (three dimensional) coordinate system XYZ. The XLYLZL coordinates position the centre of the luminaire in relation to the origin of the coordinate system. The arrow in the following illustration indicates the centre of the light emitting area of the luminaire and represents the main axis of that particular luminaire.

Y

Z

X

ZL

XL

Y L

180˚

90˚

270˚

90˚

270˚

C-γ coordinate system

Each luminaire is given its own luminous intensity coordinate system, in order to provide information on its luminous flux distribution. In general, the C-γ coordinate system is used. To create the required luminous flux distribution in your design you'll need to define a new orientation for the luminaire. This is done by rotating and/or tilting the luminaire in relation to its (local) coordinate system. For indoor fluorescent luminaires the longitudinal axis of the lamp is called the C=90°/C=270° axis. The lateral axis of the lamp (perpendicular to the longitudinal axis) is called the C=0°/C=180° axis. For luminaires with an unusual shape, such as those used in outdoor applications, the mounting bracket is usually regarded as a reference which corresponds to the C=270° axis. The vertical axis of the lamp is normally called the γ=0°/γ=180° axis. The following illustrations display the C-γ coordinate system for the three main luminaire types, being street, indoor and floodlighting.

C=270˚

C=90˚C=180˚

γ=180˚C=0˚

γ=0˚

C=30˚

C=60˚

C=270˚

C=90˚C=180˚

γ=180˚C=0˚

γ=0˚

C=30˚

C=60˚

Street Indoor

Page 34: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.10 -

C=270˚

C=90˚C=180˚

γ=180˚C=0˚

γ=0˚

C=30˚

C=60˚

Flood

3.5.2 Luminaire Orientation Aiming types

To determine the orientation of a luminaire you can use either: • Aiming by defining a fixed point (XYZ); • Aiming by defining fixed angles (RBA).

Calculux enables you to aim the luminaires with RBA aiming type and view the generated aiming point by switching from RBA aiming to XYZ aiming (and vice versa). XYZ aiming

If XYZ aiming is used, the luminaire orientation is determined by defining its aiming point. This is the point (P) towards which the main axis (γ=0°) is directed, see figure below. The position of the aiming point P (Xp, Yp, Zp) is related to the global coordinate system.

• α = Rot • β = Tilt90

Y

Z

X

ZL

ZPP

XL

XP

Y L

Y P

β

90˚

270˚

270˚

270˚

0˚0˚

180˚

α

Page 35: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.11 -

RBA aiming The luminaire is aimed (orientated) by defining fixed angles for Rot (around the vertical axis), Tilt90 (around the C=0°/C=180° axis) and Tilt0 (around the C=90°/C=270° axis). Rotation (Rot)

If you wish to change the angle of rotation of the luminaire about its vertical axis, you need to enter a value in degrees for the variable 'Rot'. This value can be positive or negative. For example Rot = 45°:

Y

45˚

X

γ=180˚

γ=0˚

C=18

C=0˚

C=270˚ C=90˚

Z

Page 36: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.12 -

Tilt90

If you wish to change the angle of rotation of a luminaire about its C=0°/C=180° axis, you need to enter a value in degrees for the variable Tilt90. This value can be positive or negative. For example Tilt90 = 30°:

Y

X

Z

C=180˚ C

=90˚

C=270˚

γ=180˚

γ=0˚C=0˚

30˚30˚30˚

Tilt0

If you wish to change the angle of rotation of a luminaire about its C=90°/C=270° axis, you need to enter a value in degrees for the variable Tilt0. This value can be positive or negative. For example Tilt0 = 30°:

Y

X

C=180˚C=0˚

γ=0˚

Z

C=90˚

C=90˚

C=270˚

30˚30˚30˚

γ=180˚γ=180˚

Luminaire orientation order

When specifying values for RBA aiming Calculux uses the following specification order: • Rot; • Tilt90; • Tilt0.

Extra attention must be paid, because the order in which the variables will be processed is of great influence on the resulting orientation.

Page 37: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.13 -

For example if the following sequence of processing is executed for a luminaire: • 90° rotation about the vertical axis (Rot=90°); • 90° rotation about the C=0°/C=180° axis (Tilt90=90°); • 90° rotation about the C=90°/C=270° axis (Tilt0=90°).

The result of the above order of processing gives the following orientation:

180˚

Y

X

Y

X

Z

90˚

270˚ 180˚

Y

X

180˚ 90˚

270˚

90˚

270˚

Y

X

Z Z

90˚

270˚

180˚γ=180˚

γ=0˚γ=180˚

γ=0˚γ=180˚

γ=0˚

γ=180˚

γ=0˚

Z

Consider this against the following order of processing:

• 90° rotation about the vertical axis (Rot=90°); • 90° rotation about the C=90°/C=270° axis (Tilt0=90°); • 90° rotation about the C=0°/C=180° axis (Tilt90=90°).

This will result in the following orientation:

90˚

γ=0˚

γ=180˚

90˚

γ=180˚270˚

γ=0˚

Y

X

Y

X

Z

90˚

270˚ 180˚

Y

X

180˚ 90˚

270˚

0˚18

Y

X

Z Z0˚

180˚

γ=180˚

γ=0˚

γ=180˚

γ=0˚

Z

270˚

Conversion of Aiming types

Conversion from RBA aiming to XYZ aiming

The XYZ coordinates of the aiming points are locked on the aiming plane. Conversion from RBA-aiming to XYZ-aiming is only possible when the Tilt0 of the luminaire is 0°. This restriction is included to prevent the loss of orientation information. The XYZ coordinates are blanked out in case the luminaire has to be displayed in XYZ-aiming, and there is no intersection with the aiming plane. In the case of a modification in the aiming type when there's no intersection with the aiming plane, the point on the aiming vector, one meter from the luminaire, is chosen as the aiming point. Conversion from XYZ aiming to RBA aiming

The direction from the location of the luminaire to the aiming-point is determined. This direction is expressed in a Rotation, Tilt90 and Tilt0 (Tilt0 is always 0°).

Page 38: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.14 -

Selecting Aiming Presentation types

Calculux allows you to select either RBA aiming presentation to display the Rot, Tilt90 and Tilt0 aiming angles, or XYZ aiming presentation to display the aiming points. If the selected aiming presentation is different from the used aiming type, Calculux will convert the unit for aiming into the unit as selected for the aiming presentation. In this way it is possible to view the value of the aiming angles while the used aiming type is XYZ aiming or aiming points while the used aiming type is RBA aiming. The aiming presentation of luminaires can be set in the luminaires list. Conversion from RBA aiming presentation to XYZ aiming presentation for a luminaire is only possible when Tilt0=0°. This restriction is included to prevent the loss of orientation information. When a luminaire, aimed with RBA aiming, has to be displayed in XYZ aiming and there's no intersection with the aiming plane, the XYZ coordinate values are blanked out.

��Conversion of the aiming presentation type does not change the aiming type!

Page 39: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.15 -

Aiming offset (Floodlights)

For some asymmetric flood lighting luminaires an aiming offset is given and stored in the database. It can be viewed in the project luminaire details dimensions tab. The aiming offset is usually equal to the angle of the maximum intensity in the C=90° plane.

α

For a luminaire with an aiming offset the photometric data is treated with respect to the aiming of the luminaire as if the maximum intensity is at C=0° and γ=0°. Aiming the above luminaire with an aiming offset of α degrees at Rot=0° and Tilt90=0° gives the orientation displayed next.

α

α

To ensure that the front glass of the luminaire is horizontal, the aiming should beRot=0° and Tilt90=α°.

α

Page 40: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.16 -

3.5.3 Number of luminaires per position (Luminaire Quantity) Normally there will be one luminaire at each luminaire position. In some special cases it can be very useful to use a different number of luminaires, for instance;

• When a group of 5 luminaires (floodlights) with the same aiming point is situated on a pole, these luminaires can technically be regarded as one luminaire. In this case you can enter a luminaire quantity of 5.

• When in a block arrangement at one particular luminaire position no luminaire can be installed. Example:

Luminaire Quantity of position (20,5)=0.

10

Z

Y

X

10

20

5

15

50̊0̊

0̊0̊

0̊0̊

0̊0̊

0̊0̊

0̊0̊

0̊0̊

0̊0̊

0̊0̊

0̊0̊

0̊0̊

Page 41: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.17 -

3.6 Individual Luminaires

3.6.1 General Calculux allows you to position luminaires individually as well as in groups. The definition of individual luminaires is done in the 'Individual Luminaires' dialogue box. This dialogue box contains two tab pages. In the Luminaires tab you can select the project luminaires which have been defined in the Project Luminaires dialogue box and set or change luminaire parameters. In the View tab you can view the luminaires graphically.

3.6.2 Luminaire Definition In the Luminaires tab you can define and position individual luminaires. For the definition of a new luminaire the following parameters, if applicable, have to be set:

• Project Luminaire Type; • Aiming Presentation; • Switching Modes.

When the above parameters have been set the luminaire(s) can be added to the luminaire list by clicking on the 'New' button. Project Luminaire Type

If a project contains two or more luminaire types you will need to select the required luminaire type. For details about a project luminaire you can click on the 'Details' button. Aiming Presentation

With this parameter you can set the aiming presentation of all luminaires in the luminaire list. Choose from either RBA or XYZ, aiming angles or aiming points. Switching Modes

If switching modes are used, you can select which switching mode(s) will be appied to all new created luminaires in the luminaire list. Luminaire List

The luminaire list contains information about the individually placed luminaires used in the project. You can view, set, edit, copy or delete information of project luminaires. In the luminaire list the following luminaire information, if applicable, can be set: Luminaire Type

If a project contains more luminaires, and afterwards a different luminaire type is required, you can click on the down arrow in the project luminaire type box and make your selection. Luminaire Quantity

With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity').

Page 42: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.18 -

Luminaire Position (POS X, POS Y and POS Z)

Use these parameters to enter the XYZ coordinates of the centre of the luminaire in relation to the origin of the coordinate system. Luminaire Orientation (Aiming Type)

Depending on the defined Aiming Type and selected Aiming Presentation you can set and/or view the RBA angles (Rot / Tilt90 / Tilt0) or the XYZ coordinates Aim. Pnt. X / Aim. Pnt. Y / Aim. Pnt. Z.

��By pressing on the 'To XYZ' or 'To RBA' button you can convert the aiming type of selected luminaires from RBA aiming to XYZ aiming or vice versa.

Symmetry (Sym.)

If you want to apply symmetry, you can set the symmetry type for the luminaires. The Sym. column shows which type of Symmetry is used ('NONE', 'X', 'Y' or 'XY'). If X- or XY symmetry is used, for the X-origin the X coordinate of the YZ plane has to be entered. If Y- or XY symmetry is used, for the Y-origin column the Y coordinate of the XZ plane has to be entered. For more information about symmetry, see chapter 'Symmetry'. Switching Modes (1, 2, ...)

If switching modes are applied, you can view or set which of the available switching modes are activated for each luminaire. Each column number is identical to the switching mode sequence number in the 'Switching Mode' list box. The switching modes columns will only be displayed if more then one switching mode(s) exist. Light Regulation Factors (%)

If light regulation factors are applied, you can set and/or view the value of the light regulation factor (0 - 100%) for each luminaire.

3.6.3 View The View tab displays the luminaires in the arrangement graphically.

Page 43: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.19 -

3.7 Luminaire Arrangements

3.7.1 General Calculux allows you to position luminaires individually as well as in groups. A number of luminaires defined as a group is called an luminaire arrangement. To simplify the definition of an arrangement, Calculux contains the 'Arranged Luminaires' option. The luminaires in an arrangement are positioned and aimed according to the arrangement rule and are stored under the 'arrangement name'. The arrangement generation rules relate to all arrangements (where applicable) and are explained here for the following arrangements:

• Room Block; • Block; • Polar; • Line; • Free.

��When you define an arrangement, the arrangement must fit in the room.

A Free arrangement is a special kind of arrangement allowing the luminaires to be positioned individually. The only thing they share is a common arrangement name. In the case of a Block, Line, Polar or Room Block arrangement, the luminaire positions are controlled by the arrangement rule. The other attributes can be set individually. In general, for each arrangement the following luminaire attributes (if applicable) must be set:

• Project luminaire Type; • Position of the arrangement; • Orientation of the arrangement (Aiming); • Symmetry type and relevant symmetry origin; • Number of Same (luminaires per position); • Switching mode(s).

To simplify the definition of the attributes, the arrangements dialogue box is split into the following four tab pages. Arrangement Definition

In the Arrangement Definition tab you can define the name and position of the arrangement in relation to the XYZ coordinate system. Where applicable you can set the orientation (= aiming) of the arrangement.

��For a 'Room Block arrangement' only the orientation of the luminaires can be set.

Page 44: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.20 -

Luminaire Definition

In the Luminaire Definition tab you can define the default settings for all luminaires in the arrangement. The settings are used for the generation of the luminaires at the position as set in the Arrangement Definition tab and determine the initial generation of the luminaire list. The default settings can be changed at any time by making changes to the luminaire definitions. By using the Apply buttons you ensure the setting changes are carried out for all luminaires in the luminaire list. Warning: Take care when you have created an arrangement with a unique aiming pattern. When you click on the Aiming Apply button the settings will be applied to all the luminaires in the luminaire list and the unique aiming pattern will be lost. If you don't want this and it does happen, click on the Cancel button and the action will be undone. Note that the Cancel facility is effective in any of the tabs of the arrangement dialogue box. Luminaire List

In the Luminaire List tab you can view the attributes of each luminaire in the arrangement. All attributes, except the luminaire positions can be changed. For a Free arrangement, it's possible to change the position of the luminaires as well. View

The View tab displays the luminaires in the arrangement graphically.

3.7.2 Room Block Arrangement A Room Block arrangement is a special type of Block arrangement where the luminaires are arranged in a rectangular room. Arrangement Definition

There are two ways to define a Room Block arrangement:

a) You can create a Room Block arrangement using the UF Method (see also chapter 'Room'; section 'UF Method'). The following parameters have to be set:

• Luminaire Type; • Orientation of the luminaires; • Name of the arrangement.

If you press the Generate button a regular luminaire pattern will automatically be generated at the ceiling of the room. The number of generated luminaires depends on the value you've entered in the 'Required Illuminance Level' field of the 'Room' dialogue box. The number of luminaires will only be calculated if the information for the UF Method is included in the Data base.

��If required you can change the value of the 'Number of Luminaires needed'. If the value fulfils the max. spacing to lighting ratio given in the database, Calulux will perform light calculations using the value in the 'Number of Luminares needed' field.

Page 45: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.21 -

b) You can create a Room Block arrangement by defining the number of luminaires and

the spacing between the luminaires. In this case the following parameters have to be set:

• Luminaire Type; • Orientation of the luminaires; • Name of the arrangement; • Number of luminaires in X and Y direction; • Spacing between the luminaires in X and Y direction; • Position of the arrangement.

When the Room Block arrangement has been defined, depending on the position of the arrangement a number of ways of updating are possible: Using Updates Regular button Position X, Y, Z Centre button Position X, Y, Z Example:

For a Room Block arrangement with default luminaire orientation, the following definition is given: Dimensions of the 'room' = 16.0, 10.0, 6.0 Position of the 'Front Bottom Left' corner of the room = 1.0, 2.0 Number in X = 3 Number in Y = 2 X Spacing = 6.0 Y Spacing = 5.0 Position (of arrangement) = 3.0, 4.0, 6.0 (=P) This creates the following arrangement:

6

24

Z Y

17

0˚180˚

0˚180˚

0˚180˚

0˚180˚

0˚180˚

0˚180˚

0˚180˚

0˚180˚

X

13

Page 46: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.22 -

Now luminaire rotation and Tilt is applied to the previous figure: Rotation = 90° Tilt90 = 0° Tilt0 = 0°

6

2

Z Y

1

0˚180˚

180˚180˚180˚

180˚0˚

180˚0˚

180˚0˚

180˚0˚

17X

Rotation = 0° Tilt90 = 45° Tilt0 = 0°

6

2

Z

1

90˚

90˚

90˚

90˚

90˚

90˚

17X

��The warning 'Arrangement does not fit in the room' will appear when the luminaires tilt, positions the luminaires outside the room. In this case the Z-position of the luminaires should be changed.

Luminaire Definition

For the definition of the luminaires, the following parameters can be set: • Symmetry; • Number of Same; • Switching Modes.

��For each parameter there is a separate Apply button. When settings are changed you can click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list.

Page 47: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.23 -

Symmetry

If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same

With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes

If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.

3.7.3 Block Arrangement In a Block arrangement the luminaires are arranged in a rectangular shape. Arrangement Definition

For the definition of a Block arrangement, the following parameters have to be set: • Name of the arrangement; • Position of the arrangement; • Orientation of the arrangement; • Number of luminaires in AB and AC direction; • Spacing between the luminaires in AB and AC direction.

��To simplify the definition of a Block arrangement you should first define a Block arrangement without orientation (rotation or tilt) and afterwards (if applicable) apply rotation and/or tilt.

Example:

For the definition of a Block arrangement without rotation or tilt, set: Position A The block position. P Reference point P is the position of the bottom left luminaire in the

arrangement (if no rotation and tilt is applied). NAB The number of luminaires in AB direction (if the block is not rotated,

AB is parallel to the XZ-plane). NAC The number of luminaires in AC direction (if the block is not rotated,

AC is parallel to the YZ-plane). SpacingAB The distance between the luminaires in the AB direction (D1). SpacingAC The distance between the luminaires in the AC direction (D2).

Page 48: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.24 -

P = 4.0, 3.0, 2.0 NAB = 3 NAC = 2 SpacingAB = 2.0 m SpacingAC = 6.0 m

Y

2

D2

3

Z

XD1

4

C

PPB

A 0̊0̊0̊0̊

0̊0̊

0̊0̊0̊0̊

0̊0̊

Now the Block arrangement is generated, you can apply rotation and/or tilt. For instance:

Rotation = 30°: The Block arrangement is rotated 30° anti clockwise around the V-axis which passes through P and is parallel to the Z-axis.

4

2

D2

Z

Y

X

3

D130˚

V

C

BA

0̊0̊0̊0̊0̊0̊

0̊0̊0̊0̊0̊0̊PP

��In a Block Arrangement the luminaires are oriented in relation to the XYZ coordinate system (= global coordinate system). Therefore, only the arrangement is rotated, the orientation of the individual luminaires is not changed.

Tilt90 = 30°: The block is rotated 30° around the AC-axis towards the positive Z-axis.

X

A

C

D144

2 3

30˚

Y

Z

D20̊0̊0̊0̊0̊0̊

0̊0̊0̊0̊0̊0̊PP

Page 49: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.25 -

Tilt0 = -30°: The block is rotated 30° around the AB-axis towards the negative Z-axis.

D2

D1

2 3

Z

Y

X

44

30˚

C

A

B

0̊0̊0̊0̊

0̊0̊

0̊0̊0̊0̊

0̊0̊PP

��The block Rotation, Tilt90 and Tilt0 are equivalent to the luminaire Rotation, Tilt90 and Tilt0 in the way they operate, but they are in fact separate orientations. The block orientation is set in the 'Arrangement Definition' tab, and controls the luminaire positions, while the luminaire orientation (= 'Aiming') is set in the 'Luminaire Definition' tab. If you want to have the luminaires orientated in the same direction as the arrangement, the angles of the arrangement and luminaire orientation have to be the same.

Luminaire Definition

For the definition of the luminaires, the following parameters can be set: • Project Luminaire Type; • Aiming Type; • Symmetry; • Number of Same; • Switching Modes.

��For each parameter there is a separate Apply button. When settings are changed you can click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list.

Project Luminaire Type

If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type

With this parameter you can set the default aiming type (choose from either RBA or XYZ), aiming angles or aiming points for the luminaires in the arrangement. Symmetry

If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same

With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity').

Page 50: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.26 -

Switching Modes

If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.

3.7.4 Polar Arrangement In a Polar arrangement the luminaires are arranged in one or more concentric arcs. Arrangement Definition

For the definition of a Polar arrangement, the following parameters have to be set: • Name of the arrangement; • Centre position of the arrangement; • Orientation of the arrangement (orientation of the plane); • Number of luminaires per arc; • Spacing between the luminaires on an arc; • Length of an arc; • Number of concentric arcs; • Distance between two adjacent arcs; • Radius of the arc that is nearest to the centre.

When the Polar arrangement has been entered, a number of ways of updating are possible: Changing Updates Luminaires per Arc Spacing along Arc Spacing along Arc Length of an Arc (Total Arc) Length of the Arc Spacing along Arc

��To simplify the definition of a Polar arrangement you can best first define an arrangement without orientation (rotation or tilt) and afterwards (if applicable) apply rotation and/or tilt.

Example:

For a Polar arrangement without rotation or tilt, the following definition is given: Centre Position (P) = (10.0, 6.0, 2.0) Luminaires per Arc = 5 Spacing along Arc = 45° Total Arc = 180° # of Concentric Arcs = 2 Distance between Arcs (d) = 5.0 m Radius of First Arc (r) = 4.0 m

Page 51: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.27 -

Which results in the following arrangement:

2

Z

Y

10

6

X

d

rP

90˚ 90˚

90˚

90˚

90˚

90˚

90˚90˚

90˚90˚

90˚90˚

90˚90˚

Now rotation and tilt is applied to the previously defined Polar arrangement. For instance:

Rotation = 30°:

Y

2

Z

10

X

30˚

90˚

90˚

90˚

90˚90˚90˚ 90

˚

90˚

90˚90˚90˚90˚

90˚90˚

6

P

The arrangement is rotated 30° counter clockwise around the V-axis which passes through P and is parallel to the Z-axis.

��In a Polar arrangement, the orientation of the luminaires is related to the centre point (P) of the arrangement. So every time you change the orientation of the arrangement, the orientation of the luminaire will change too.

Tilt90 = 30°:

90˚

90˚

Y

2

Z

10

X

6

90˚ 90˚90˚90˚

90˚

90˚

90˚

90˚C'

PPA'

90˚90˚

30˚

Page 52: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.28 -

The arrangement is rotated 30° around the A'C'-axis towards the positive Z-axis. If no rotation is applied, A'C' is parallel to the YZ-plane. Tilt0 = -30°:

Y

90˚

9090˚90˚

90˚

90˚

90˚

90˚

90˚

90˚

90˚90˚

2

Z

10

6

X

PrefA'A'

A'

B'

30˚

The arrangement is rotated 30° around the A'B'-axis towards the negative Z-axis. If no rotation is applied, A'B' is parallel to the XZ-plane. Luminaire Definition

For the definition of the luminaires, the following parameters can be set: • Project Luminaire Type; • Aiming Type; • Symmetry; • Number of Same; • Switching Modes.

��For each parameter there is a separate Apply button. When settings are changed you can click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list.

Project Luminaire Type

If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type

With this parameter you can set the default Aiming Type (choose from either RBA or XYZ), Aiming Angles or Aiming Points for the luminaires in the arrangement. Example:

• When the luminaire orientation is set to Rot = 90° Tilt90 = 0° Tilt0 = 0°

Page 53: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.29 -

This results in the following arrangement:

2

Z

Y

10

6

X

90˚

90˚

90˚

90˚

90˚90˚90˚90˚

90˚

90˚90˚

90˚90˚

90˚90˚90˚

90˚90˚90˚90˚90˚

P

• When the luminaire orientation is set to Rot = 90° Tilt90 = 45° Tilt0 = 0° The following arrangement will be created:

2

Z

Y

10

6

X

90˚

90˚

90˚

90˚

90˚

90˚

90˚

90˚

90˚

90˚

P

Symmetry

If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same

With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes

If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.

Page 54: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.30 -

3.7.5 Line Arrangement In a Line arrangement the luminaires will be arranged in a line. Arrangement Definition

For the definition of a Line arrangement, the following parameters have to be set: • Name of the arrangement; • First and last point of the line; • Number of luminaires in the line; • Spacing between the luminaires.

��When the line coordinates have been entered, the line orientation is automatically set by the program. Any subsequent alterations to the line coordinates update the orientation.

Example:

A = First point (= reference point). The reference point is the position of the first luminaire in the arrangement. B = Last point α = Rotation β = Tilt90

Y

8

2

X

Z

2

9.5

A

D

B

2

10β

α

The angle α corresponds with the Rotation of the Line arrangement. The angle β corresponds with the Tilt90 of the Line arrangement. When the Line arrangement has been entered, several ways of updating are possible: Changing Updates First point Last point Spacing Last point Number of Luminaires Spacing Last point Spacing and Orientation Orientation Last point The following Line arrangements have been created to demonstrate the different ways of defining a Line arrangement. The Line arrangement below has the following settings: First point = 1.0, 1.0, 5.0 Last point = 1.0, 6.0, 5.0 Number of Luminaires = 3 Spacing = 2.5

Page 55: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.31 -

This will create the following line orientation automatically: Rot = 90° Tilt90 = 0° The luminaire orientation uses the default settings which are set to: Rot = 0° Tilt90 = 0° Tilt0 = 0°

Z

Y

X

5

A

B

1

1

2.5270˚0̊270˚

0̊270˚0̊

α=90˚

• From the previous illustration, the luminaire orientation is now set to:

a) Rot = 0° Tilt90 = 45° (rotation of 45° around C=0°...C=180° axis) Tilt0 = 0°

Which results in the following arrangement:

Y

Z

X

A

B

1A2

B2

6

1

2.5

5

5

45˚

α=90˚

Page 56: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.32 -

b) Rot = 90° (rotation of 90°C around the vertical axis) Tilt90 = 45° (rotation of 45° around C=0°...C=180° axis) Tilt0 = 0°

Which results in the following arrangement:

Y

Z

X

1A2

B2

6

1

B2.5

5

545˚

90˚

A

180˚0˚

180˚0˚

180˚0˚

α=90˚

• If a line arrangement is given the following settings:

First point = 2.0, 2.0, 2.0 Last point = 8.0,10.0, 9.5 Number of Luminaires = 3 Spacing = 6.25 m (calculated automatically by the program) This will create the following line orientation automatically: Rot = 53.1° (α) Tilt90 = 36.9° (β) When the luminaire orientation (Aiming Type) is set to: Rot = 0° Tilt90 = 45° (rotation of 45° around C=0°...C=0° axis) Tilt0 = 0° The following arrangement will be created:

Y

8

2

X

Z

2

9.5

A

B

2

10β

α

Page 57: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.33 -

The luminaire orientation in the above arrangement can now be set with the same values as the line orientation (Rot = 53.1°; Tilt90 = 36.9°), so that the luminaire orientation is 'in line' with the line orientation.

90˚Y

8

2

X

Z

2

9.5

A

B

2

10

α

β

α

90˚

90˚

90˚

Luminaire Definition

For the definition of the luminaires, the following parameters can be set: • Project Luminaire Type; • Aiming Type; • Symmetry; • Number of Same; • Switching Modes.

��For each parameter there is a separate Apply button. When settings are changed you can click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list.

Project Luminaire Type

If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type

With this parameter you can set the default aiming type (choose from either RBA or XYZ), aiming angles or aiming points for the luminaires in the arrangement. Symmetry

If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same

With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes

If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.

Page 58: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.34 -

3.7.6 Free Arrangement A Free arrangement is a special arrangement type, where the number of luminaires and their position is not defined by an arrangement rule. Arrangement Definition

For the definition of a Free Arrangement only the name of the arrangement has to be specified. There is no arrangement rule for defining the number of luminaires and their positions.

��The definition of the luminaires and their positions is done in the same way as individual luminaires (see chapter 'Individual Luminaires').

Luminaire Definition

For the definition of the luminaires, the following parameters can be set: • Project Luminaire Type; • Aiming Type; • Symmetry; • Number of Same; • Switching Modes.

��For each parameter there is a separate Apply button. When settings are changed you can click on the Apply button to carry out the settings for all luminaires in the luminaire list. Selection of different parameter settings for individual luminaires of the arrangement is done in the luminaire list.

Project Luminaire Type

If a project contains two or more luminaire types, you need to select the required luminaire type. If afterwards a different luminaire type is needed, you can click on the down arrow in the Project Luminaire Type box and make your selection. Aiming Type

With this parameter you can set the default aiming type (choose from either RBA or XYZ), aiming angles or aiming points for the luminaires in the arrangement. Symmetry

If you want to apply symmetry, you can set the default symmetry type for the luminaires in the arrangement. Number of Same

With this parameter you can set the number of identical luminaires at a luminaire position (see also chapter 'Luminaire Position and Orientation'; section 'Luminaire Quantity'). Switching Modes

If switching modes are used, you can select which switching mode you want to apply to the luminaires in the arrangement.

Page 59: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.35 -

3.7.7 Ungrouping a luminaire arrangement After you have positioned a luminaire arrangement, you may wish to adjust the position of the individual luminaires slightly. When you Ungroup a luminair arrangement, the luminaires are no longer part of an arrangement but individual luminaires. It is then possible to, change, delete or replace each luminaire individually.

��A similar result (roughly) is obtained when a luminaire arrangement is converted into a Free arrangement.

3.7.8 Convert into a Free Arrangement Calculux allows you to convert an existing arrangement or a group of individual luminaires into a Free arrangement. In a Free Arrangement the luminaires are considered as part of an arrangement but there is no arrangement rule for defining the number of luminaires and their positions. Only the name of the arrangement has to be specified.

Page 60: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.36 -

3.8 Symmetry

3.8.1 General Symmetry is an optional specification, that can be used to simplify individual luminaire or luminaire arrangement entries when one or more luminaires have a symmetrical orientation and/or position. If applied, the luminaires are duplicated on the opposite side of a line parallel to the X-axis or Y-axis or they are duplicated to all quadrants. The use of symmetry in luminaire positioning and orientation is explained with the following example: Assume that you've created an indoor sports hall of width 80m and length 140m. The default position of the Front Bottom Left corner (reference point or P.) of the sports hall will be located at the origin of the XYZ co-ordinate system.

80O

Y

XP

140

The easiest way to position two identical luminaires at opposite corners of the sports hall is to position one luminaire and apply symmetry to the lighting installation to position the second luminaire. If you would do this without first translating the origin of the XYZ coordinate system to the centre of the sports hall, the new luminaire would be positioned outside the room. In this case an error message would appear on your screen. In order to apply symmetry to the lighting installation in a room you'll need to position the origin of the plane(s) of symmetry inside the room. Example:

You want to position two identical floodlights, orientated towards the centre, at the opposite corners of a sports hall (width 80m and length 140m). The axis you want to use to apply symmetry are equal to the X = 0 and Y=0 axis. In this case, the centre of the sports hall has to be in the origin (O).

��After defining the dimensions of the sports hall you can position the origin (O) at the centre of the sports hall by clicking on the 'Centre' button (Room Definition tab).

Page 61: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.37 -

At (-35, 65, 10) you have positioned a floodlight, orientated towards the centre of the sports hall. This will create the following situation:

-40 40

70

O

-70

Y

X-17.5 17.5

32.5

-32.5

B A

C D

C=270˚

C=90˚

C=0˚

C=180 C=180˚

C=180˚

If the axis you want to use to apply symmetry is not equal to a central axis of the room, you'll have to change the settings of the X-origin or Y-origin (placing the plane of symmetry in the middle between the existing and the 'new' luminaire). You can do this in several ways:

• For all new created luminaires in a project this is done by replacing the settings of the X-origin and/or Y-origin in the Symmetry tab (Project Options).

• For luminaires in a luminaire arrangement this is done by replacing the settings of the X-origin and/or Y-origin in the Luminaire Definition tab (Arranged Luminaires), then clicking on the Apply button.

• For individual luminaires or individual luminaires in an arrangement this is done by replacing the settings of the X-origin and/or Y-origin in the Luminaires tab (Individual Luminaires) or Luminaire List tab (Arranged Luminaires).

��When symmetry is applied and the position and/or orientation of a luminaire is changed, the position and/or orientation of all symmetrical luminaires will also change according to the applied symmetry type.

Page 62: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.38 -

3.8.2 X-Symmetry If you select X-symmetry the existing luminaire in B quadrant is duplicated to the opposite position in A quadrant with the new coordinates (35, 65, 10). The result of this action will look like this:

C=2

70˚

C=9

C=0˚

C=180˚

-40 40

70

O

-70

Y

X-17.5 17.5

32.5

-32.5

B A

C D

C=270˚

C=90˚

C=0˚

C=180˚

C=180˚

C=180˚

3.8.3 Y-Symmetry If you select Y-symmetry the existing luminaire in B quadrant is duplicated to the opposite position in C quadrant with the new coordinates (-35, -65, 10). When Y-symmetry is used, the Y-origin field displays the Y coordinate of the XZ plane. The result of this action will look like this:

C=180˚

C=0˚

-40 40

70

O

-70

Y

X-17.5 17.5

32.5

-32.5

B A

C D

C=270˚

C=90˚

C=0˚

C=180˚

C=180˚

C=2

70˚

C=9

Page 63: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.39 -

3.8.4 XY-Symmetry If you select XY-symmetry the existing luminaire in B quadrant is duplicated to all other corners at the coordinates (-35, -65, 10), (35, 65, 10) and (35, -65, 10). When X- or XY-symmetry is used, the X-origin field displays the X coordinate of the YZ plane. When Y- or XY symmetry is used, the Y-origin field displays the Y coordinate of the XZ plane. The result of this action will look like this:

C=180˚

C=0˚ C=180˚

C=0˚

-40 40

70

O

-70

Y

X-17.5 17.5

32.5

-32.5

B A

C D

C=270˚

C=90˚

C=0˚

C=180˚

C=180˚

C=2

70˚ C

=270˚

C=9

0˚ C=90˚

C=2

70˚

C=9

C=0˚

C=180˚

Remember that symmetry is not only applied to the position of the luminaire, but also to its orientation: e.g. X-symmetry of a luminaire at coordinates (-35, 65, 10) resulted in a new luminaire on (35, 65, 10) which was rotated automatically so that it's still orientated towards the centre (0, 0, 0). Applying symmetry about the Y-axis to a lighting design does not automatically imply a symmetric light distribution. This is only the case if the luminaire is symmetric about its C=90°...C=270° plane.

Page 64: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.40 -

3.9 Grids

3.9.1 General A grid is an area containing a specific number of points at which lighting calculations are carried out. A grid must always be rectangular in shape and can be in any plane in space (horizontal, vertical or sloping). It is useful to think of a grid as an invisible surface to which a light meter can be attached. The amount of light measured by the light meter changes as it is moved to different points on the surface. It also changes if the light meter is moved from one side of the surface to another. There are two types of calculation grids:

• Generated grids; • User defined (Free added) grids.

3.9.2 Generated grids Calculux Indoor allows you to choose seven preset grids which lay on the six surfaces of the room and the working plane. Details about the grid (like position, number of points) are derived from the selected standard: CIBSE, DIN, NEN or Calculux. The 'Calculux' standard is a grid type which has been developed by Philips Lighting after years of practical experience in indoor lighting applications. Preset grids are a convenient feature when you do not want to define a grid yourself, or when you need to conform to the standards above. You can also use the preset grids as an aid to defining your own grid. For example, if you wish to define a grid parallel to the left wall (x=0) but shifted 1 m towards the centre of the room, then all you have to do is to disconnect the grid by selecting Grid Points Method 'No Rule'. Now you can change the x coordinates of three of the grid's corner points from 0.0 to 1.0. Calculux standard grids Working plane The working plane is defined as the area at working plane height which remains when a border zone is subtracted from the room. Grid points are spaced over the working plane. The distance from the first grid point to the border zone is 0.5 times the spacing between the rest of the grid points. The number of calculation points along either side of the grid is calculated with the following equation: a

1))+0.5side

(Int Min(12, = points grid ofNumber

b c

side = the length or width of the grid

Page 65: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.41 -

This equation is subjected to the following constraints: • Up to 6 meters the maximum spacing between grid points is 0.5 m; • The maximum number of grid points is 12 and the minimum number is 5.

Room Surfaces For each of the room surfaces, the number of calculated grid points and the spacing between the grid points is according to the above rules. Example:

In a room measuring 5.4 x 3.6 x 3.0 m (l x w x h) with a border of 0.5 m the number of grid points on the working plane for a CLX type grid have to be calculated. Using the above formula this will give the following result: The number of grid points in width direction

a width of grid = width of room - (2 x border) � 3.6 - 1 = 2.6

b 1)+0.52.6

(Int = 1)+0.5

grid of width(Int �

Int (6.2) = 6 c Number of grid points (width) � Min (12,6) = 6 The number of grid points in length direction

a length of grid = length of room - (2 x border) � 5.4 – 1 = 4.4 b Int (+1) = Int (+1) � Int (9.8) = 9 c Number of grid points (length) � Min (12,9) = 9 As both calculated values are greater than 5 and less than 12, they are acceptable NEN standard grids Working plane The working plane is defined as the area at working plane height which remains when a border zone is subtracted from the room. The default value for the border zone should be set to 0.6 m. However, it's possible to set a different border for each side of the working plane. Grid points are divided over the remaining area. The distance from the first grid point to the border is 0.5 times the spacing between the rest of the grid points. The spacing in the length and width directions should not be greater than the smallest of the following values:

• 1/3 x (Luminaire height - working plane height). If luminaires are positioned at different heights in the room, or have yet to be positioned, the room height is taken as the height of the luminaire position.

Page 66: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.42 -

• 1/3 x (Length of side under consideration) i.e. 1/3 x (Width - (left border + right border)) or 1/3 x (Length - (front border + back border)).

• 3 m. Room Surfaces The number of calculation points along either side of a grid corresponding to one of the room's surfaces can be calculated with the aid of the following equation:

Number of grid points = 1))+0.5

sideInt( (12, Min

This equation is subject to the following constraints:

• The maximum spacing between grid points is 0.5 m; • The maximum number of grid points is 12 and the minimum number is 5.

DIN standard grids Working plane The grid points are divided over the working plane. The distance from the first grid point to the border is 0.5 times the spacing between the rest of the grid points. In the DIN standard it's recommended to set the border zone to 0. The number of grid points is related to the length of the side of the grid under consideration as follows:

• Length of side is 0 till 2 m use 7 grid points; • Length of side is 2 till 5 m use 8 grid points; • Length of side is 5 till 8 m use 9 grid points; • Length of side is 8 till 10 m use 10 grid points; • Else use 12 grid points.

Room Surfaces The number of grid points and their spacing for each of the room surfaces is the same as above. CIBSE standard grids Working plane The working plane is defined as the area at working plane height which remains when a border zone is subtracted from the room. Grid points are divided over the working plane. The distance between the grid points should be approximately a meter. Calculux meets these requirements by setting a grid to fill the working plane with the first grid point at a half grid spacing from the edge of the border. The number of calculation points along either side of the grid is calculated with the aid of the following equation:

Number of grid points = 1))+1

sideInt( (12, Min

Page 67: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.43 -

This equation yields a grid spacing of approximately 1 m. The grid is subject to the constraint of a minimum of 5 grid points in any direction. The maximum number of grid points is 12.

��In CIBSE standard it is recommendable to set a border zone of 0.5 m.

Room Surfaces The number of grid points and the spacing between them follows the same rules as above for each of the room surfaces.

3.9.3 User defined (Free added) grids Calculux enables you to define your own grids, or to change the specifications of existing grids. If a grid lies on one of the room surfaces, the lighting calculations should be made for the inner side of the surface. If a grid lies within the room (a virtual grid), the user must specify the side of the grid (1 or 2) on which the calculations are performed.

11 22

Size and position of a grid: points A, B and C

A grid is defined by specifying the X, Y and Z coordinates of the three reference corners A, B and C. The 4th reference corner is calculated automatically because the grid is a rectangle. Usually point A is considered the bottom left corner of the grid, so when this is the case, the reference corners are as follows: A = The bottom left corner of the grid B = The bottom right corner of the grid C = The top left corner of the grid

Page 68: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.44 -

The following rules apply to grids: a) The vectors (AB) and (AC) cannot be zero and must be perpendicular.

A small deviation from perpendicularity is allowed, Calculux will correct this automatically. This is especially useful when a person, using a system with limited accuracy, has to specify the corners of a grid with sides that are not parallel to the axis of the coordinate system.

b) The reference corners A, B and C can not be on one line. The following illustrations display a horizontal, vertical and sloping grid. Horizontal grid

2050

20

65

Z

Y

X

nn

B

A

C

Vertical grid

C

A

B

20

100

30

Y

X

nn60

Sloping grid

35

30

C

70B

2060

Z

Y

X

A

nn30

Page 69: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.45 -

Calculation points in a grid

The number of calculation points you define in AB and AC direction is used to divide the grid into equal parts. These are the points at which the lighting calculations will be carried out. There is always a calculation point on each corner. For example, if you set both numbers of points in AB and AC direction to 4, the total number of grid points is 4 x 4 = 16, see figure below. The lighting calculations are performed at each of these points. Distance between calculation grid points:

1- vector)along points grid (Nr.of

vectorof length TotalD =

The number of divisions along (vector) AB and AC is the number of grid points along that vector - 1. In the figure below, the distance between the calculation grid points in AB and AC direction is:

DAB =30

4 - 1= 10

DAC =45

4 - 1= 15

2050

20

65

Z

Y

X

nn

B

A

C

Page 70: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.46 -

Default side

It is usually obvious on which side of the grid (it has two sides) the calculations are to be carried. However, for some calculations, such as surface illuminance and luminance it is not always obvious and therefore becomes necessary to define the default side of the grid. The default side of the grid is related to the orientation of A, B and C and is determined using the right hand rule. The direction of the arrow (the normal vector on the grid area) indicates the side of the grid which is the default. This is always the case unless it is specified otherwise.

C

BC

B

AA

Grid coupling

Calculux enables you to connect a grid to an application field, (a calculation grid usually lies within an application field) ensuring that any changes made to the field parameters automatically change the grid parameters. You can set a calculation grid default for each application field type in the application field defaults dialogue box. The following example demonstrates these principles:

��Make sure the grid is located inside the room.

General field Width = 15 m Length = 28 m Centre position = 0 [x=0.0, y=0.0] Calculation grid: spacing AB = 2 meters spacing AC = 2 meters include Mid Point at Centre Width = yes include Mid Point at Centre Length = yes This will give the following grid reference corner coordinates, see next figure: X Y ZA - 8.0 - 14.0 0.0B + 8.0 - 14.0 0.0C - 8.0 + 14.0 0.0

Page 71: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.47 -

C

A B

(0,0,0)

Y

X

-8.0, 14.0

-8.0, -14.0 8.0, -14.0

Y=14.0

X=7.5

Now moving the centre position of the general field to 5, 0, 0 the grid parameters will automatically change to: X Y ZA - 3.0 - 14.0 0.0B + 13.0 - 14.0 0.0C - 3.0 + 14.0 0.0

C

A B

(0,0,0)

Y

X

-3.0, 14.0

-3.0, -14.0 13.0, -14.0

Y=14.0

X=12.5

(5,0,0)

If in the first example the general field width changes to 20m, the new coordinates will be: X Y ZA -10.0 -14.0 0.0B +10.0 -14.0 0.0C -10.0 +14.0 0.0

Page 72: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.48 -

C

A B

(0,0,0)

Y

X

10.0, -14.0

-10.0, 14.0

-10.0, -14.0

Y=14.0

X=10.0

The grid corners can fall outside the general field due to the spacing leading rule, with the centre point of the dimension of the application field being included. See section 'Spacing leading' for a more detailed explanation. To contain the grid inside the general field it is connected to, exclude 'Mid Point at Centre': Mid Point at Centre Width = no Mid Point at Centre Length = no The grid corner coordinates will change to: X Y ZA -9.0 -13.0 0.0B +9.0 -13.0 0.0C -9.0 +13.0 0.0

C

A B

(0,0,0)

Y

X

9.0, -13.0

-9.0, 13.0

-9.0, -13.0

Y=14.0

X=10.0

Page 73: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.49 -

This aspect of Calculux is very user-friendly: you'll begin to appreciate the benefits of grid coupling when you start building your own projects. For connecting a grid to an application field the following grid point methods are possible: No Rule

When a grid is connected to a application field with 'No Rule', there will be no relation between the definition of the grid and the definition of the field. The grid is defined by the corner points (A, B and C), the number of points in the AB and AC direction, and the direction of the normal vector. The grid will remain at the same position when the application field is moved and will also be deleted if the application field is deleted. Points Leading

Along each dimension (i.e. length and width of the application field) the number of calculation grid points is defined. These points will be evenly spread over the surface of the application field starting at the edge or at half spacing from the edge, depending on your selection. Once your selections have been made, Calculux calculates the positions of A, B and C displaying the grid in the view box. In the following figure the number of calculation grid points along AB is 7, starting at half spacing from the edge. This gives a spacing of 10m. (between calculation points).

A B70m5m

70.00.0 In the following figure the number of calculation grid points along AB is 7, starting at the edge (point A). This gives a spacing of 11.67m. (between calculation points).

A B70m11.67m

0.0 70.0 Spacing Leading

Along each dimension (i.e. length and width of the application field) the spacing of the calculation grid points is defined, together with the choice whether or not to include the centre of each dimension in the application field. Once your selections have been made, Calculux calculates the positions of A, B and C displaying the grid in the view box. In the following figure the spacing between the calculation grid points along AB is 10m. The centre point of the dimension of the application field is not included, giving:

• The first point at X = +2.5m; • The last point at X = +72.5m.

A B75m2.5m 10m

0.0 75.0

Page 74: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.50 -

In the following figure the spacing between the calculation grid points along AB is 10m. The centre point of the dimension of the application field is included, giving:

• The first point at X = -2.5m; • The last point at X = +77.5m.

A B75m2.5m 2.5m10m

0.0 75.0 The distance between the application area and the border grid point is, at a maximum, half that of the spacing. In case spacing leading is used, the calculation grid can be larger than the application field to which it is connected. To include the grid within the field, switch between 'Mid Point at Centre' included 'Yes' or 'No'. Normal vector of a grid

The normal vector is perpendicular to the plane of the grid and is defined by using the right-handed coordinate system. Presentation of results

When the results of lighting calculations are presented in a textual table, they have a particular format. The calculated results for point A always appear at the bottom left corner of the table, the results for point B at the bottom right corner and the results for C at the top left corner, for example:

A: x = 0.25 y = 0.25 z = 0.00 B: x = 3.75 y = 0.25 z = 0.00 C: x = 0.25 y = 5.75 z = 0.00 If the number of points AB = 8 and AC = 12 and no output rotation is performed, this will give the following format:

C

A B

L (Y)

W (X)

5.75

5.25

4.75

4.25

3.75

3.25

2.75

2.25

1.75

1.25

0.75

0.250

0.25 1.25 2.25 3.25

L = Length W = Width

Page 75: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.51 -

The '+' represents the calculated result, (you can define points A, B and C to create any layout for the results you require). A different presentation of the calculated results can be displayed by defining the coordinates of points A, B and C as follows: A: x = 0.25 y = 0.25 z = 0.00;B: x = 0.25 y = 5.75 z = 0.00;C: x = 3.75 y = 0.25 z = 0.00. If the number of points AB = 8 and AC = 12 and no rotation is applied, this will give the following format:

C

A B

W (X)

L (Y)

3.25

2.75

2.25

1.75

1.25

0.75

0.250

0.25 1.25 2.25 3.25 4.25 5.25 L = Length W = Width

Page 76: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.52 -

3.10 Shapes

A shape is a surface area in the same plane as a grid. Shapes can be used to create a user-defined form on the rectangular grid which is excluded from the calculations. Virtually any kind of form can be created. Shapes are connected to a grid, therefore shapes can only be added after a grid is defined. If multiple shapes are defined for a grid, each shape has an unique name. In Calculux, shapes can be set active or inactive. Active and inactive shapes

Each shape can be set active or inactive individually. Only grid points not covered, or covered by inactive shapes will be used for calculation by Calculux. The shapes on a grid cover a grid point if at least one active shape covers the grid point. In Calculux shapes can be defined in two ways:

• Pre-defined shapes • User-defined shapes

3.10.1 Pre-defined shapes In Calculux, some application fields use a connected grid other than the standard rectangle. For these application fields a set of pre-defined shapes is used to create different application field outlines. If the size of the grid is changed, the position and size of the shapes is updated automatically. The user cannot change or delete these pre-defined shapes, but can duplicate or add a shape. A duplicated shape will be a user-defined shape. Each pre-defined shape can be set active or inactive.

3.10.2 User-defined shapes On all calculation grids the user can add shapes by specifying the required input parameters. The user can add, change, duplicate or delete shapes. A user-defined shape can be set active or inactive. In Calculux, the following shape types can be defined by the user:

• Set of points • Rectangle • Closed polygon • Arc

Page 77: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.53 -

Set of points

The set of points shape can be used to cover individual grid points. This is especially useful when a few grid points at the edge of an application field or next to a generated shape must be excluded for calculation by Calculux. It only has effect when real grid positions are excluded. A point can be entered between grid points but will have no effect. C

A B Coordinates can be entered using the dialogue box. However, coordinates which are exactly on a grid point can also be entered simply by mouse-clicking on the grid point in the view box. Notes:

• Points within 5mm from a grid point are taken as that grid point. • When the number of grid points is changed, it is possible that the selected points are no

longer on a calculation point. Rectangle

The rectangle shape can be used to create rectangular shapes. It is defined by its lower left corner position (relative to point A of the grid), width and length. C

A B

Page 78: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.54 -

Furthermore, rotation around the starting point of the rectangle shape can be specified (see figure below).

0

10

20

30

C

A 10 20 30 40 B

45

90

If the 'Change Proportionally' function is enabled, the position and size of the shape is changed proportionally with the size of the grid. Polygon

The polygon shape can be used to create irregular shapes consisting of straight lines. At least three coordinates must be entered. The polygon is automatically closed by the program (first and last point are the same). All coordinates are relative to point A of the calculation grid. Lines within a polygon must not cross each other. Coordinates can be entered using the dialogue box. However, coordinates which are exactly on a grid point can also be entered simply by mouse-clicking on the grid point in the view box. Polygonal shapes can be set as inbound or outbound. Inbound

C

A B The default setting for the polygon shape is inbound. In this case the area covered by the inbound of the shape will be excluded from the calculations.

Page 79: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.55 -

Outbound

C

A B Choose the Outbound Polygon option to create user-defined application fields that are polygonal shaped. The area covered by the outbound of the shape will be excluded from the calculations. Rotation

If rotation is applied a polygonal shape is rotated around grid corner A (see figure below).

0

10

20

30

C

A 10 20 30 40 B

90

If the 'Change Proportionally' function is enabled, the position and size of the shape is changed proportionally with the size of the grid. Arc

The Arc shape can be used to create circular shapes. The arc shape is defined by its starting position (relative to point A of the grid), radius and angle. The arc shape can be rotated around its starting position. Arc shape coordinates between grid points can only be entered using the dialogue box. The arc shape can be set as inbound or outbound.

Page 80: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.56 -

Inbound

C

A B The default setting for the arc shape is inbound for creating segments up to a full circle. The area covered by the inbound of the shape will be excluded from the calculations. Outbound

C

A B Choose the Outbound Arc option to create rounded corners or edges on user-defined application fields. The area covered by the outbound arc shape will be excluded from the calculations.

3.10.3 Symmetry Symmetry is an optional specification that can be used to simplify individual shape entry when one or more shapes have a symmetrical orientation and/or position. If applied, the shape is duplicated on the opposite side of a line parallel to the AB axis or the AC axis, or it is duplicated to all quadrants. The user can specify the symmetry type (AB, AC, AB-AC or none) and the AB and AC origin (relative to point A of the grid).

Page 81: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.57 -

3.11 Lighting control (Switching Modes / Light Regulation Factor)

In many designs the lighting system must be flexible so that the lighting level can be adapted to suit the activities for which the facility is to be used. The Calculux 'Lighting control' feature enables you to dim luminaires or luminaire arrangements. When using a 'Lighting Control' system you can:

• Save energy When light sensors are used you can automatically dim luminaires in areas where the amount of daylight increases. By means of movement detectors you can automatically switch of luminaires when an area is not 'occupied'. In this way an energy saving of up to 70% can be achieved.

• Increase the flexibility of the lighting installation When infrared remote control is available, the need for vertical wiring to wall switches is eliminated; Reduction of the installation costs; Less costly adaptations to the electrical system, when the furniture layout is changed.

• Create more comfort for the user When pre-programmed lighting levels are available, the user can switch or regulate the lighting installation to the required lighting level. In Calculux you can create a 'Lighting Control' system using:

a) Switching Modes b) Light Regulation Factors

3.11.1 Switching Modes A switching mode is a subset of luminaires which are in operation. For example, you can first generate a design for a conference room for video presentation and then by adding luminaires go on to generate a design for a conference situation. In this way the lighting level can be adapted to suit the activities for which the facility is to be used.

3.11.2 Light Regulation Factor (LRF) This option enables you to dim luminaires or luminaire arrangements. By using this option you can save energy, increase the flexibility of the lighting installation or create more comfort for the user. The value of the light regulation factor is expressed in % of the lumen output of a luminaire.

��There is no linear relation between the value of the light regulation factor and the power consumption of a luminaire. As a result of this, when light regulation factors are used, the power consumption of the luminaire can not be calculated. So in the cost calculation the energy costs will not be given.

Page 82: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.58 -

3.12 Drawings

A drawing is a 2-dimensional shape which you can add to your lighting design. A drawing may be a rectangle, arc, line or text. It is unlikely that you will need to add a drawing within an application field, as all the required areas are automatically included. You are more likely to place a drawing outside an application field to to illustrate your design (e.g. to represent a nearby construction). Be aware that if you move the centre coordinates of an application field, the drawing you've added will not move. Drawings appear on screen and in your printed reports if selected, but do not affect your calculations or scaling. The name and dimensions must be entered before a drawing can be included in a project. The exception is the text option. For this drawing, entering the name, the XYZ coordinates of where the centre of the text should be and the actual text is all that is required. You may wish to use a rectangular drawing e.g. for indication of luminaire positions, desks, conference tables, obstructions etc.

��A drawing does not affect the scaling of project overviews, calculation result views and the results of calculations.

Page 83: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.59 -

3.13 Light-technical Calculations

Calculux Indoor currently supports the following calculation type: • Plane illuminance • Unified Glare Rating

3.13.1 Plane Illuminance This is the ratio of the luminous flux incident on an infinitely small flat surface to the area of that surface. The surface can have any orientation. The orientation is defined by the normal vector on the surface. Y

d

X

γ

αn

Z

Ip

P

The plane illuminance (from one light source) at point P on the calculation grid is given by:

E =I

dCosp

p2 α

Variables: Meaning: Ep Plane illuminance at point P Ip Luminous intensity from the light source in the direction of point P d Distance from the source to point P (m) α Angle between the normal n and the light incidence This formula assumes that the luminaire is a point source. For fluorescent luminaires, of which the distance between the luminaire and the point P is short in comparison with dimensions of the luminaire, the above formula is not valid. Calculux has a built-in feature (luminaire split-up) which overcomes this problem. When the luminaire split-up feature is activated, the luminaire is considered to be made up of a number of smaller luminaires with the same light distribution but proportionally smaller lumen output. The following types of surface orientation information relating to each point on the grid are recognised by Calculux.

Page 84: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.60 -

a) The surface orientation of each point on the grid can be in one of the main directions of the XYZ coordinate system: Hor +Z Horizontal +Z grid point. The surfaces in the grid points, used in the calculation, are orientated towards the positive Z direction.

2035

1535

Z

Y

X

��The surfaces are infinitely small planes (one in each grid point) on which the light calculations are being performed.

Hor -Z Horizontal -Z grid point. The surfaces in the grid points, used in the calculation, are orientated towards the negative Z direction.

2035

1535

Z

Y

X Vert +X Vertical +X grid point. The surfaces used in the calculation are orientated towards the positive X direction.

2035

1535

Z

Y

X

Page 85: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.61 -

Vert -X Vertical -X grid point. The surfaces in the grid points, used in the calculation, are orientated towards the negative X direction.

2035

1535

Z

Y

X Vert +Y Vertical +Y grid point. The surfaces in the grid points, used in the calculation, are orientated towards the positive Y direction.

2035

1535

Z

Y

X Vert -Y Vertical -Y grid point. The surfaces in the grid points, used in the calculation, are orientated towards the negative Y direction.

2035

1535

Z

Y

X

Page 86: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.62 -

b) The surface orientation is parallel to the plane that passes through the grid points.

This enables the illuminance to be calculated on two sides of the plane through the grid points: Surface +N Surface +N grid point. The surfaces in the grid points, used in the calculation, are orientated parallel to the plane which passes through the grid points in positive N direction.

3570 B

C

2060

Z

Y

X

A

nn

Surface -N Surface -N grid point. The surfaces in the grid points, used in the calculation, are orientated parallel to the plane which passes through the grid points in negative N direction.

3570

C

2060

Z

Y

X

A

B

n -n

3.13.2 Glare Glare is the condition of vision in which there is a reduction in the ability to see details or objects due to an unsuitable distribution or range of luminance, or to extreme contrasts. Glare can occur in one of two possible forms:

• Disability glare glare that impairs the vision; • Discomfort glare glare that induces a feeling of discomfort.

For indoor Lighting the measure for discomfort glare is called the UGR factor. UGR is explained in the following section.

Page 87: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.63 -

UGR

The Unified Glare Rating, UGR, is a measure for the amount of discomfort glare in an indoor lighting installation. A lower glare rating results in a better glare restriction. The practical meaning of the range of the glare assessment scale is from 10 (unnoticeable) to 30 (unbearable). For the calculation of the UGR the CIE formula is used:

UGR = 8 log{0.25/Lb � L2 ω/p2} Variables: Meaning: UGR unified glare rating. Lb background luminance, determined by the lighting, the room size and

the reflectances. It is calculated from the vertical illuminance caused by interreflections on the observer's eye.

L luminance of the luminaire in the direction of the observer's eye. ω solid angle of the luminous parts of the luminaire as seen by the

observer. p position index of the luminaire (a value given by CIE typical for the

displacement of the luminaire from the line of sight). To get insight in the overall effect of glare from a lighting installation, an UGR calculation for reference conditions as specified in the CIE tabular method is most suitable. The resulting single value (called in Calculux UGRCIE), is the value against which specifications can easily be checked. For detailed glare rating evaluations, Calculux has also the possibility to calculate UGR values for non-reference conditions. In this case the observers are situated in a given grid at each grid point. For four mutual perpendicular viewing directions with parallel and crosswise view, individual UGR values can be calculated. The line of sight is always horizontal and the eye height is given by the grid parameters. CIE tabular method reference conditions for UGR

CIE specifies reference conditions (according to the tabular method) for the calculation of UGR. The resulting single UGR value is called in Calculux UGRCIE tabular method. It is the most typical value for the overall effect of glare from the total lighting installation. The reference conditions are:

• Luminaire geometry: luminaire spacing in both directions 0.25 H, with H being the vertical distance between the observer eye and the luminaire.

• Observer position: against the middle of the respective walls at 1.2 m above the floor with horizontal viewing directions perpendicular to the wall.

��CIE's tabular method is not defined for complex situations. As a consequence also UGRCIE is not defined for such complex situations. Calculux will therefore only calculate UGRCIE for the following situations:

Page 88: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.64 -

• Rectangular rooms • All luminaires of the same type and at the same height • All luminaires positioned parallel to the walls • Luminaires not asymmetrical or tilted.

In all other situations Calculux will print 'UGRCIE not defined'. UGR in a calculation point

For each luminaire in the room, it's contribution to the Sum � in the main formula is calculated. The calculation uses the formula:

UGR contribution = L2 ω/p2

The Luminance (L) and the solid angle ω are calculated by Calculux. P is taken from the Guth Position Index Table: Background luminance

The background luminance, Lb, is defined as that uniform luminance of the whole surroundings which produces the same illuminance on a vertical plane at the observer's eye as the visual field under consideration excluding the glare sources. It may be obtained from the formula: Lb = Ei/π where Ei is the indirect illuminance at the eye of the observer (lux). The indirect illuminance is the illuminance on the eye caused by the luminance of the walls (direct illuminance from the light sources is not taken in to account). Output

The output format of the calculation of point values will be presented in a textual grid, analogous to Calculux's vertical illuminance output. The values will be presented as rounded whole figures. The average, min/ave and min/max values are not calculated and will not be printed in this output. At the top of the output page the UGRCIE value will be presented, if defined. Also in the summary the UGRCIE values will be output per switching mode, that is, if they are defined and applicable.

Page 89: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.65 -

3.13.3 Indirect contribution The amount of light reaching a point depends on the direct contribution from the luminaires and on the indirect contribution reflected from the room's surfaces. Calculux Indoor calculates the indirect contribution by dividing the room's surfaces (cells) into a number of subsurfaces which are assumed to be area light sources with uniform radiance. The number of subsurfaces is defined with the 'interreflection accuracy level' which is set Room dialogue box. Since the total illuminance at a point includes the direct contribution plus the contribution of the subsurfaces, the more subsurfaces you have the more accurate your results will be. The direct contribution on each surface is calculated by placing a grid on each subsurface and deriving the incident illuminance from each luminaire according to the equation for the plane illuminance (see section 'Plane Illuminance'). The individual values are added up and averaged to give the total average illuminance on each surface. From the average direct contribution, the complete interreflection matrix is solved to calculate the average total radiance on each surface. Then from each surface the contribution to a point is calculated. When the room's surfaces are not divided into smaller subsurfaces, the so-called 6-plane interreflection model is used. This model corresponds to a normal interreflection accuracy level setting in the Room dialogue box.

��The Indirect Contribution can only be calculated when the surfaces in the grid points, used in the calculation, are orientated towards the positive or negative X-,Y- or Z-direction.

3.13.4 Calculating the numbers of luminaires needed When you add a luminaire from a database or PHILLUM file, Calculux can give you a quick estimation of the number of luminaires needed to provide the required illuminance level. The calculation is done according the so called Utilisation Factor (UF) method. Quick Estimation

If you enter the required illuminance level (in the Room dialogue box), Calculux will be able to determine a quick estimation of the number of luminaires needed. This calculation is done for each luminaire individually and is performed according to the UF (Utilisation Factor) method described in CIE reports 40 and 52.

UFMFFNL

WLE=N

∗∗∗∗∗

Where the variables are: N = number of luminaires needed E = required illuminance L = room length W = room width NL = number of lamps in each luminaire Φ = lamp flux MF = maintenance factor UF = utilisation factor

Page 90: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.66 -

Utilisation Factor (UF)

The Utilisation Factor is calculated according to the lumen method. This method uses the CIE flux code of the luminaire, the room's dimensions and the reflection properties of its surfaces to perform the calculation. The room's dimensions are characterised by the room index K, defined as:

W)+(L)0H-1(H

WL=K

∗∗

Where the variables are: L = room length W = room width H1 = room height H0 = height of the working plane The Utilisation Factor can be found when the room index and the reflectance of the room are known. They are tabulated as part of the luminaire photometric data. Strictly speaking, the UF method is only valid if the luminaire arrangement and the room dimensions are exactly the same as those in the CIE reports. However, experience shows that the values are valid for most practical situations. The UF method of calculating the number of luminaires is used as a rough indication. A point calculation can always be performed. For this reason Calculux Indoor only uses the CIE method of calculating the utilisation factor as the differences between it and other methods (DIN, CIBSE, etc.) are quite small. The table below shows an example of room index values for a typical luminaire. Utilisation Factor Table TBS 300/236 M6 2XTL-D36W/840 Reflectances (%) for ceiling, walls and working planeroom 80 80 70 70 70 70 50 50 30 30 0 index 50 50 50 50 50 30 30 10 30 10 0 K 30 10 30 20 10 10 10 10 10 10 0 0.60 0.39 0.37 0.39 0.38 0.37 0.33 0.33 0.31 0.33 0.30 0.29 0.80 0.46 0.44 0.46 0.44 0.43 0.39 0.39 0.37 0.39 0.36 0.35 1.00 0.52 0.48 0.51 0.50 0.48 0.44 0.44 0.42 0.44 0.41 0.40 1.25 0.57 0.52 0.56 0.54 0.52 0.49 0.48 0.46 0.48 0.46 0.45 1.50 0.61 0.55 0.60 0.57 0.55 0.52 0.51 0.49 0.51 0.49 0.48 2.00 0.66 0.59 0.65 0.62 0.59 0.57 0.26 0.54 0.55 0.54 0.52 2.50 0.70 0.62 0.68 0.64 0.61 0.59 0.58 0.57 0.57 0.56 0.55 3.00 0.72 0.63 0.70 0.66 0.63 0.61 0.60 0.59 0.59 0.58 0.57 4.00 0.75 0.65 0.73 0.68 0.64 0.63 0.62 0.61 0.61 0.60 0.59 5.00 0.76 0.66 0.74 0.69 0.65 0.64 0.63 0.62 0.62 0.61 0.60 Suspension ratio: 0 Calculated acc. to CIE publication 40 LVW1077000-00

Page 91: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.67 -

Uniformity Check

In some instances, the database contains information about the maximum advisable spacing to height ratios of luminaires which provide good uniformity. These values are taken into account in the Quick estimation and can sometimes lead to a greater number of luminaires than required to provide the average illuminance level. The uniformity check is restricted to checking the minimum numbers in length and width. This check is performed only if the luminaire maximum spacing to height ratio is given in the database. The uniformity check is based on the values as given in the data base. These values are calculated for a grid of 4 times 4 luminaires. The uniformity is calculated in the square of the middle four luminaires (as set out in CIBSE TM5).

��In practical situations the above conditions are not always met.

3.13.5 Quality Figures Calculux allows you to show the quality figures of the calculations. Depending on the settings of the Quality Figure tab (see Calculation menu, Presentation...) the following quality figures can be displayed: Average value calculation

The average value for a grid is worked out by adding the calculated values of each point and dividing it by the number of grid points (grid dimensions; AB, AC).

AC)(Points * AB)(Points

points idividual allfor valuescalculated S=Average

Minimum This is the minimum calculated value. Maximum This is the maximum calculated value. Minimum/maximum This is the minimum calculated value divided by the maximum calculated value. Minimum/average This is the minimum calculated value divided by the average calculated value. Unified Glare Rating according to the CIE tabular method (UGRCIE) This is the Unified Glare Rating under reference conditions as specified in the CIE tabular method.

Page 92: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.68 -

3.14 Report Setup

A very useful feature of Calculux is the report facility. When you have completed a lighting project you can create attractive reports to present the results of the calculations to your customers. By means of the Report Setup you can simply specify the layout of the report and components you wish to include. For example, you can include, a table of contents, 2-D and 3-D project overviews, a summary, luminaire information (including Polar or Cartesian diagram) and/or financial data. For detailed information about your calculation results you can include the following presentation formats:

• Textual Table; • Graphical Table; • Iso Contour; • Filled Iso Contour; • Mountain Plot.

You can also include a summary of your findings and recommendations about the best lighting solutions. If you wish, you can produce reports in several languages.

��The order of the calculation results can be altered (see Calculation Presentations dialogue box). However, the order of the presentation formats is governed by Calculux and cannot be altered.

Calculux enables you also to print a report in portrait or landscape format with the 2D result views rotated 90°. This option (Report menu, Print Setup, Layout tab) can be very useful. For instance, when a report which has to be printed in portrait format contains a landscape formatted 2D result view which looks relatively small. By selecting 'Rotate presentation for Portrait Printing', the 2D result views will be rotated 90°. Because of the rotation the view can be enlarged.

Page 93: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.69 -

3.15 Cost Calculations

Calculux allows you to calculate the annual energy, investment, lamp and maintenance costs for the lighting installation in your project. You can view and/or enter the data for calculating the 'annual costs' and the 'total investment' costs of the project.

3.15.1 Total Investment The Total Investment is the cost of the luminaires, lamps and the installation of the entire lighting project. The Total Investment costs are calculated according to the following formula:

( )( )( )NL*LAPRINSTCLPR*NTlumtype

stmentTotal_Inve ++Σ=

Variables: Meaning: INSTC Installation costs of the particular luminaire type; LAPR Lamp price for the particular luminaire type; LPR Price of the particular luminaire type; NL Number of lamps for the particular luminaire; NT Number of luminaires of the particular type; Σlumtype Sum for all luminaires types.

Page 94: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.70 -

3.15.2 Annual costs The total annual costs are calculated according to the following formula: Total Annual Cost = EN + AI + LC + MC Variables: Meaning: EN: Energy costs per year; AI: Annual investments costs for the particular luminaire type; LC: Lamp replacement costs per year; MC: Maintenance costs per year. The formulas for these costs are:

}swimodBRNH*LWATT)}*swimod(NTlumtype

{{swimod

*1000

KWHPR = EN ΣΣ

INSTC)} +(LPR * {NT lumtype

* AF=AI Σ

*N*100]}R+[1{1-1

100R = AF

RP

LAPR}*NL*{NT lumtype

= LCΣ

RP

MCL}*{NT lumtype

= MCΣ

Variables: Meaning: AF the annuity factor; BRNHswimod the burning hours per year of the switching mode; INSTC the installation cost per luminaire for a particular luminaire type; KWHPR the kilowatt-hour price; LAPR the lamp price for a particular luminaire type; LPR the price per luminaire for a particular luminaire type; LWATT the total watts per luminaire for a particular luminaire type; MCL the maintenance cost per luminaire for a particular luminaire type; N the amortization period (years); NT the number of luminaires of a particular type; NTswimod the number of luminaires of a particular type per switching mode; NL the number of lamps per luminaire for a particular luminaire type; R the interest rate (%); RP the relamping period (years) for a particular luminaire type; Σlumtype the sum for all luminaire types.

Page 95: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.71 -

Cost calculations and light regulation factors

There is no linear relation between the value of the light regulation factor and the power consumption of a luminaire. As a result of this, when light regulation factors are used, the power consumption of the luminaire can not be calculated. So in the cost calculation the energy costs will not be given.

Page 96: Manual Indoor

Chapter 3 Background Information

Calculux Indoor

- 3.72 -

3.16 Maintenance Factor/New Value Factor

The Maintenance Factor is the ratio of the average illuminance on the plane under investigation after a specified period of use of the lighting installation, to the average illuminance obtained under the same conditions for a new installation. It is always equal or less than 1 and is used as a multiplier for calculations, based on luminaire light distribution tables. In some countries the New Value Factor (or Inverse Maintenance Factor) is used. Calculux allows you to use new value factors instead of maintenance factors. The 'Inverse Maintenance Factor' is always more than or equal to 1. The following maintenance factors are specified:

• General Project Maintenance Factor; • Luminaire Type Maintenance Factor; • Lamp Maintenance Factor.

3.16.1 General Project Maintenance Factor This maintenance factor takes into account a general factor with which all calculation results are multiplied. It acts as a safeguarding factor and must reflect the overall conditions of the room surfaces. The value of the 'Project Maintenance Factor' is always equal or less than 1.

3.16.2 Luminaire Type Maintenance Factor This maintenance factor takes into account the reduction of light output caused by dirt deposited on or in a luminaire. The rate at which the dirt is deposited depends on the construction of the luminaire and the extent of what dirt is present in the environment. The value of the 'Luminaire Type Maintenance Factor' is always equal or less than 1.

3.16.3 Lamp Maintenance Factor The Lamp Maintenance Factor value is always equal or less than 1 and consists of two elements: a) Lamp Survival Factor; b) Lamp Lumen Depreciation Factor.

a) Lamp Survival Factor This maintenance factor takes into account the percentage of the lamp failures during a specific number of operation hours. It is only applicable when a group replacement is to be carried out. The 'Lamp Survival Factor' is based on the assumptions about the switching cycle, supply voltage and control gear.

b) Lamp Lumen Depreciation Factor. This maintenance factor takes into account the fact that the luminous output of all lamps decreases with use.

Page 97: Manual Indoor

Calculux Indoor

Appendix 1

Page 98: Manual Indoor

Calculux Indoor

Page 99: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.1 -

1 My First Project

1.1 General

This tutorial will take you through the process of creating a new Indoor lighting project.You will create a project, enter general project data, specify a room, perform a calculationand print a report. What the results of the print job of 'My First Project' should look likecan be seen in appendix 1a.

In 'My First Project' the following installation will be created:

Room Specifications� Room dimensions

Width 3.50 mLength 5.60 mHeight 2.70 mWorking Plane Height 0.80 m

� ReflectionsCeiling 0.50Walls 0.30Floor 0.10

� Position (of Left Front side of the room)X 0.0Y 0.0

Required illuminance levelGeneral lighting 300 lux on working plane

Luminaire SpecificationsLuminaire type TBS600/135 C7-60Lamp type TL5 35W

Project MaintenanceFactor 0.80

Assumptions� Installation of Calculux Indoor has been successful;� Vignettes have been installed;� Phillum files have been installed;� Database has been installed.

Before you start 'My First Project' first you should check the default settings of Calculux.

Page 100: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.2 -

1.2 Checking the default settings

In this section you will check some default settings. By means of default settings you canspecify parameters that affect all future projects (new defined luminaires, luminairearrangements, calculations and/or reports, etc.). The default settings remain valid the nexttime Calculux is started and can be changed at any time. If you specify/set the mostcommon used parameters, you eliminate the need to specify/set the same parameters everytime you create a new project. The default settings can be entered by means of the Optionmenu and are saved in the configuration file of Calculux.

Do not use the Option menu when you want use different parameters for one particularproject only.

For 'My First Project' you are going to check the following default settings:� Environment (options) (default settings concerning the program environment)� Report Setup Defaults (default settings concerning the contents and layout of

the report)� Calculation Presentation Defaults (default settings concerning the Calculation

Presentation)

1.2.1 Environment

� Select Environment from the Options menu.

� Select the Directories tab.Check the directory settings of the Project files, Phillum files and Vignette files.

� Select the Database tab.Check the directory settings of the Database files.

� Click OK to return to the Main View.

The Environment Options only have to be set after installing Calculux.

1.2.2 Report Setup Defaults

� Select Report Setup Defaults from the Options menu.

� Select the Contents tab.

In the Included box, select the chapters to be included in the report.The following chapters should be displayed:� Title Page;� Table of Contents;� Top Project Overview;� Summary;� Luminaire Details;� Installation Data.

Page 101: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.3 -

In the Presentation Forms box, select the presentation forms of the calculation presentationresult views.Select Textual Table

Iso ContourFilled Iso Contour

� Select the Layout tab.

In the Project Luminaire Information box, select in which way the luminaire luminousintensity information is to be shown.Select Show Polar Diagram

In the Installation Data box, select which elements are to be displayed in chapter'Installation Data' of the report.Select Show Aiming Angles

In the General box, select which additional information is to be displayed and in whichlanguage the report is to be created.Select Show Page Number

Show File NameLanguage 'UK'

� Click OK to return to the Main View.

1.2.3 Calculation Presentation Defaults

� Select Calculation Presentation Defaults from the Options menu.

� Select the Presentation Forms tab.In this tab you can select the elements to be displayed in the calculation presentation resultviews.Select Textual Table

Iso ContourFilled Iso Contour

� Select the General tab.

In the Show box, select the elements to be displayed by default in the calculationpresentation and report.Select Luminaires

Luminaire CodeLuminaire LegendDrawingsFill Color LegendRoomConnected FieldConnected Grid

In the Iso Contour Method box, select which Iso Contour Method will be used by default forthe calculation presentation.Select Relative

Page 102: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.4 -

� Select the Scaling tab.

In the Minimum Report Scale box.Select 10

In the Sizing box, select the default sizing of the calculation presentation result views,select:Zoomed Relative to Grid:Factor 1.000

By setting the above scaling, the size of the defined objects in the calculation presentationresult overviews will be based on the size of the grid and the field. The size is determinedby the 'Zoom Factor'.

� Click OK to return to the Main View.

1.3 Starting a new Project

In this section we will enter project data, perform a calculation and print a report.But before you can start entering project data you have to start a new project.

� Select New Project from the File menu.A new empty window will be created. You can maximize the view if you wish.

1.4 Enter Project Information

� Select Project Info from the Data menu.

� In the Project tab you can enter project information, e.g.:Name My First DesignSubname Example 1aRemarks General Lighting for my Office

Room Dimensions:Width 3.5 mLength 5.6 mHeight 2.7 m

Designer 'Your Name'

� In the Customer tab you can enter customer information, e.g.:Name 'Your Customer Name'

� In the Company tab you can enter company information or select a vignette file.For 'My First Project' you will use a previous created vignette file containing the companyinformation:� Click Browse

� Select LiDAC vignet (assuming the standardvignettes are installed and theenvironment is set correctly).

� Click Accept

� Click OK to return to the Main View.

Page 103: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.5 -

1.5 Setting Project Options

� Select Project Options from Data menu.For 'My First Project' the following Project Options have to be set:

In the Calculation box:Disable (no checkmark) 'Luminaire Splitup'

Set 'Project Maintenance Factor' to: 0.80

In general, for indoor lighting designs, the luminaire split-up is needed only for precisecalculations, such as indirect lighting (uplighter).

� In the 2D View tab and 3D View tab:Disable 'Aiming Arrows'.

� Click OK to return to the Main View.

1.6 Specifing the Room

� Select Room from the Data menu.

� Select the Definition tab.

In the Dimensions box, enter the dimensions of the room:Room Width 3.50 mRoom Length 5.60 mRoom Height 2.70 mWorking Plane Height 0.80 m

In the Position box you can define the position of the Left Front corner of the room.By means of the 'Centre' button you can position the centre of the room in origin(x=0, y=0). For this project the position of the Left Front corner is 0,0.

� In the Quick Estimate box you can specify the requested illuminance level as generallighting. The value you specify will be used by Calculux to calculate the number ofluminaires needed to meet the required Illuminance level.In the 'Required Illuminance Level field',enter 300 lux

� Select the Interreflection tab.

In the Interreflection Accuracy box you can specify the accuracy of the interreflectioncalculations.Select Normal

� Click OK to return to the Main View.

Page 104: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.6 -

1.7 Selecting Project Luminaires

To select Project Luminaires:a) select Project Luminaires from the Data menu or;

b) click on Toolbar shortcut button .

a) Selecting Project Luminaires from the Data menu� Select Project Luminaires from the Data menu.

� Click Add and select Database.

In the Application Area box you can select the application area(s) you want to use.Select Indoor Lighting

� Click Open.

� In the Add Project Luminaires dialogue box, select the family name and/or family code of theluminaire:Family Name TBS600Family Code TBS600

By default both the family name and the family code are set to 'any' (no luminaires will beselected). Nevertheless, you should select 'any' for the family name if the family name isunknown or select 'any' for the family code if the family code is unknown.

� Select the housing and light distributor of the luminaire, select:Housing TBS600/135Light Distributor C7-60

� Click Add.

� Click OK, then Close (twice) to return to the Main View.

OR

b) Clicking on Toolbar shortcut button .

� Click on in the Calculux menu bar.Select the housing and light distributor of the luminaire, select:Housing TBS600/135Light Distributor C7-60

� Click Add.

� Click OK to return to the main View.

If the luminaire is not in your database you can select another Indoor luminaire. If youwish you can view luminaire details by clicking on the Details button.

Page 105: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.7 -

1.8 Positioning luminaires

Calculux allows you to position luminaires individually as well as in arrangements.For 'My First Project' you will create a Room Block arrangement. The number ofluminaires needed will be calculated according to the utilization factor (UF factor).

� Select Arranged Luminaires from the Data menu.

� Click Add and select Room Block.In the UF Method box you can see that 3.5 luminaires is sufficient for the requestedilluminance level of 300 lux as general lighting.

Click Generate.

A Room Block arrangement of 4 luminaires will be generated.

In the Definition box enter the name of the arrangement, enter:Name General

� Click OK, then Close to return to the Main View.

1.9 Defining a (calculation) grid

Before a calculation can be performed a (calculation) grid has to be defined. You candefine your own grid, define a grid according to a rule or use a preset grid.

For this project you will use a preset grid.

� Select Grids from the Data menu.

� Click Add in the Grids dialogue box.In the Add Grid dialogue box, enter the name of the grid, enter:Name Working PlaneIn the Coupling box, select:Connected to Working Plane

� Click OK, then Close to return to the Main View.

1.10 Performing a calculation

All settings concerning the definition or presentation of a calculation for a specific projectare performed in the Calculation menu. For 'My First Project' project you will use thedefault settings as set in section 1.2.3 (Calculation Presentation Defaults), so no settingshave to be done.

� Select Show Results from the Calculation menu.The calculation will be performed.

Page 106: Manual Indoor

Appendix 1 My First Project

Calculux Indoor

- A1.8 -

1.11 Printing the report

All settings concerning the contents and layout of a report for a specific project arenormally done in the Report menu. For 'My First Project' project you will use the defaultsettings as set in section 1.2.1 (Environment) and 1.2.2 (Report Setup Defaults), so nosettings have to be done.

� Select Print Report from the File menu.

� Click OK in the Print dialogue box to print the report.The results of the print job of 'My First Project' can be seen inappendix 1a.

1.12 Saving the project

In case you wish to redesign the project later, it is advisable to save the project.

� Select Save from the File menu.Enter the file name, enter:File Name Office 1.cin

� Click OK to save the project.

� Select Exit from the File menu to close the program.

Page 107: Manual Indoor

Calculux Indoor

Appendix 2

Page 108: Manual Indoor

Calculux Indoor

Page 109: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.1 -

1 My Second Project

1.1 General

In this tutorial furniture and additional lighting, such as task lighting and accent lightingwill be added to the indoor lighting installation you have created in 'My First Project'.Due to windows in the back wall of the room two luminaires of the Room Blockarrangement have to be moved.

1.2 Open 'My First Project' and save it under a new name

� Select Open Project from the File menu.

� Select OFFICE 1.CIN and click OK.

� In de File menu, select Save As.

� In the File Name box, enter OFFICE 2.CIN and click OK.You are now working in OFFICE 2.CIN.

1.3 Adding furniture

By means of the Drawing function a bureau (desk), consisting of three elements, and aconference table will be placed in the room.

� Select Drawings from the Data menu.

Placing the first bureau element (dimensions: 1.60m x 0.80m)� Select Add Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name Bureau

Position of the bottom left corner of the bureau element:X 1.30 mY 3.10 mZ 0.80 m

Dimensions and orientation of the bureau:Length 1.60 mWidth 0.80 mRotation 0.00 deg

� Click OK.

Page 110: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.2 -

Placing the second bureau element (dimensions: 0.80m x 0.80m)� Select Add Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name Bureau corner

Position of the bottom left corner of the bureau element:X 1.30 mY 4.70 mZ 0.80 m

Dimensions and orientation of the bureau:Length 0.80 mWidth 0.80 mRotation 0.00 deg

� Click OK.

Placing the third bureau element (dimensions: 1.20m x 0.80m)� Select Add Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name Bureau left

Position of the bottom left corner of the bureau element:X 0.10 mY 4.70 mZ 0.80 m

Dimensions and orientation of the bureau:Length 0.80 mWidth 1.20 mRotation 0.00 deg

� Click OK.

Placing the conference table (dimensions: 0.80m x 1.60m)� Select Add Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name Conference table

Position of the bottom left corner of the conference table:X 1.70 mY 1.00 mZ 0.80 m

Dimensions and orientation of the conference table:Length 0.80 mWidth 1.60 mRotation 0.00 deg

� Click OK, then Close.

Page 111: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.3 -

1.4 Selecting a Project Luminaire for task-and accent lighting

Now task lighting for the desk and conference table and accent lighting for a painting willbe added. For this project the MASTERLINE PLUS 20W 24D will be used.

� Click on Toolbar shortcut button .In the Add Project Luminaires dialogue box, select the family name, family code, housingand light distributor of the luminaire:Family Name REFLECTOR LAMPSFamily Code HALOGENHousing MASTERLINE PLUS 20WLight distributor 24D

� Click Add, then OK.

1.5 Repositioning of luminaires for general lighting

Due to windows in the back wall of the room (wall at position Y = 5.6) the luminaires atthe window side have to be moved closer towards the window side. There are twopossibilities:

Change the Y-spacing of the luminaires in the arrangement� Select Arranged Luminaires from Data menu.

� In the Arrangements dialogue box, click Change.

� Select the Arrangement tab.In the Definition box, enter the Y-spacing of the luminaires:� Change the Y-spacing from 2.80 to 3.40.

� Click OK, then Close.

Change the position of the luminaires

According to the arrangement rule, the luminaires in the Room Block arrangement cannot be moved individually. In order to move individual luminaires, the Room Blockarrangement has to be changed into a Free arrangement first.

� Select Arranged Luminaires from Data menu.In the Arrangements dialogue box, click Free, then click Yes.Now the Room Block arrangement is made into a Free arrangement.

� Click Change and select the Luminaire List tab.In the Luminaire List tab, enter the new positions of the luminaires:� Change the Y-position of the luminaires in row 3 and 4 from 4.20 to 4.80.

� Click OK, then Close.

Page 112: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.4 -

1.6 Positioning luminaires for the task- and accent lighting

Task lighting for the bureau� In the Arrangements dialogue box, click Add and select Block.

� In the Arrangement tab, enter the name of the arrangement.Name Bureau

In the Position A box, enter the position of the bottom left luminaire.Position X = 1.50 m, Y = 3.50 m, Z = 2.70 m

In the Arrangement box, enter quantity and spacing of the luminaires.Number in AB: 2 X-spacing: 0.40 mNumber in AC: 2 Y-spacing: 0.80 m

� Select the Luminaire Definition tab.In the Project Lumnaire box, select:Type MASTERLINE PLUS 20W 24D

� Click Apply, then OK.

Task lighting for the conference table� In the Arrangements dialogue box, click Add and select Block.

� In the Arrangement tab, enter the name of the arrangement.Name Conference table

In the Position A box, enter the position of the bottom left luminaire.Position X = 2.10 m, Y = 1.20 m, Z = 2.70 m

In the Arrangement box, enter quantity and spacing of the luminaires.Number in AB: 2 X-spacing: 0.80 mNumber in AC: 2 Y-spacing: 0.40 m

� Select the Luminaire Definition tab.In the Project Luminaire box, select:Type MASTERLINE PLUS 20W 24D

� Click Apply, then OK.

Accent lighting for the painting on the right wall� In the Arrangements dialogue box, click Add and select Line.

� Select the Luminaire Definition tab.In the Project Luminaire box, enter:Type MASTERLINE PLUS 20W 24D

� Click Apply.

Page 113: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.5 -

The warning 'Arrangement does not fit in the room' will appear on screen. This is causedwhile the default position of the luminaires is not within the room. You can use the Viewtab to check the position of the luminaires. In this case there is a luminaire on the leftbottom corner of the room (X = 0.0,Y = 0.0). Click OK to return to the Arrangements

dialogue box.

� Select the Arrangement tab and enter:Name Painting

� In the Line box, enter the position, quantity and spacing of the luminaires:First X = 2.75, Y = 3.25, Z = 2.65Last X = 2.75, Y = 4.25, Z = 2.65Number of Luminaires 2Spacing 1.00 m

- The rotation of the Line arrangement will be 90°.

- To ensure that the luminaires fit into the room when they are tilted a luminaire heightof 2.65 m is chosen (room height is 2.70 m).

Now the luminaires have to be tilted to the wall:

� In the Luminaire List tab, enter the values for the tilt of both luminaires:Tilt90 = 40°

� Click OK, then Close.

To show that the accent lighting is aimed to the wall, the 'aiming arrows' can be displayedin the project overview.

� Select Project Options from the Data menu.

� In the 2D View tab, check the Aiming Arrows box.

� Click OK.

Page 114: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.6 -

1.7 Define Calculation grids for the bureau, conference table

and the right wall

� Select Grids from the Data menu.

Grid on Bureau� In the Grids dialogue box, click Add.

� In the Add Grid dialogue box, enter:Name Bureau

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 1.3, Y = 3.1, Z = 0.8B X = 2.1, Y = 3.1, Z = 0.8C X = 1.3, Y = 4.7, Z = 0.8

Number of Pointsin AB 4in AC 8

Do not check 'Other Side'.

� Click OK.

Grid on Conference table� In the Grids dialogue box, click Add.

� In the Add Grid dialogue box, enter:Name Conference table

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 1.7, Y = 1.0, Z = 0.8B X = 3.3, Y = 1.0, Z = 0.8C X = 1.7, Y = 1.8, Z = 0.8

Number of Pointsin AB 8in AC 4

Do not check 'Other Side'.

� Click OK.

Page 115: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.7 -

Grid on right wall� In the Grids dialogue box, click Add.

� In the Add Grid dialogue box, enter:Name Right Wall

In the Coupling box, select:Connected to Right wall

� Click OK, then Close.

1.8 Defining Switching Modes

The following four switching modes will be defined for this project:� General lighting;� Task lighting for bureau;� Task lighting for table;� Accent lighting for painting at right wall.

Defining the name of the switching modes� Select Switching Modes from the Data menu.

� In the Switching Modes dialogue box, enter the names of the switching modes.� Enter General Lighting, then click New.� Enter Task Lighting Bureau, then click New.� Enter Task Lighting Table, then click New.� Enter Accent Lighting Painting, then click OK.

In this example project the General Lighting is always switched on.

Selecting the luminaires to which the switching mode is applied� Select Arranged Luminaires from the Data menu.

� Double click on 'Bureau' in the Arrangements dialogue box.

� Select the Luminaire Definition tab.In the Switching Modes box, check 'Task Lighting Bureau' only.� Click Apply, then OK.

� Double click on 'Conference Table' in the Arrangements dialogue box.

� Select the Luminaire Definition tab.In the Switching Modes box, check 'Task Lighting Table' only.� Click Apply, then OK.

Page 116: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.8 -

� Double click on 'Painting' in the Arrangements dialogue box.

� Select the Luminaire Definition tab.In the Switching Modes box, check 'Accent Lighting Painting' only.� Click Apply, then OK.

� Double click on 'General' in the Arrangements dialogue box.

� Select the Luminaire Definition tab.In the Switching Modes box, check 'General Lighting', 'Task Lighting Bureau', 'Task Lighting

Table' and 'Accent Lighting Painting'.� Click Apply, then OK.

� Click Close.

1.9 Defining Calculations

Before you can perform a calculation, you have to specify the calculation name and thecalculation parameters first.

� Select Define from the Calculation menu.

� For this project the following calculations have to be defined:

Working Plane� Double click on 'Working Plane' in the Calculation dialogue box.

� In the Change Calculation dialogue box, check and/or select:Name Working PlaneGrid Working PlaneSwitching Mode General LightingCalculation Type Plane IlluminanceResult Type Total (= Direct + Indirect contribution)Direction Surface +N

� Click OK.

Bureau� Double click on 'Bureau' in the Calculation dialogue box.

� In the Change Calculation dialogue box, check and/or select:Name BureauGrid BureauSwitching Mode Task Lighting BureauCalculation Type Plane IlluminanceResult Type Total (= Direct + Indirect contribution)Direction Surface +N

� Click OK.

Page 117: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.9 -

Conference table� Double click on 'Conference table' in the Calculation dialogue box.

� In the Change Calculation dialogue box, check and/or select:Name Conference TableGrid Conference TableSwitching Mode Task Lighting TableCalculation Type Plane IlluminanceResult Type Total (= Direct + Indirect contribution)Direction Surface +N

� Click OK.

Right Wall� Double click on 'Right Wall' in the Calculation dialogue box.

� In the Change Calculation dialogue box, check and/or select:Name Right WallGrid Right WallSwitching Mode Accent Lighting PaintingCalculation Type Plane IlluminanceResult Type Total (= Direct + Indirect contribution)Direction Surface +N

� Click OK, then Close.

1.10 Defining the Calculation Presentation

� Select Presentation from the Calculation menu.

� In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation.For this project Working Plane, Bureau, Conference table and Right Wall have to beincluded.

� In the Presentation Forms box, select in which presentation forms the calculation results ofWorking Plane, Bureau, Conference table and Right Wall are presented. Select:� Textual Table;� Filled Iso Contour.

Set the options for calculation presentation of Bureau:� In the Calculation Presentation dialogue box, select Bureau.

� Click Options.

� Select the General tab.In the Show box, set which attributes are shown in the calculation presentation.Disable (no cross) Unconnected Field

Unconnected Grid

Page 118: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.10 -

� Select the Scaling tab.In the Minimum Report Scale box, select the scaling of the report, select:1: 10

In the Sizing box, select:Zoomed Relative to GridFactor 1.000

� Click OK.

Set the options for calculation presentation of Conference table:� In the Calculation Presentation dialogue box, select Conference table.

� Click Options.

� Select the General tab.In the Show box, set which attributes are shown in the calculation presentation.Disable (no cross) Unconnected Field

Unconnected Grid

� Select the Scaling tab.In the Minimum Report Scale box, select the scaling of the report, select:1: 10

In the Sizing box, select:Zoomed Relative to GridFactor 1.000

� Click OK.

� Click OK to return to the Main View.

1.11 Creating a report

Enter new Project InformationBefore you create a report you should enter information about the project.This information will be printed on the title page of your report.

� Select Project Info from the Data menu.

� In the Project tab you can enter project information:Name My Second DesignSubname Example 1bDate Press UpdateRemarks General Lighting for my Office

Page 119: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.11 -

Room Dimensions:Width 3.5 mLength 5.6 mHeight 2.7 mAdditional Task- and Accent Lighting.

� Click OK.

Select which elements are to be displayed in the Top Project Overview of your reportFor this project the Grid points and Luminaire Code have not to be displayed.

� Select Project Options from the Data menu.

� Select the 2D View tab.In the Show box, Luminaire Code and Grids should not be checked (no cross).

� Click OK.

Report Setup� Select Setup from the Report menu.

� Select the Components tab.In the Components box, select which components have to be included in the report. Include:Include: Title Page

Table of ContentsTop Project OverviewSummaryLuminaire DetailsInstallation Data

In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation.For this project Working Plane, Bureau, Table and Right Wall have to be included.

� In the Presentation Forms box, select in which presentation forms the calculation results arepresented. Select:Select: Graphical Table

Iso ContourFilled Iso Contour

� Click OK.

Page 120: Manual Indoor

Appendix 2 My Second Project

Calculux Indoor

- A2.12 -

1.12 Printing the Report

You can use Print Preview (see Report menu) to preview your report before printing it.

� Select Print Report from the File menu or Report menu.

� Click OK in the Print dialogue box to print the report.

1.13 Saving the project

In case you wish to redesign the project later, it is advisable to save the project.

� Select Save from the File menu to save the project.

Page 121: Manual Indoor

Calculux Indoor

Appendix 3

My Third Project

Page 122: Manual Indoor

Calculux Indoor

Page 123: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.1 -

1 My Third Project

1.1 General

In this project you will make a lighting design for a director room.The design will contain Indirect, Curtain, Painting, Whiteboard, Desk, Conference andAccent lighting. The luminaires will be mounted in or on a system ceiling (0.6 m x 0.6 mmodules).

Room SpecificationsRoom dimensions:Width 4.70 mLength 7.50 mHeight 2.70 m (= height of the system ceiling)

Room reflectances:Windows (on the left)0.10Other walls 0.30Ceiling 0.70Floor 0.10

Following luminaire types will be used:Task TPH601/128 C7-60 and TBS630/314 C7-60Conference TPH601/128 MD and

MASTERLINE PLUS 35W 10DCurtain and Cupboard FBS145/118Painting MASTERLINE PLUS 50W 24DWhiteboard MASTERLINE PLUS 50W 38DIndirect QFG101/300

1.2 Starting a new Project

• Select New Project from the File menu.A new empty window will be created. You can maximize the view if you wish.

Page 124: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.2 -

1.3 Entering Project Information and Project Options

• Select Project Info from the Data menu.

In the Project tab you can enter project information, e.g.:Name Director roomSubname Example 3Remarks Design for desk, conference and presentation

lighting using light regulation factors(LRF).

Designer 'Your Name'

• In the Customer tab you can enter customer information, e.g.:Name 'Your Customer Name'

• In the Company tab you can enter company information.

• Click OK.

• Select Project Options from the Data menu.

• Select the General tab.In the Calculations box, enter:Project Maintenance Factor 0.80

• Click OK.

1.4 Specifing the Room

• Select Room from Data Menu.

Select the Definition tab.In the Dimensions box, enter the dimensions of the room:Room Width 4.70 mRoom Length 7.50 mRoom Height 2.70 mWorking Plane Heigh 0.80 m

In the Position box, enter the position of the Front Bottom Left corner of the room:Front Bottom Left X = 0.00 m

Y = -3.75 m

� The Y= 0 axis is the middle of the room.

In Reflectances box, select Presets anddouble click on: 0.70 – 0.30 – 0.10

Due to the windows and curtain the value of the reflectance of the left wall has to bechanged. Enter:Left 0.10

• Click OK.

Page 125: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.3 -

1.5 Adding a door, windows and furniture to the room

By means of the Drawing function, two windows, a door, a painting, a whiteboard, a desk, acomputer desk, a cupboard and a conference table will be added to the room.

• Select Drawings from the Data menu.

1.5.1 Adding the windows and door

• Click Add, then select Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name Window 1X 0.00 mY -3.45 mZ 1.00 mLength 3.30 mWidth 0.10 mRotation 0.00 deg

• Click OK.

• Click Duplicate.

In the Add Rectangle dialogue box, set the following parameters:Name Window 2X 0.00 mY 0.15 mZ 2.10 mLength 3.30 mWidth 0.10 mRotation 0.00 deg

• Click OK.

• Click Add, then select Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name DoorX 4.60 mY 2.60 mZ 2.10 mLength 0.80 mWidth 0.10 mRotation 0.00 deg

• Click OK.

Page 126: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.4 -

1.5.2 Adding a Painting and Whiteboard

• Click Add, then select Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name PaintingX 1.10 mY -3.75 mZ 1.60 mLength 0.05 mWidth 0.80 mRotation 0.00 deg

• Click OK.

• Click Add, then select Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name WhiteboardX 1.80 mY 3.70 mZ 1.20 mLength 0.05 mWidth 1.20 mRotation 0.00 deg

• Click OK.

1.5.3 Adding the furniture

• Click Add, then select Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name BureauX 2.30 mY -3.00 mZ 0.80 mLength 1.80 mWidth 0.80 mRotation 0.00 deg

• Click OK.

• Click Add, then select Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name Computer TableX 3.10 mY -2.00 mZ 0.80 mLength 0.80 mWidth 0.80 mRotation 0.00 deg

• Click OK.

Page 127: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.5 -

• Click Add, then select Rectangle.In the Add Rectangle dialogue box, set the following parameters:Name CupboardX 4.10 mY 0.60 mZ 1.50 mLength 1.20 mWidth 0.60 mRotation 0.00 deg

• Click OK.

• Click Add, then select Rectangle.

In the Add Rectangle dialogue box, set the following parameters:Name Conference TableX 1.00 mY 0.70 mZ 0.80 mLength 2.20 mWidth 1.00 mRotation 0.00 deg

• Click OK.

1.6 Drawing the system ceiling

In this section the system ceiling (0.60 m x 0.60 m modules) will be added to the room.While this version of Calculux Indoor has no special drawing feature for system ceilings,each line of the system ceiling has to be drawn separately.

1.6.1 Drawing the lines in Y-direction (line spacing 0.60 m)

• Click Add, then select Line.

In the Add Line dialogue box, set the following parameters:Name Ceiling, line h1Point A X = 0.10, Y = -3.30, Z = 2.70Point B X = 4.70, Y = -3.30, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h2Point A X = 0.10, Y = -2.70, Z = 2.70Point B X = 4.70, Y = -2.70, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h3Point A X = 0.10, Y = -2.10, Z = 2.70Point B X = 4.70, Y = -2.10, Z = 2.70

• Click OK, then Duplicate.

Page 128: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.6 -

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h4Point A X = 0.10, Y = -1.50, Z = 2.70Point B X = 4.70, Y = -1.50, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h5Point A X = 0.10, Y = -0.90, Z = 2.70Point B X = 4.70, Y = -0.90, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h6Point A X = 0.10, Y = -0.30, Z = 2.70Point B X = 4.70, Y = -0.30, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h7Point A X = 0.10, Y = 0.30, Z = 2.70Point B X = 4.70, Y = 0.30, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h8Point A X = 0.10, Y = 0.90, Z = 2.70Point B X = 4.70, Y = 0.90, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h9Point A X = 0.10, Y = 1.50, Z = 2.70Point B X = 4.70, Y = 1.50, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h10Point A X = 0.10, Y = 2.10, Z = 2.70Point B X = 4.70, Y = 2.10, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h11Point A X = 0.10, Y = 2.70, Z = 2.70Point B X = 4.70, Y = 2.70, Z = 2.70

Page 129: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.7 -

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line h12Point A X = 0.10, Y = 3.30, Z = 2.70Point B X = 4.70, Y = 3.30, Z = 2.70

• Click OK.

1.6.2 Drawing the lines in X-direction (line spacing 0.60 m)

• Click Add, then select Line.

In the Add Line dialogue box, set the following parameters:Name Ceiling, line v1Point A X = 0.60, Y = -3.75, Z = 2.70Point B X = 0.60, Y = 3.75, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line v2Point A X = 1.20, Y = -3.75, Z = 2.70Point B X = 1.20, Y = 3.75, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line v3Point A X = 1.80, Y = -3.75, Z = 2.70Point B X = 1.80, Y = 3.75, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line v4Point A X = 2.40, Y = -3.75, Z = 2.70Point B X = 2.40, Y = 3.75, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line v5Point A X = 3.00, Y = -3.75, Z = 2.70Point B X = 3.00, Y = 3.75, Z = 2.70

• Click OK, then Duplicate.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line v6Point A X = 3.60, Y = -3.75, Z = 2.70Point B X = 3.60, Y = 3.75, Z = 2.70

Page 130: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.8 -

• Click OK.

• In the Add Line dialogue box, set the following parameters:Name Ceiling, line v7Point A X = 4.20, Y = -3.75, Z = 2.70Point B X = 4.20, Y = 3.75, Z = 2.70

• Click OK, then Close.

1.7 Selecting Project Luminaires

• Click on Toolbar shortcut button .In the Add Project Luminaires dialogue box, select following luminaires:Family Name TBS630Family Code TBS630Housing TBS630/314Light distributor C7-60

• Click Add, select:Family Name TPH601Family Code TPH601Housing TPH601/128Light distributor C7-60

• Click Add, select:Family Name TPH601Family Code TPH601Housing TPH601/128Light distributor MD

• Click Add, select:Family Name FBS145Family Code FBS145Housing FBS145/118Light distributor (none)

• Click Add, select:Family Name REFLECTOR LAMPSFamily Code HALOGENHousing MASTERLINE PLUS 35W 10DLight distributor 10D

• Click Add, select:Family Name REFLECTOR LAMPSFamily Code HALOGENHousing MASTERLINE PLUS 50W 24DLight distributor 10D

• Click Add, select:Family Name REFLECTOR LAMPSFamily Code HALOGENHousing MASTERLINE PLUS 50W 38DLight distributor 38D

Page 131: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.9 -

• Click Add, select:Family Name QFG101Family Code QFG101Housing QFG101/300Light distributor (none)

• Click OK.

1.8 Defining the (calculation) grids

Now the (calculation) grids for the Working Plane, Floor, Curtain, Bureau, ConferenceTable, Painting and Whiteboard will be defined.

� For this project the grid points do not have to be displayed in the 2D project overviews.Therefore, the 'Show Grid option' has to be disabled in the Project Options.

1.8.1 Excluding the grid points from the 2D project overviews

• Select Project Options from the Data menu.

• Select the 2D View tab.In the Show box, disable (no cross) Grids.

• Click OK.

1.8.2 Defining the grid for the Working Plane

• Select Grids from Data menu.

• Click Add in the Grids dialogue box.

• In the Add Grid dialogue box, enter the name of the grid.Name Working Plane

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 0.30, Y = -3.60, Z = 0.80B X = 4.50, Y = -3.60, Z = 0.80C X = 0.30, Y = 3.60, Z = 0.80

Number of Pointsin AB 8in AC 13

• Click OK.

� The grid of the Working plane is not connected to 'Working Plane', but user defined. This isdone because the grid points have to be in the middle of the system ceiling.

Page 132: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.10 -

1.8.3 Defining the grid for the Floor

• Click Add in the Grids dialogue box.

• In the Add Grid dialogue box, enter the name of the grid.Name Floor

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 0.25, Y = -3.50, Z = 0.00B X = 4.50, Y = -3.50, Z = 0.00C X = 0.25, Y = 3.50, Z = 0.00

Number of Pointsin AB 9in AC 15

� The grid of the Floor is not connected to 'Working Plane', but user defined.

• Click OK.

1.8.4 Defining the grid for the Curtain

• Click Add in the Grids dialogue box.

• In the Add Grid dialogue box, enter the name of the grid.Name Curtain

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 0.00, Y = -3.30, Z = 0.25B X = 0.00, Y = 3.30, Z = 0.25C X = 0.00, Y = -3.30, Z = 2.50

Number of Pointsin AB 12in AC 10

• Click OK.

Page 133: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.11 -

1.8.5 Defining the grid for the Bureau• Click Add in the Grids dialogue box.

• In the Add Grid dialogue box, enter the name of the grid.Name Bureau

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 2.30, Y = -3.00, Z = 0.80B X = 3.10, Y = -3.00, Z = 0.80C X = 2.30, Y = -1.20, Z = 0.80

Number of Pointsin AB 5in AC 10

• Click OK.

1.8.6 Defining the grid for the Conference Table• Click Add in the Grids dialogue box.

• In the Add Grid dialogue box, enter the name of the grid.Name Conference Table

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 1.00, Y = 0.70, Z = 0.80B X = 2.00, Y = 0.70, Z = 0.80C X = 1.00, Y = 2.90, Z = 0.80Number of Pointsin AB 5in AC 12

• Click OK.

Page 134: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.12 -

1.8.7 Defining the grid for the Painting• Click Add in the Grids dialogue box.

• In the Add Grid dialogue box, enter the name of the grid.Name Painting

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 1.10, Y = -3.70, Z = 1.50B X = 1.70, Y = -3.70, Z = 1.50C X = 1.10, Y = -3.70, Z = 1.90

Number of Pointsin AB 5in AC 5

• Click OK.

1.8.8 Defining the grid for the Whiteboard• Click Add in the Grids dialogue box.

• In the Add Grid dialogue box, enter the name of the grid.Name Whiteboard

In the Coupling box, select:Connected to None

In the Definition box, enter the position of the grid points:PositionA X = 1.80, Y = 3.70, Z = 1.20B X = 3.00, Y = 3.70, Z = 1.20C X = 1.80, Y = 3.70, Z = 2.10

Number of Pointsin AB 8in AC 7

• Click OK, then Close.

Page 135: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.13 -

1.9 Defining Switching Modes

To suit different activities the Desk Lighting, Conference Lighting and Presentation Lightinghave to be dimmable. Therefore, the Light Regulation Factors (LRF) option has to beswitched on.

Enabling the LRF option• Select Project Options from the Data menu.

• Select the General tab.In Miscellaneous box, check (cross) 'Use Light Regulation Factors'.

• Click OK.

Defining the Switching modesThe following switching modes will be defined:• Desk Lighting• Conference Lighting• Presentation Lighting

• Select Switching Modes from Data menu.In the Switching Modes dialogue box, enter the names of the switching modes:• Enter Desk Lighting, then click New.• Enter Conference Lighting, then click New.• Enter Presentation Lighting, then click OK.

1.10 Positioning Luminaires for the Task-, Conference- andAccent lighting

1.10.1 Positioning individual luminaires

• Select Individual Luminaires from the Data menu.

• Select the Luminaires tab.

Lighting for Conference Table (suspended mounted, direct + indirect)• Click New.

• In the first row of the luminaire list, select or enter:Type (A, B, ...) TPH 601/128 MD

(or select corresponding legend number (A,B, etc) placed before the luminaire typename as shown in the 'Type' column in theluminaire list).

Quantity (Qty.) 1Position (Pos) X = 1.50, Y = 1.80, Z = 2.00Aiming Rot = 90, Tilt90 = 0.0, Tilt0 = 0.0Sym NONESwitching Mode (1, 2, ...)

Page 136: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.14 -

/ LRF (%) Desk Lighting LRF 60Conference Lighting LRF 10

Lighting for Bureau (suspended mounded, direct + indirect)• Click New.

• In the second row of the luminaire list, select or enter:Type (A, B, ...) TPH 601/128 C7-60Quantity (Qty.) 1Position (Pos) X = 2.80, Y = -2.10, Z = 2.00Aiming Rot = 90, Tilt90 = 0.0, Tilt0 = 0.0Sym NONESwitching Mode (1, 2, ...)/ LRF (%) Desk Lighting LRF 100

Uplighter• Click New.

• In the third row of the luminaire list, select or enter:Type (A, B, ...) QFG 101/300Quantity (Qty.) 1Position (Pos) X = 3.90, Y = -3.00, Z = 1.80Aiming Rot = 45, Tilt90 = 180, Tilt0 = 0.0Sym NONESwitching Mode (1, 2, ...)/ LRF (%) Conference Lighting LRF 70

Presentation Lighting LRF 40

Lighting for Painting• Click New.

• In the fourth row of the luminaire list, select or enter:Type (A, B, ...) MASTERLINE PLUS 50W 24DQuantity (Qty.) 1Position (Pos) X = 2.10, Y = -3.00, Z = 2.65Aiming Rot = 135, Tilt90 = 0.0, Tilt0 = -43Sym NONESwitching Mode (1, 2, ...)/ LRF (%) Conference Lighting LRF 100

Presentation Lighting LRF 100

• Click OK.

� To show the direction aiming of the luminaire the Aiming Arrows in the 2D ProjectOverview have to be switched on.

• Select Project Options from the Data menu.

• Select the 2D View tab.In the Show box, check (cross) Aiming Arrows.

• Click OK.

Page 137: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.15 -

1.10.2 Positioning arranged luminairesLighting for the Bureau

• Select Arranged Luminaires from the Data menu.

• In the Arrangements dialogue box, click Add and select Block.

• In the Arrangement tab, enter the name of the arrangement.Name Bureau

In the Position A box, enter the position of the bottom left luminaire.Position X = 1.50 m, Y = -2.40 m, Z = 2.70 m

In the Block Orientation box, enterOrientation Rot = 0.0, Tilt90 = 0.0, Tilt0 = 0.0

In the Arrangement box, enter quantity and spacing of the luminaires.Number in AB: 2 Spacing in AB: 2.40 mNumber in AC: 2 Spacing in AC: 2.40 m

• Select the Luminaire Definition tab.In the Project Luminaire box, select:Type TBS 630/314 C7-60

• Click Apply.

In the Aiming Type box, enter:Rot 90.0

• Click Apply.

In the Switching Modes box check/enter:Desk Lighting LRF 100Conference Lighting LRF 40

• Click Apply.

� The dimensions of the luminaire and system ceiling are both0.60 m x 0.60 m. Therefore, this luminaire type can not be seen if the project is printed on aB/W printer.

• Click OK.

Page 138: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.16 -

Conference LightingArrangement 1

• In the Arrangements dialogue box, click Add and select Block.

• In the Arrangement tab, enter the name of the arrangement.Name Conference Table 1

In the Position A box, enter the position of the bottom left luminaire.Position X = 1.10 m, Y = 1.20 m, Z = 2.70 m

In the Block Orientation box, enterOrientation Rot = 0.0, Tilt90 = 0.0, Tilt0 = 0.0

In the Arrangement box, enter quantity and spacing of the luminaires.Number in AB: 2 Spacing in AB: 0.80 mNumber in AC: 3 Spacing in AC: 0.60 m

• Select the Luminaire Definition tab.In the Project Luminaire box, select:Type MASTERLINE PLUS 35W 10D

• Click Apply.

In the Switching Modes box check/enter:Conference Lighting LRF 100Presentation Lighting LRF 70

• Click Apply.

• Click OK.

Arrangement 2

• In the Arrangements dialogue box, click Add and select Line.

Select the Arrangement tab, enter:Name Conference Table 2

In the Line box, enter the position and quantity of the luminaires:First X = 1.50 m, Y = 0.80 m, Z = 2.70 mLast X = 1.50 m, Y = 2.80 m, Z = 2.70 mNumber of luminaires 2Spacing 2.00 m

Orientation Rot = 90.0, Tilt90 = 0.0

• Select the Luminaire Definition tab.In the Project Luminaire box, enter:Type MASTERLINE PLUS 35W 10D

• Click Apply.

Page 139: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.17 -

In the Switching Modes box check/enter:Conference Lighting LRF 100Presentation Lighting LRF 70

• Click Apply.

• Click OK.

Cupboard and Door Lighting• In the Arrangements dialogue box, click Add and select Line.

Select the Arrangement tab, enter:Name Cupboard and Door

In the Line box, enter the position and quantity of the luminaires:First X = 3.90 m, Y = 0.60 m, Z = 2.70 mLast X = 3.90 m, Y = 3.00 m, Z = 2.70 mNumber of luminaires 3Spacing 1.20 m

Orientation Rot = 90.0, Tilt90 = 0.0

• Select the Luminaire Definition tab.In the Project Luminaire box, enter:Type FBS 145/118

• Click Apply.

In the Switching Modes box check/enter:Desk Lighting LRF 100Conference Lighting LRF 100

• Click Apply.

• Click OK.

Curtain Lighting• In the Arrangements dialogue box, click Add and select Line.

• Select the Arrangement tab, enter:Name Curtain

In the Line box, enter the position and quantity of the luminaires:First X = 0.30 m, Y = -3.00 m, Z = 2.70 mLast X = 0.30 m, Y = 3.00 m, Z = 2.70 mNumber of luminaires 6Spacing 1.20 m

Orientation Rot = 90.0, Tilt90 = 0.0

Page 140: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.18 -

• Select the Luminaire Definition tab.In the Project Luminaire box, enter:Type FBS 145/118

• Click Apply.

In the Switching Modes box, check/enter:Desk Lighting LRF 100Conference Lighting LRF 100

• Click Apply.

• Click OK.

Whiteboard Lighting• In the Arrangements dialogue box, click Add and select Line.

Select the Arrangement tab, enter:Name Whiteboard

In the Line box, enter the position and quantity of the luminaires:First X = 2.10 m, Y = 3.00 m, Z = 2.65 mLast X = 2.70 m, Y = 3.00 m, Z = 2.65 mNumber of luminaires 2Spacing 0.60 m

Orientation Rot = 0.0, Tilt90 = 0.0

• Select the Luminaire Definition tab.In the Project Luminaire box, enter:Type MASTERLINE PLUS 50W 38D

• Click Apply (if applicable).

In the Aiming Type box, enter:Tilt0 -30.0

• Click Apply.

In the Switching Modes box, check/enter:Conference Lighting LRF 100

• Click Apply.

• Click OK, then Close.

Page 141: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.19 -

1.11 Defining the Calculations

• Select Define from the Calculation menu.

• Double click on 'Working Plane'.In the Change Calculation dialogue box, change:Name Working PlaneGrid Working PlaneSwitching Mode Desk LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK.

• Double click on 'Floor'.In the Change Calculation dialogue box, change:Name FloorGrid FloorSwitching Mode Presentation LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK.

• Double click on 'Curtain'.In the Change Calculation dialogue box, change:Name CurtainGrid CurtainSwitching Mode Desk LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK.

• Double click on 'Bureau'.In the Change Calculation dialogue box, change:Name BureauGrid BureauSwitching Mode Desk LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK.

Page 142: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.20 -

• Double click on 'Conference Table'.In the Change Calculation dialogue box, change:Name Conference TableGrid Conference TableSwitching Mode Conference LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK.

• Click Duplicate.In the Add Calculation dialogue box, change:Name Conference Table 1Grid Conference TableSwitching Mode Presentation LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK.

• Double click on 'Painting'.In the Change Calculation dialogue box, change:Name PaintingGrid PaintingSwitching Mode Conference LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK.

• Double click on 'Whiteboard'.In the Change Calculation dialogue box, change:Name WhiteboardGrid Whiteboard TableSwitching Mode Conference LightingCalculation Type Plane IlluminanceResult Type TotalDirection Surface +N

• Click OK, then Close.

Page 143: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.21 -

1.12 Defining the Calculation Presentation

• Select Presentation from the Calculation menu.

In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation.For this project all calculations have to be included (Working Plane, Floor, Curtain, Bureau,Conference Table, Painting and Whiteboard).

In the Presentation Forms box, select in which presentation forms the calculation results will bepresented. Select:• Graphical Table;

• Filled Iso Contour.

1.12.1 Set the options for calculation presentation of all Calculations

• In the Calculation Presentation dialogue box, select a calculation, beginning at the top.

• Click Options.

� For vertical calculations 'Working Plane', 'Floor', 'Curtain', 'Bureau' and 'ConferenceTable' the Aiming Arrows, Connected Grid and Unconnected Grid do not have to bedisplayed in the calculation presentation.

- For vertical calculations 'Painting' and 'Whiteboard' the Aiming Arrows, Connected Field,Unconnected Field and Unconnected Grid do not have to be displayed in the calculationpresentation.

• Select the General tab.In the Show box, disable (no cross):Aiming Arrows Aiming Arrows

Connected Grid OR Connected FieldUnconnected Grid Unconnected Field

Unconnected Grid

• Select the Scaling tab.In the Sizing box, select:Zoomed Relative to GridFactor 1.000

• Click OK.

• Repeat the above steps for all remaining calculations.

• Click OK to return to the Main View.

Page 144: Manual Indoor

Appendix 3 My Third Project

Calculux Indoor

- A3.22 -

1.12.2 Report Setup

• Select Setup from the Report menu.

• Select the Components tab.In the Components box, select which components have to be included in the report. Include:• Title Page;

• Table of Contents;

• Top Project Overview;

• Summary;

• Luminaire Details;

• Installation Data.

In the Include box, double click on the + or - sign to include (+) or exclude (-) a calculation.For this project 'Working Plane', 'Floor', 'Curtain', 'Bureau', 'Conference Table', 'Painting' and'Whiteboard' have to be included.

In the Presentation Forms box, select in which presentation forms the calculation results arepresented. For all calculations, select:• Graphical Table;

• Filled Iso Contour.

• Click OK to return to the Main View.

1.13 Printing the report

� You can use Print Preview (see Report menu) to preview your report before printing it.

• Select Print Report from the File menu or Report menu.

• Click OK in the Print dialogue box to print the report.

1.14 Saving the project

• Select Save from the File menu to save the project (DIRECTOR_ROOM.CIN).

Page 145: Manual Indoor

Calculux Indoor

Appendix 4

My First Projectprinted report

Page 146: Manual Indoor

Calculux Indoor

Page 147: Manual Indoor

My First DesignExample 1aDate: 27-04-1999Customer: P. Tan

Designer: T. Gielen

Description: General Lighting for my Office:Room Dimensions:Width 3.5 mLength 5.6 mHeight 2.7 m

CalcuLuX Indoor 4.5a E-Mail: [email protected]: 35000 phtc nlFax: + 31 40 2756406Telephone: + 31 40 2758472

Lighting Design and Application CentreLiDAC Central, Building ED-2P.O. Box 800205600 JM Eindhoven

Philips Lighting B.V.

The nominal values shown in this report are the result of precision calculations, based upon precisely positioned luminaires in a fixed relationship to each other and to the area under examination. In practice the values may vary due to tolerances on luminaires, luminaire positioning, reflection properties and electrical supply.

Page 148: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

Table of Contents

1. Project Description 3

1.1 Top Project Overview 3

2. Summary 4

2.1 Room Summary 42.2 Project Luminaires 42.3 Calculation Results 4

3. Calculation Results 5

3.1 Working Plane: Textual Table 53.2 Working Plane: Iso Contour 63.3 Working Plane: Filled Iso Contour 7

4. Luminaire Details 8

4.1 Project Luminaires 8

5. Installation Data 9

5.1 Legends 95.2 Luminaire Positioning and Orientation 9

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 2/9

Page 149: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

1. Project Description

1.1 Top Project Overview

5.60 mLength

3.50 mWidth Height

2.70 mWorking Plane Height

0.80 m

A : TBS 600/135 C7-60

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5

X(m)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Y(m

)

AA

AA

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 3/9

Page 150: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

2. Summary

2.1 Room Summary

Room DimensionsWidth 3.50 mLength 5.60 mHeight 2.70 mWorking Plane Height 0.80 m

Surface ReflectanceCeiling 0.50Left Wall 0.30Right Wall 0.30Front Wall 0.30Back Wall 0.30Floor 0.10

Room Position (Front Bottom Left)X 0.00 mY 0.00 m

Total Average Room Surface Luminance (cd/m2):Ceiling

4.8LeftLeft10.6

RightRight10.7

FrontFront9.0

BackBack9.0

FloorFloor9.0

The overall maintenance factor used for this project is 0.80.

2.2 Project Luminaires

CodeA

QtyQty4

Luminaire TypeLuminaire TypeTBS 600/135 C7-60

Lamp TypeLamp Type1 * TL5 35W HE

Power (W)Power (W) 40.0

Flux (lm)Flux (lm)1 * 3650

The total installed power: 0.16 (kWatt)

Number of Luminaires Per Arrangement:

Arrangement

Room Block

LuminaireCode

A4

Power (kWatt)Power (kWatt)

0.16

2.3 Calculation Results

(Il)luminance Calculations:CalculationWorking Plane

TypeTypeSurface Illuminance

UnitUnitlux

AveAve 357

Min/AveMin/Ave0.59

Min/MaxMin/Max0.46

ResultResultTotal

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 4/9

Page 151: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

3. Calculation Results

3.1 Working Plane: Textual Table

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 357 0.59 0.46 0.80

X (m) 0.25 0.75 1.25 1.75 2.25 2.75 3.25 Y (m) 5.37 211< 273 307 311 307 274 213

4.90 267 352 390 393 390 354 270

4.44 289 387 419 415 419 388 292

3.97 292 391 424 418 424 393 295

3.50 293 387 430 432 430 389 295

3.03 307 403 453 463> 454 405 309

2.57 307 403 453 463> 454 405 309

2.10 293 387 430 432 430 389 295

1.63 292 391 424 418 424 393 295

1.16 289 387 419 415 419 388 292

0.70 267 352 390 393 390 354 270

0.23 211 273 307 311 307 274 213

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 5/9

Page 152: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

3.2 Working Plane: Iso Contour

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 357 0.59 0.46 0.80

A : TBS 600/135 C7-60

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5

X(m)

01

23

45

Y(m

)

A A

A A

250

250

250

250

300

300

300

300

350

350

350

350

400

400

400

450

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 6/9

Page 153: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

3.3 Working Plane: Filled Iso Contour

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 357 0.59 0.46 0.80

A : TBS 600/135 C7-60

450

400

350

300

250

-0.5 0.5 1.5 2.5 3.5

X(m)

01

23

45

Y(m

)

A A

A A

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 7/9

Page 154: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

4. Luminaire Details

4.1 Project Luminaires

TBS 600/135 C7-60 1 x TL5 35W HE / 840

Light output ratios DLOR : 0.76 ULOR : 0.00 TLOR : 0.76Ballast : ElectronicLamp flux : 3650 lmLuminaire wattage : 40.0 WMeasurement code : LVW1067900

250

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 8/9

Page 155: Manual Indoor

My First Design Philips Lighting B.V.Example 1a Date: 27-04-1999

5. Installation Data

5.1 Legends

Project Luminaires:CodeA

QtyQty4

Luminaire TypeLuminaire TypeTBS 600/135 C7-60

Lamp TypeLamp Type1 * TL5 35W HE

Flux (lm)Flux (lm)1 * 3650

5.2 Luminaire Positioning and Orientation

Qty and Code

1 * A1 * A1 * A1 * A

X (m)

0.88 0.88 2.63 2.63

Y (m)

1.40 4.20 1.40 4.20

Position

Z (m)

2.70 2.70 2.70 2.70

Rot.

0.00 0.00 0.00 0.00

Tilt90

0.00 0.00 0.00 0.00

Aiming Angles

Tilt0

0.00 0.00 0.00 0.00

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 9/9

Page 156: Manual Indoor
Page 157: Manual Indoor

Calculux Indoor

Appendix 5

My Second Projectprinted report

Page 158: Manual Indoor

Calculux Indoor

Page 159: Manual Indoor

My Second DesignExample 1bDate: 27-04-1999Customer: P. Tan

Designer: T. Gielen

Description: General Lighting for my Office:Room Dimensions:Width 3.5 mLength 5.6 mHeight 2.7 mAdditional Task-and Accent Lighting

CalcuLuX Indoor 4.5a E-Mail: [email protected]: 35000 phtc nlFax: + 31 40 2756406Telephone: + 31 40 2758472

Lighting Design and Application CentreLiDAC Central, Building ED-2P.O. Box 800205600 JM Eindhoven

Philips Lighting B.V.

The nominal values shown in this report are the result of precision calculations, based upon precisely positioned luminaires in a fixed relationship to each other and to the area under examination. In practice the values may vary due to tolerances on luminaires, luminaire positioning, reflection properties and electrical supply.

Page 160: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

Table of Contents

1. Project Description 3

1.1 Top Project Overview 3

2. Summary 4

2.1 Room Summary 42.2 Project Luminaires 42.3 Calculation Results 5

3. Calculation Results 6

3.1 Working Plane: Graphical Table 63.2 Working Plane: Iso Contour 73.3 Working Plane: Filled Iso Contour 83.4 Bureau: Graphical Table 93.5 Bureau: Iso Contour 103.6 Bureau: Filled Iso Contour 113.7 Conference table: Graphical Table 123.8 Conference table: Iso Contour 133.9 Conference table: Filled Iso Contour 143.10 Right wall: Graphical Table 153.11 Right wall: Iso Contour 163.12 Right wall: Filled Iso Contour 17

4. Luminaire Details 18

4.1 Project Luminaires 18

5. Installation Data 19

5.1 Legends 195.2 Luminaire Positioning and Orientation 19

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 2/19

Page 161: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

1. Project Description

1.1 Top Project Overview

5.60 mLength

3.50 mWidth Height

2.70 mWorking Plane Height

0.80 m

TBS 600/135 C7-60MASTERLINE PLUS 20W 24D(13672)

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5

X(m)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Y(m

)

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 3/19

Page 162: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

2. Summary

2.1 Room Summary

Room DimensionsWidth 3.50 mLength 5.60 mHeight 2.70 mWorking Plane Height 0.80 m

Surface ReflectanceCeiling 0.50Left Wall 0.30Right Wall 0.30Front Wall 0.30Back Wall 0.30Floor 0.10

Room Position (Front Bottom Left)X 0.00 mY 0.00 m

Total Average Room Surface Luminance (cd/m2):Switching ModeGeneral LightingTask Lighting BureauTask Lighting TableAccent Lighting Painting

CeilingCeiling5.05.35.35.2

LeftLeft10.210.410.410.4

RightRight10.310.510.612.3

FrontFront9.19.29.29.2

BackBack14.314.414.414.4

FloorFloor8.49.69.68.5

The overall maintenance factor used for this project is 0.80.

2.2 Project Luminaires

CodeAB

QtyQty4

10

Luminaire TypeLuminaire TypeTBS 600/135 C7-60MASTERLINE PLUS 20W 24D (13672)

Lamp TypeLamp Type1 * TL5 35W HE1 * 12V 20W 24D

Power (W)Power (W) 40.0 20.0

Flux (lm)Flux (lm)1 * 36501 * 305

The total installed power: 0.36 (kWatt)

Number of Luminaires Per Switching Mode:

Switching Mode

General LightingTask Lighting BureauTask Lighting TableAccent Lighting Painting

A4444

Luminaire CodeB0442

Power (kWatt)Power (kWatt)

0.16 0.24 0.24 0.20

Number of Luminaires Per Arrangement:

Arrangement

BureauConference tableGeneral Painting

A0040

Luminaire CodeB4402

Power (kWatt)Power (kWatt)

0.08 0.08 0.16 0.04

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 4/19

Page 163: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

2.3 Calculation Results

Switching Modes:Code1234

Switching ModeSwitching ModeGeneral LightingTask Lighting BureauTask Lighting TableAccent Lighting Painting

(Il)luminance Calculations:

Calculation

Working PlaneBureauConference tableRight wall

SwitchingMode

SwitchingMode

1234

TypeType

Surface IlluminanceSurface IlluminanceSurface IlluminanceSurface Illuminance

UnitUnit

luxluxluxlux

AveAve

331 699 716 128

Min/AveMin/Ave

0.600.570.550.19

Min/MaxMin/Max

0.470.400.400.05

ResultResult

TotalTotalTotalTotal

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 5/19

Page 164: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3. Calculation Results

3.1 Working Plane: Graphical Table General Lighting

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 331 0.60 0.47 0.80

A : TBS 600/135 C7-60

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5

X(m)

01

23

45

Y(m

)

A A

A A

286

294

292

263

213

199

228

271

291

291

269

213

378

393

388

344

278

254

293

355

388

388

353

274

412

423

419

381

315

283

329

392

419

419

390

307

413

421

419

385

317

293

337

396

414

414

393

311

411

423

419

381

315

282

329

392

419

418

390

307

376

392

387

343

277

253

292

354

387

387

352

273

284

292

290

260

212

197

226

269

288

288

267

211

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 6/19

Page 165: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.2 Working Plane: Iso Contour General Lighting

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 331 0.60 0.47 0.80

A : TBS 600/135 C7-60

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5

X(m)

01

23

45

Y(m

)

A A

A A

200200

200

200

250

250

250

250

300

300

300

300

300

350

350

350

350

400

400

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 7/19

Page 166: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.3 Working Plane: Filled Iso Contour General Lighting

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 331 0.60 0.47 0.80

A : TBS 600/135 C7-60

400

350

300

250

200

-0.5 0.5 1.5 2.5 3.5

X(m)

01

23

45

Y(m

)

A A

A A

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 8/19

Page 167: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.4 Bureau: Graphical Table Task Lighting Bureau

Grid : Bureau at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 699 0.57 0.40 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

X(m)

2.9

33.

13.

23.

33.

43.

53.

63.

73.

83.

94

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Y(m

)

A A

B B

B B

540

694

734

645

619

648

572

404

626

908

992

821

796

906

787

499

627

908

990

821

794

905

788

495

540

695

733

644

616

647

569

401

Scale1:12.5

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 9/19

Page 168: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.5 Bureau: Iso Contour Task Lighting Bureau

Grid : Bureau at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 699 0.57 0.40 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

X(m)

2.9

33.

13.

23.

33.

43.

53.

63.

73.

83.

94

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Y(m

)

A A

B B

B B

500

600

600600

700

700

700

800800

800

900

900

Scale1:12.5

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 10/19

Page 169: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.6 Bureau: Filled Iso Contour Task Lighting Bureau

Grid : Bureau at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 699 0.57 0.40 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

900

800

700

600

500

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

X(m)

2.9

33.

13.

23.

33.

43.

53.

63.

73.

83.

94

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Y(m

)

B B

B B

Scale1:12.5

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 11/19

Page 170: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.7 Conference table: Graphical Table Task Lighting Table

Grid : Conference table at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 716 0.55 0.40 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

X(m)

0.4

0.5

0.6

0.7

0.8

0.9

11.

11.

21.

31.

41.

51.

61.

71.

81.

92

2.1

2.2

2.3

Y(m

)

A

B B

B B

396

485

485

396

604

820

820

604

696

956

956

695

655

834

834

655

671

848

848

670

740

998

998

739

689

905

905

688

534

622

622

533

Scale1:12.5

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 12/19

Page 171: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.8 Conference table: Iso Contour Task Lighting Table

Grid : Conference table at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 716 0.55 0.40 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

X(m)

0.4

0.5

0.6

0.7

0.8

0.9

11.

11.

21.

31.

41.

51.

61.

71.

81.

92

2.1

2.2

2.3

Y(m

)

A

B B

B B

400500

600

600

600

700

700

700

800

800

800

900 900

Scale1:12.5

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 13/19

Page 172: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.9 Conference table: Filled Iso Contour Task Lighting Table

Grid : Conference table at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 716 0.55 0.40 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

900

800

700

600

500

400

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

X(m)

0.7

0.8

0.9

11.

11.

21.

31.

41.

51.

61.

71.

81.

92

2.1

Y(m

)

A

B B

B B

Scale1:12.5

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 14/19

Page 173: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.10 Right wall: Graphical Table Accent Lighting Painting

Grid : Right wall at X = 3.50 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 128 0.19 0.05 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

6 5 4 3 2 1 0

Y(m)

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

Z(m

)

AAAA BB25

28

62

103

99

97

24

43

200

150

120

107

24

189

259

163

127

108

24

191

259

163

127

110

25

43

201

151

122

115

25

27

67

108

110

120

25

156

265

96

107

123

25

94

227

121

111

123

26

70

295

168

125

119

27

339

532

205

134

115

28

219

268

172

133

112

31

80

240

164

131

113

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 15/19

Page 174: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.11 Right wall: Iso Contour Accent Lighting Painting

Grid : Right wall at X = 3.50 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 128 0.19 0.05 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

6 5 4 3 2 1 0

Y(m)

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

Z(m

)

AAAA BB

100

100

100

100

200

200

200

300400500

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 16/19

Page 175: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

3.12 Right wall: Filled Iso Contour Accent Lighting Painting

Grid : Right wall at X = 3.50 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 128 0.19 0.05 0.80

A : TBS 600/135 C7-60B : MASTERLINE PLUS 20W 24D (13672)

500

400

300

200

100

6 5 4 3 2 1 0

Y(m)

-0.5

0.5

1.5

2.5

3.5

Z(m

)

AAAABB

Scale1:40

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 17/19

Page 176: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

4. Luminaire Details

4.1 Project Luminaires

TBS 600/135 C7-60 1 x TL5 35W HE / 840

Light output ratios DLOR : 0.76 ULOR : 0.00 TLOR : 0.76Ballast : ElectronicLamp flux : 3650 lmLuminaire wattage : 40.0 WMeasurement code : LVW1067900

250

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

MASTERLINE PLUS 20W 24D (13672) 1 x 12V 20W 24D

Light output ratios DLOR : 0.76 ULOR : 0.00 TLOR : 0.76Lamp flux : 305 lmLuminaire wattage : 20.0 WMeasurement code : 9502091800

3750

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 18/19

Page 177: Manual Indoor

My Second Design Philips Lighting B.V.Example 1b Date: 27-04-1999

5. Installation Data

5.1 Legends

Project Luminaires:CodeAB

QtyQty4

10

Luminaire TypeLuminaire TypeTBS 600/135 C7-60MASTERLINE PLUS 20W 24D (13672)

Lamp TypeLamp Type1 * TL5 35W HE1 * 12V 20W 24D

Flux (lm)Flux (lm)1 * 36501 * 305

Switching Modes:Code1234

Switching ModeSwitching ModeGeneral LightingTask Lighting BureauTask Lighting TableAccent Lighting Painting

5.2 Luminaire Positioning and Orientation

Qty and Code

1 * A1 * A1 * B1 * B1 * B 1 * B1 * B1 * B1 * A1 * A 1 * B1 * B1 * B1 * B

X (m)

0.88 0.88 1.50 1.50 1.90

1.90 2.10 2.10 2.63 2.63

2.75 2.75 2.90 2.90

Y (m)

1.40 4.80 3.50 4.30 3.50

4.30 1.20 1.60 1.40 4.80

3.25 4.25 1.20 1.60

Position

Z (m)

2.70 2.70 2.70 2.70 2.70

2.70 2.70 2.70 2.70 2.70

2.65 2.65 2.70 2.70

Rot.

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

Tilt90

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

40.0040.00 0.00 0.00

Aiming Angles

Tilt0

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

1

++--- ---++ ----

2

+++++ +--++ ----

3

++--- -++++ --++

SwitchingModes

4

++--- ---++ ++--

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 19/19

Page 178: Manual Indoor
Page 179: Manual Indoor

Calculux Indoor

Appendix 6

My Third Projectprinted report

Page 180: Manual Indoor

Calculux Indoor

Page 181: Manual Indoor

Director roomExample 3Date: 27-04-1999Customer: P. Tan

Designer: T. Gielen

Description: Design for desk, conference and presentationlighting using light regulation factors (LRF)

CalcuLuX Indoor 4.5a E-Mail: [email protected]: 35000 phtc nlFax: + 31 40 2756406Telephone: + 31 40 2758472

Lighting Design and Application CentreLiDAC Central, Building ED-2P.O. Box 800205600 JM Eindhoven

Philips Lighting B.V.

The nominal values shown in this report are the result of precision calculations, based upon precisely positioned luminaires in a fixed relationship to each other and to the area under examination. In practice the values may vary due to tolerances on luminaires, luminaire positioning, reflection properties and electrical supply.

Page 182: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

Table of Contents

1. Project Description 3

1.1 Top Project Overview 3

2. Summary 4

2.1 Room Summary 42.2 Project Luminaires 42.3 Calculation Results 5

3. Calculation Results 6

3.1 Working Plane: Graphical Table 63.2 Working Plane: Filled Iso Contour 73.3 Floor: Graphical Table 83.4 Floor: Filled Iso Contour 93.5 Curtain: Graphical Table 103.6 Curtain: Filled Iso Contour 113.7 Bureau: Graphical Table 123.8 Bureau: Filled Iso Contour 133.9 Conference Table: Graphical Table 143.10 Conference Table: Filled Iso Contour 153.11 Painting: Graphical Table 163.12 Painting: Filled Iso Contour 173.13 Whiteboard: Graphical Table 183.14 Whiteboard: Filled Iso Contour 193.15 Conference Table 1: Graphical Table 203.16 Conference Table 1: Filled Iso Contour 21

4. Luminaire Details 22

4.1 Project Luminaires 22

5. Installation Data 26

5.1 Legends 265.2 Luminaire Positioning and Orientation 26

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 2/27

Page 183: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

1. Project Description

1.1 Top Project Overview

7.50 mLength

4.70 mWidth Height

2.70 mWorking Plane Height

0.80 m

Maximum of 6 luminaire types exceeded - discarding legend.

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5

X(m)

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

Y(m

)

B H

F

E

GG

GG

D

D

D

D

D

D

D

D

D

AA

C

C

CC

CC

CC

Scale1:50

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 3/27

Page 184: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

2. Summary

2.1 Room Summary

Room DimensionsWidth 4.70 mLength 7.50 mHeight 2.70 mWorking Plane Height 0.80 m

Surface ReflectanceCeiling 0.70Left Wall 0.10Right Wall 0.30Front Wall 0.30Back Wall 0.30Floor 0.10

Room Position (Front Bottom Left)X 0.00 mY -3.75 m

Total Average Room Surface Luminance (cd/m2):Switching ModeDesk LightingConference LightingPresentation Lighting

CeilingCeiling13.320.29.2

LeftLeft4.64.30.5

RightRight12.09.51.8

FrontFront10.613.06.4

BackBack6.3

15.31.2

FloorFloor10.79.52.2

The overall maintenance factor used for this project is 0.80.

2.2 Project Luminaires

CodeABCDEFGH

QtyQty21891141

Luminaire TypeLuminaire TypeMASTERLINE PLUS 50W 38D (13678)MASTERLINE PLUS 50W 24D (13674)MASTERLINE PLUS 35W 10D (13764)FBS 145/118TPH 601/128 MDTPH 601/128 C7-60TBS 630/314 C7-60QFG 101/300

Lamp TypeLamp Type1 * 12V 50W 38D1 * 12V 50W 24D1 * 12V 35W 10D1 * PL-C 18W1 * TL5 28W HE1 * TL5 28W HE3 * TL5 14W HE1 * T3 P S 300W

Power (W)Power (W) 50.0 50.0 35.0 24.0 33.0 33.0 52.0 300.0

Flux (lm)Flux (lm)1 * 10001 * 10001 * 620

1 * 12001 * 29001 * 29003 * 13501 * 5600

The total installed power: 1.22 (kWatt)

Number of Luminaires Per Switching Mode:

Switching Mode

Desk LightingConference LightingPresentation Lighting

A020

B011

C088

D990

E110

F100

G440

Luminaire CodeH011

Switching Mode

Desk LightingConference LightingPresentation Lighting

Power (kWatt)Power (kWatt)

- - -

Number of Luminaires Per Arrangement:

Arrangement

BureauA0

B0

C0

D0

E0

F0

G4

Luminaire CodeH0

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 4/27

Page 185: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

Arrangement

Conference Table 1Conference Table 2Cupboard and DoorCurtainWhiteboardIndividuals

AA000020

BB000001

CC620000

DD003600

EE000001

FF000001

GG000000

Luminaire CodeHH000001

Arrangement

BureauConference Table 1Conference Table 2Cupboard and DoorCurtainWhiteboardIndividuals

Power (kWatt)Power (kWatt)

0.21 0.21 0.07 0.07 0.14 0.10 0.42

2.3 Calculation Results

Switching Modes:Code123

Switching ModeSwitching ModeDesk LightingConference LightingPresentation Lighting

(Il)luminance Calculations:

Calculation

Working PlaneFloorCurtainBureauConference TablePaintingWhiteboardConference Table 1

SwitchingMode

SwitchingMode

13112223

TypeType

Surface IlluminanceSurface IlluminanceSurface IlluminanceSurface IlluminanceSurface IlluminanceSurface IlluminanceSurface IlluminanceSurface Illuminance

UnitUnit

luxluxluxluxluxluxluxlux

AveAve

375 67.3 143 670 1060 40.9 576 584

Min/AveMin/Ave

0.190.140.360.730.261.000.200.15

Min/MaxMin/Max

0.100.010.260.610.131.000.120.07

ResultResult

TotalTotalTotalTotalTotalTotalTotalTotal

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 5/27

Page 186: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3. Calculation Results

3.1 Working Plane: Graphical Table Desk Lighting

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 375 0.19 0.10 0.80

D : FBS 145/118E : TPH 601/128 MDF : TPH 601/128 C7-60

G : TBS 630/314 C7-60

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5

X(m)

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Y(m

)

D

D

D

D

D

D

D

D

D

G G

G G

F

E

111

167

204

269

332

418

440

398

352

371

368

291

187

142

234

266

344

398

507

508

432

405

500

512

352

197

118

180

231

315

395

504

536

511

539

679

675

470

248

86

123

176

272

378

494

548

559

604

761

744

514

286

73

105

158

243

324

435

502

505

551

689

685

484

253

86

125

177

242

315

416

489

466

442

501

512

383

230

122

191

250

333

388

476

528

527

492

520

504

413

261

146

245

283

366

397

473

483

504

469

495

457

406

250

Scale1:75

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 6/27

Page 187: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.2 Working Plane: Filled Iso Contour Desk Lighting

Grid : Working Plane at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 375 0.19 0.10 0.80

D : FBS 145/118E : TPH 601/128 MDF : TPH 601/128 C7-60

G : TBS 630/314 C7-60

700

600

500

400

300

200

100

-0.5 0.5 1.5 2.5 3.5 4.5

X(m)

-4-3

-2-1

01

23

Y(m

)

D

D

D

D

D

D

D

D

D

G G

G G

F

E

Scale1:50

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 7/27

Page 188: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.3 Floor: Graphical Table Presentation Lighting

Grid : Floor at Z = 0.00 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 67.3 0.14 0.01 0.80

B : MASTERLINE PLUS 50W 24D (13674)C : MASTERLINE PLUS 35W 10D (13764)H : QFG 101/300

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5

X(m)

-4-3

-2-1

01

23

Y(m

)

C

C

C C

C C

C C

HB

11

12

13

14

14

15

15

15

16

16

16

16

15

15

16

12

13

14

15

16

17

17

17

17

17

17

17

18

18

18

12

14

15

16

17

18

18

18

19

19

19

19

19

19

19

13

15

16

17

18

18

19

19

19

20

20

20

20

20

20

13

37

108

118

110

96

37

19

20

20

20

20

20

20

20

26

191

790

617

557

604

130

28

19

19

19

19

20

20

20

30

349

627

448

422

622

224

29

18

18

18

18

18

19

29

11

51

246

242

226

195

43

16

16

16

16

16

17

17

38

10

11

21

28

29

22

14

14

14

14

14

14

14

20

32

Scale1:50

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 8/27

Page 189: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.4 Floor: Filled Iso Contour Presentation Lighting

Grid : Floor at Z = 0.00 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 67.3 0.14 0.01 0.80

B : MASTERLINE PLUS 50W 24D (13674)C : MASTERLINE PLUS 35W 10D (13764)H : QFG 101/300

600

400

200

-0.5 0.5 1.5 2.5 3.5 4.5

X(m)

-4-3

-2-1

01

23

Y(m

)

C

C

C C

C C

C C

HB

Scale1:50

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 9/27

Page 190: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.5 Curtain: Graphical Table Desk Lighting

Grid : Curtain at X = 0.00 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 143 0.36 0.26 0.80

D : FBS 145/118E : TPH 601/128 MDF : TPH 601/128 C7-60

G : TBS 630/314 C7-60

-4 -3 -2 -1 0 1 2 3 4

Y(m)

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

Z(m

)

D D D D D DD D DGG GG

F

E52

191

169

122

94

80

71

64

60

59

55

196

182

139

115

102

92

84

79

78

56

197

183

142

124

120

115

110

106

101

56

198

184

144

128

132

140

139

132

122

57

199

186

146

132

151

172

167

155

141

57

199

185

148

148

188

203

193

176

159

57

198

184

146

145

184

204

200

187

169

57

197

182

140

124

147

183

193

186

172

57

197

182

140

123

146

181

191

185

171

56

197

182

143

141

179

198

194

180

163

56

197

181

141

138

176

189

179

162

147

55

194

171

124

104

119

138

137

129

119

Scale1:50

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 10/27

Page 191: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.6 Curtain: Filled Iso Contour Desk Lighting

Grid : Curtain at X = 0.00 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 143 0.36 0.26 0.80

D : FBS 145/118E : TPH 601/128 MDF : TPH 601/128 C7-60

G : TBS 630/314 C7-60

200

175

150

125

100

75

-4 -3 -2 -1 0 1 2 3 4

Y(m)

-1.5

-0.5

0.5

1.5

2.5

3.5

Z(m

)

D D D D D DD D DGG GG

F

E

Scale1:50

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 11/27

Page 192: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.7 Bureau: Graphical Table Desk Lighting

Grid : Bureau at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 670 0.73 0.61 0.80

D : FBS 145/118E : TPH 601/128 MDF : TPH 601/128 C7-60

G : TBS 630/314 C7-60

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

X(m)

-3.3

-3.2

-3.1

-3-2

.9-2

.8-2

.7-2

.6-2

.5-2

.4-2

.3-2

.2-2

.1-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1Y

(m)

G G

F

570

616

670

726

768

770

723

654

571

488

595

638

694

751

794

789

738

668

591

505

604

650

700

761

803

797

744

676

599

514

601

644

703

756

797

791

743

677

597

513

581

625

668

716

747

749

713

652

580

501

Scale1:15

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 12/27

Page 193: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.8 Bureau: Filled Iso Contour Desk Lighting

Grid : Bureau at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 670 0.73 0.61 0.80

D : FBS 145/118E : TPH 601/128 MDF : TPH 601/128 C7-60

G : TBS 630/314 C7-60

800

750

700

650

600

550

500

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

X(m)

-3.3

-3.2

-3.1

-3-2

.9-2

.8-2

.7-2

.6-2

.5-2

.4-2

.3-2

.2-2

.1-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1Y

(m)

F

Scale1:15

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 13/27

Page 194: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.9 Conference Table: Graphical Table Conference Lighting

Grid : Conference Table at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 1060 0.26 0.13 0.80

Maximum of 6 luminaire types exceeded - discarding legend.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

X(m)

0.5

0.6

0.7

0.8

0.9

11.

11.

21.

31.

41.

51.

61.

71.

81.

92

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

33.

1Y

(m)

A A

D

D

D

C

C

C C

C C

C C

E

273

491

1483

1523

773

1559

1569

805

1576

1560

592

374

630

825

1297

1261

679

1256

1265

708

1310

1370

920

746

1874

1953

745

546

453

520

528

481

594

815

2047

1989

667

864

1337

1302

722

1299

1308

750

1351

1409

959

785

324

567

1561

1602

855

1641

1651

883

1652

1634

664

445

Scale1:15

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 14/27

Page 195: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.10 Conference Table: Filled Iso Contour Conference Lighting

Grid : Conference Table at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 1060 0.26 0.13 0.80

Maximum of 6 luminaire types exceeded - discarding legend.

2000

1500

1000

500

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

X(m)

0.5

0.6

0.7

0.8

0.9

11.

11.

21.

31.

41.

51.

61.

71.

81.

92

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

33.

1Y

(m)

A

C

C

C C

C C

C C

E

Scale1:15

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 15/27

Page 196: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.11 Painting: Graphical Table Conference Lighting

Grid : Painting at Y = -3.70 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 40.9 1.00 1.00 0.80

Maximum of 6 luminaire types exceeded - discarding legend.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

X(m)

0.9

11.

11.

21.

31.

41.

51.

61.

71.

81.

92

2.1

2.2

2.3

2.4

2.5

Z(m

)

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

41

Scale1:10

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 16/27

Page 197: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.12 Painting: Filled Iso Contour Conference Lighting

Grid : Painting at Y = -3.70 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 40.9 1.00 1.00 0.80

Maximum of 6 luminaire types exceeded - discarding legend.

40.92

40.92

40.91

40.91

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

X(m)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

22.

12.

22.

3Z

(m)

Scale1:10

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 17/27

Page 198: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.13 Whiteboard: Graphical Table Conference Lighting

Grid : Whiteboard at Y = 3.70 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 576 0.20 0.12 0.80

Maximum of 6 luminaire types exceeded - discarding legend.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

X(m)

0.8

0.9

11.

11.

21.

31.

41.

51.

61.

71.

81.

92

2.1

2.2

2.3

2.4

2.5

Z(m

)

116

329

511

495

443

373

312

377

797

783

684

554

452

375

521

934

879

760

672

569

469

254

685

908

899

776

639

520

256

687

910

901

777

639

520

526

940

884

764

674

569

468

385

805

789

689

557

451

373

125

335

515

498

442

371

309

Scale1:10

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 18/27

Page 199: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.14 Whiteboard: Filled Iso Contour Conference Lighting

Grid : Whiteboard at Y = 3.70 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 576 0.20 0.12 0.80

Maximum of 6 luminaire types exceeded - discarding legend.

800

600

400

200

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

X(m)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

22.

12.

2Z

(m)

Scale1:10

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 19/27

Page 200: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.15 Conference Table 1: Graphical Table Presentation Lighting

Grid : Conference Table at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 584 0.15 0.07 0.80

B : MASTERLINE PLUS 50W 24D (13674)C : MASTERLINE PLUS 35W 10D (13764)H : QFG 101/300

0 0.5 1 1.5 2 2.5 3

X(m)

0.2

0.7

1.2

1.7

2.2

2.7

3.2

Y(m

)

C

C

C C

C C

C C

89

246

928

943

405

944

944

406

944

931

250

93

349

476

795

756

338

732

732

339

758

797

480

354

1211

1257

400

249

174

211

212

175

251

402

1260

1215

348

475

794

755

337

731

731

338

757

796

478

352

87

244

926

940

403

941

941

404

942

928

247

90

Scale1:20

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 20/27

Page 201: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

3.16 Conference Table 1: Filled Iso Contour Presentation Lighting

Grid : Conference Table at Z = 0.80 mCalculation : Surface Illuminance (lux)Result Type : Total

Average Min/Ave Min/Max Project maintenance factor 584 0.15 0.07 0.80

B : MASTERLINE PLUS 50W 24D (13674)C : MASTERLINE PLUS 35W 10D (13764)H : QFG 101/300

1250

1000

750

500

250

0.4 0.9 1.4 1.9 2.4

X(m)

0.2

0.7

1.2

1.7

2.2

2.7

3.2

Y(m

)

C

C

C C

C C

C C

Scale1:20

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 21/27

Page 202: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

4. Luminaire Details

4.1 Project Luminaires

MASTERLINE PLUS 50W 38D (13678) 1 x 12V 50W 38D

Light output ratios DLOR : 0.76 ULOR : 0.00 TLOR : 0.76Lamp flux : 1000 lmLuminaire wattage : 50.0 WMeasurement code : 9502090800

1500

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

MASTERLINE PLUS 50W 24D (13674) 1 x 12V 50W 24D

Light output ratios DLOR : 0.75 ULOR : 0.00 TLOR : 0.75Lamp flux : 1000 lmLuminaire wattage : 50.0 WMeasurement code : 9502091400

3750

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 22/27

Page 203: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

MASTERLINE PLUS 35W 10D (13764) 1 x 12V 35W 10D

Light output ratios DLOR : 0.68 ULOR : 0.00 TLOR : 0.68Lamp flux : 620 lmLuminaire wattage : 35.0 WMeasurement code : 9502092100

15000

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

FBS 145/118 1 x PL-C 18W / 840

Light output ratios DLOR : 0.59 ULOR : 0.00 TLOR : 0.59Ballast : StandardLamp flux : 1200 lmLuminaire wattage : 24.0 WMeasurement code : DL36012000

375

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 23/27

Page 204: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

TPH 601/128 MD 1 x TL5 28W HE / 840

Light output ratios DLOR : 0.46 ULOR : 0.43 TLOR : 0.89Ballast : ElectronicLamp flux : 2900 lmLuminaire wattage : 33.0 WMeasurement code : LVW1086500

200

0o 30o30o

60o 60o

90o 90o

120o 120o

150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

TPH 601/128 C7-60 1 x TL5 28W HE / 840

Light output ratios DLOR : 0.42 ULOR : 0.47 TLOR : 0.89Ballast : ElectronicLamp flux : 2900 lmLuminaire wattage : 33.0 WMeasurement code : LVW1087100

200

200

0o 30o30o

60o 60o

90o 90o

120o 120o

150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 24/27

Page 205: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

TBS 630/314 C7-60 3 x TL5 14W HE / 840

Light output ratios DLOR : 0.73 ULOR : 0.00 TLOR : 0.73Ballast : ElectronicLamp flux : 1350 lmLuminaire wattage : 52.0 WMeasurement code : LVW1067900

250

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

QFG 101/300 1 x T3 P S 300W

Light output ratios DLOR : 0.79 ULOR : 0.00 TLOR : 0.79Lamp flux : 5600 lmLuminaire wattage : 300.0 WMeasurement code : LML2480100

500

0o 30o30o

60o 60o

90o 90o

120o 120o150o 150o180o

C = 180o Imax C = 0o

C = 270o C = 90o

Luminous Intensity Diagram (candela/1000 lumen)

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 25/27

Page 206: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

5. Installation Data

5.1 Legends

Project Luminaires:CodeABCDEFGH

QtyQty21891141

Luminaire TypeLuminaire TypeMASTERLINE PLUS 50W 38D (13678)MASTERLINE PLUS 50W 24D (13674)MASTERLINE PLUS 35W 10D (13764)FBS 145/118TPH 601/128 MDTPH 601/128 C7-60TBS 630/314 C7-60QFG 101/300

Lamp TypeLamp Type1 * 12V 50W 38D1 * 12V 50W 24D1 * 12V 35W 10D1 * PL-C 18W1 * TL5 28W HE1 * TL5 28W HE3 * TL5 14W HE1 * T3 P S 300W

Flux (lm)Flux (lm)1 * 10001 * 10001 * 620

1 * 12001 * 29001 * 29003 * 13501 * 5600

Switching Modes:Code123

Switching ModeSwitching ModeDesk LightingConference LightingPresentation Lighting

5.2 Luminaire Positioning and Orientation

Qty and Code

1 * D1 * D1 * D1 * D1 * D 1 * D1 * C1 * C1 * C1 * G 1 * G1 * C1 * E1 * C1 * C 1 * C1 * C1 * B1 * A1 * A 1 * F1 * H1 * G1 * G

X (m)

0.30 0.30 0.30 0.30 0.30

0.30 1.10 1.10 1.10 1.50

1.50 1.50 1.50 1.50 1.90

1.90 1.90 2.10 2.10 2.70

2.80 3.90 3.90 3.90

Y (m)

-3.00-1.80-0.60 0.60 1.80

3.00 1.20 1.80 2.40-2.40

0.00 0.80 1.80 2.80 1.20

1.80 2.40-3.00 3.00 3.00

-2.10-3.00-2.40 0.00

Position

Z (m)

2.70 2.70 2.70 2.70 2.70

2.70 2.70 2.70 2.70 2.70

2.70 2.70 2.70 2.70 2.70

2.70 2.70 2.65 2.65 2.65

2.00 1.80 2.70 2.70

Rot.

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.0090.00

90.00 0.0090.00 0.00 0.00

0.00 0.00

135.00 0.00 0.00

90.0045.0090.0090.00

Tilt90

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00

180.00 0.00 0.00

Aiming Angles

Tilt0

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00

-43.00-30.00-30.00

0.00 0.00 0.00 0.00

1

100100100100100

100

---

100

100-

60-- -----

100-

100100

2

100100100100100

10010010010040

40100100100100

100100100100100

-

704040

SwitchingModes (%)

3

----- -

707070- -

70-

7070

7070100

-- -

40--

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 26/27

Page 207: Manual Indoor

Director room Philips Lighting B.V.Example 3 Date: 27-04-1999

Qty and Code

1 * D 1 * D1 * D

X (m)X (m)

3.90

3.90 3.90

Y (m)Y (m)

0.60

1.80 3.00

Position

Z (m)Z (m)

2.70

2.70 2.70

Rot.Rot.

0.00

0.00 0.00

Tilt90Tilt90

0.00

0.00 0.00

Aiming Angles

Tilt0Tilt0

0.00

0.00 0.00

11

100

100100

22

100

100100

SwitchingModes (%)

33

- --

CalcuLuX Indoor 4.5a Philips Lighting B.V. Page: 27/27

Page 208: Manual Indoor
Page 209: Manual Indoor

Calculux Indoor

Index

Page 210: Manual Indoor

Calculux Indoor

Page 211: Manual Indoor

Calculux Indoor

- Ι.1 -

Page

A Aiming offset

Floodlights ...............................................................................................................................................3.15 Aiming Type

RBA Aiming............................................................................................................................................3.11 Aiming Types ...............................................................................................................................................3.25

XYZ Aiming............................................................................................................................................3.10 Annual costs .................................................................................................................................................3.70 Application Field

Badminton Court .......................................................................................................................................3.6 Basketball Court ........................................................................................................................................3.6 Five-a-side football Pitch...........................................................................................................................3.6 General Field .............................................................................................................................................3.6 Handball Court...........................................................................................................................................3.6 hockey Field ..............................................................................................................................................3.6 Ice hockey Field.........................................................................................................................................3.6 Korfball Court............................................................................................................................................3.6 Squash Court..............................................................................................................................................3.6 Table Tennis Table ....................................................................................................................................3.6 Tennis Court ..............................................................................................................................................3.6 Volleyball Court ........................................................................................................................................3.6

Arc Shape .......................................................................................................................................................3.55

Arrangement Definition Block Arrangement..................................................................................................................................3.23 Free Arrangement ....................................................................................................................................3.34 Line Arrangement ....................................................................................................................................3.30 Polar Arrangement...................................................................................................................................3.26 Room Block Arrangement .......................................................................................................................3.20

ASCII data file ................................................................................................................................................3.8

B Badminton Court ............................................................................................................................................3.6 Basketball Court .............................................................................................................................................3.6 Block Arrangement.......................................................................................................................................3.23

C Calculation

Calculation points ....................................................................................................................................3.45 Calculation Grids ..................................................................................................................................... 1.3, 3.7 Calculation points in a grid ...........................................................................................................................3.45 Calculux

Calculux Indoor .........................................................................................................................................1.1 Calculux standard grids.................................................................................................................................3.40 C-Gamma-System...........................................................................................................................................3.9 CIBSE.............................................................................................................................................................1.2 CIBSE standard grids....................................................................................................................................3.42 CIBSE, DIN, NEN........................................................................................................................................3.40 CIBSE/TM14..................................................................................................................................................1.2 Connections with calculation Grids ................................................................................................................3.7 Conversion of Aiming types .........................................................................................................................3.13 Convert into a Free Arrangement..................................................................................................................3.35 Coordinates

XYZ-coordinates .......................................................................................................................................3.9

Page 212: Manual Indoor

Calculux Indoor

- Ι.2 -

Cost Calculation Annual costs ............................................................................................................................................3.70 Total Investment ......................................................................................................................................3.69

Create reports..................................................................................................................................................1.4 C-γ coordinate.................................................................................................................................................3.9

D Database

Luminaire Database ...................................................................................................................................3.8 Default side...................................................................................................................................................3.46 Depreciation Factor.......................................................................................................................................3.72 Drawings.......................................................................................................................................................3.58

E Environment settings and preferences ............................................................................................................2.3 EULUMDAT..................................................................................................................................................1.2

F Factor

Depreciation Factor..................................................................................................................................3.72 Lamp Lumen Depreciation Factor ...........................................................................................................3.72 Lamp Maintenance Factor .......................................................................................................................3.72 Lamp Survival Factor ..............................................................................................................................3.72 Light Regulation Factor (LRF) ..................................................................................................................1.4 Luminaire Type Maintenance Factor .......................................................................................................3.72 Maintenance Factor..................................................................................................................................3.72 New Value Factor ....................................................................................................................................3.72

Filled Iso Contour .........................................................................................................................................3.68 Five-a-side football Pitch................................................................................................................................3.6 Floodlights

Aiming offset ...........................................................................................................................................3.15 Free Arrangement .........................................................................................................................................3.34

G General Field ..................................................................................................................................................3.6 Generated grids.............................................................................................................................................3.40 Glare .............................................................................................................................................................3.62 Graphical manipulation...................................................................................................................................1.3 Graphical Table ............................................................................................................................................3.68 Grid

Calculation Grids .......................................................................................................................................1.3 Calculation points in a grid ......................................................................................................................3.45 Default side..............................................................................................................................................3.46 Normal vector of a grid............................................................................................................................3.50 Size and position of a grid .......................................................................................................................3.43

Grid Method CIBSE........................................................................................................................................................1.2

H Handball Court................................................................................................................................................3.6 hockey Field ...................................................................................................................................................3.6

Page 213: Manual Indoor

Calculux Indoor

- Ι.3 -

I Ice hockey Field..............................................................................................................................................3.6 IES ..................................................................................................................................................................1.2 Indirect contribution .....................................................................................................................................3.65 Individual Luminaires...................................................................................................................................3.17

Luminaire Definition ...............................................................................................................................3.17 Installation ......................................................................................................................................................1.3 Installation and operating platform .................................................................................................................1.5 Investment ....................................................................................................................................................3.69 Iso Contour ...................................................................................................................................................3.68

K Korfball Court.................................................................................................................................................3.6

L Lamp Lumen Depreciation Factor ................................................................................................................3.72 Lamp Maintenance Factor ............................................................................................................................3.72

Lamp Lumen Depreciation Factor ...........................................................................................................3.72 Lamp Survival Factor ..............................................................................................................................3.72

Lamp Survival Factor ...................................................................................................................................3.72 Light Regulation Factor (LRF) .............................................................................................................. 1.4, 3.57

Lighting Control ......................................................................................................................................3.57 Lighting control ............................................................................................................................................3.57 Lighting Controls

Light Regulation Factor (LRF) ..................................................................................................................1.4 Light-technical Calculations .........................................................................................................................3.59 Line Arrangement .........................................................................................................................................3.30 LTLI ...............................................................................................................................................................1.2 Luminaire

Conversion of Aiming types ....................................................................................................................3.13 Database.....................................................................................................................................................3.8 Individual Luminaires..............................................................................................................................3.17 Luminaire Arrangements .........................................................................................................................3.19 Luminaire Data ..........................................................................................................................................3.8 Luminaire data formats ..............................................................................................................................1.2 Luminaire orientation ..............................................................................................................................3.12 Luminaire Quantity..................................................................................................................................3.16 Positioning .................................................................................................................................................3.9 Rotating .....................................................................................................................................................3.9

Luminaire Arrangements ....................................................................................................................... 1.3, 3.19 Block Arrangement..................................................................................................................................3.23 Convert into a Free Arrangement.............................................................................................................3.35 Free ............................................................................................................................................................1.3 Free Arrangement ....................................................................................................................................3.34 Line............................................................................................................................................................1.3 Line Arrangement ....................................................................................................................................3.30 Point Arrangement.....................................................................................................................................1.3 Polar Arrangement............................................................................................................................ 1.3, 3.26 Ungroup...................................................................................................................................................3.35

Luminaire Data ...............................................................................................................................................3.8 CIBSE/TM14...................................................................................................................................... 1.2, 3.8 EULUMDAT...................................................................................................................................... 1.2, 3.8 IES ...................................................................................................................................................... 1.2, 3.8 LTLI ................................................................................................................................................... 1.2, 3.8 Phillum ......................................................................................................................................................1.1

Luminaire data formats ...................................................................................................................................1.2

Page 214: Manual Indoor

Calculux Indoor

- Ι.4 -

Luminaire definition Aiming Types ................................................................................................................................. 3.10, 3.25 Number of Same ......................................................................................................................................3.25 Project Luminaire Type .................................................................................................................. 3.17, 3.25 Symmetry.................................................................................................................................................3.25

Luminaire Definition Block Arrangement..................................................................................................................................3.25 Free Arrangement ....................................................................................................................................3.34 Line Arrangement ....................................................................................................................................3.33 Polar Arrangement...................................................................................................................................3.28 Room Block Arrangement .......................................................................................................................3.22

Luminaire Orientation...................................................................................................................................3.10 Luminaire Photometric Data

CIBSE/TM14.............................................................................................................................................1.2 EULUMDAT...................................................................................................................................... 1.2, 3.8 IES .............................................................................................................................................................1.2 LTLI ................................................................................................................................................... 1.2, 3.8 Phillum ......................................................................................................................................................1.1

Luminaire Quantity.......................................................................................................................................3.16 Luminaire Type Maintenance Factor ............................................................................................................3.72

M Maintenance Factor

Lamp Maintenance Factor .......................................................................................................................3.72 Luminaire Type Maintenance Factor .......................................................................................................3.72

Mountain Plot ...............................................................................................................................................3.68

N NEN..............................................................................................................................................................3.40 New Value Factor .........................................................................................................................................3.72 Normal vector of a grid.................................................................................................................................3.50 Number of Same ...........................................................................................................................................3.25

P Phillum ...........................................................................................................................................................1.1 Platform

Operating platform.....................................................................................................................................1.5 Polar Arrangement........................................................................................................................................3.26 Polygon

Shape .......................................................................................................................................................3.54 Positionering luminaire.......................................................................................................................... 3.9, 3.16 Positioning and Orientation

Luminaire...................................................................................................................................................3.9 Pre-defined shapes ........................................................................................................................................3.52 Preferences......................................................................................................................................................2.3 Presentation

Calculation results....................................................................................................................................3.50 Selecting Aiming Presentation types .......................................................................................................3.14

Presentation formats .....................................................................................................................................3.68 Filled Iso Contour ....................................................................................................................................3.68 Graphical Table .......................................................................................................................................3.68 Iso Contour ..............................................................................................................................................3.68 Mountain Plot ..........................................................................................................................................3.68 Textual Table ...........................................................................................................................................3.68

Page 215: Manual Indoor

Calculux Indoor

- Ι.5 -

Project Project Information ....................................................................................................................................3.1 Project Luminaire Type .................................................................................................................. 3.17, 3.25 Project overview ............................................................................................................................... 1.4, 3.68

Q Quality Figures .............................................................................................................................................3.67

R RBA System .................................................................................................................................................3.11 Rectangle

Shape .......................................................................................................................................................3.53 Report Setup .................................................................................................................................................3.68 Reports

Create reports.............................................................................................................................................1.4 Right hand rule .............................................................................................................................................3.46 Room Block Arrangement ............................................................................................................................3.20 Rotating ..........................................................................................................................................................3.9 Rotation (Rot) ...............................................................................................................................................3.11

S Set of points

Shape .......................................................................................................................................................3.53 Settings .................................................................................................................................................. 2.3, 3.25 Shapes

Arc ...........................................................................................................................................................3.55 Polygon....................................................................................................................................................3.54 Pre-defined shapes ...................................................................................................................................3.52 Rectangle .................................................................................................................................................3.53 Set of points .............................................................................................................................................3.53 Symmetry.................................................................................................................................................3.56 User defined shapes .................................................................................................................................3.52

Squash Court...................................................................................................................................................3.6 Standards

CIBSE................................................................................................................................................. 1.2, 3.8 NEN.........................................................................................................................................................3.40

Switching Mode..................................................................................................................................... 1.4, 3.25 Symmetry......................................................................................................................................................3.25

Shapes......................................................................................................................................................3.56 X-Symmetry ............................................................................................................................................3.38 XY-Symmetry..........................................................................................................................................3.39 Y-Symmetry ............................................................................................................................................3.38

Symmetry lighting installation........................................................................................................................1.3

T Table Tennis Table .........................................................................................................................................3.6 Tennis Court ...................................................................................................................................................3.6 Textual Table ................................................................................................................................................3.68 Tilt0 ..............................................................................................................................................................3.12 Tilt90 ............................................................................................................................................................3.12

Page 216: Manual Indoor

Calculux Indoor

- Ι.6 -

U UGR

Unified Glare Rating................................................................................................................................3.63 User defined grids.........................................................................................................................................3.43 User defined shapes ......................................................................................................................................3.52 Utilisation Factor (UF)..................................................................................................................................3.66

V Vignette files...................................................................................................................................................3.1 Volleyball Court .............................................................................................................................................3.6

X X-Symmetry

Luminaires ...............................................................................................................................................3.38 XY-Symmetry

Luminaires ...............................................................................................................................................3.39 XYZ aiming..................................................................................................................................................3.10 XYZ-coordinates ............................................................................................................................................3.9

Y Y-Symmetry

Luminaires ...............................................................................................................................................3.38

Page 217: Manual Indoor

Calculux Indoor

Page 218: Manual Indoor

Calculux Indoor

LiDAC Central Lighting Design and Application Centre P.O. Box 80020 5600 JM Eindhoven The Netherlands http://www.lightingsoftware.philips.com