manganese triacetate-promoted cyclizations & annulations

46
Mn 1 Mn 2 Mn 3 O 16 Manganese Triacetate-Promoted Manganese Triacetate-Promoted Cyclizations & Annulations Cyclizations & Annulations Daniel Beaudoin Daniel Beaudoin Literature Meeting – September 25, 2006 Under the supervision of Prof. André B. Charette Leading References: Melikyan, G. G. Aldrichimica Acta 1998, 31, 50 Snider, B. B. Chem. Rev. 1996, 96, 339 Melikyan, G. G. Synthesis, 1993, 833.

Upload: quant

Post on 11-Jan-2016

54 views

Category:

Documents


3 download

DESCRIPTION

Manganese Triacetate-Promoted Cyclizations & Annulations. Leading References: Melikyan, G. G. Aldrichimica Acta 1998 , 31 , 50 Snider, B. B. Chem. Rev. 1996 , 96 , 339 Melikyan, G. G. Synthesis , 1993 , 833. Daniel Beaudoin Literature Meeting – September 25, 2006 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Manganese Triacetate-Promoted Cyclizations & Annulations

Mn1 Mn2

Mn3

O16

Manganese Triacetate-Promoted Manganese Triacetate-Promoted Cyclizations & AnnulationsCyclizations & Annulations

Daniel BeaudoinDaniel BeaudoinLiterature Meeting – September 25, 2006

Under the supervision of Prof. André B. Charette

Leading References:

Melikyan, G. G. Aldrichimica Acta 1998, 31, 50Snider, B. B. Chem. Rev. 1996, 96, 339Melikyan, G. G. Synthesis, 1993, 833.

Page 2: Manganese Triacetate-Promoted Cyclizations & Annulations

Oxidative Radical ReactionsOxidative Radical ReactionsTransition Metal OxidantsTransition Metal Oxidants

Oxidative vs Reductive Radical Reactions

Transition Metal One Electron Oxidants1

E0 (V)

0.00 1.000.50 1.50

Fe3+ + e- Fe2+0.77 V

Ce4+ + e- Ce3+1.61 V

Mn3+ + e- Mn2+1.51 V

Cu2+ + e- Cu+0.16 V

Enolate couplingPhenol coupling

Enol silyl ether couplingEnolate coupling

Malonate ester oxidationBenzyl ether oxidation

2.00

Co3+ + e- Co2+1.98 V

V5+ + e- V4+1.00 V

Ring opening oxigenationPhenol coupling

Acyl radicals from aldehydesMalonate ester oxidation

Carboxylic acids oxidationMalonate ester oxidation

1 Review on transition metal-promoted radical reactions: Iqbal, J. et al. Chem. Rev. 1994, 94, 519.

ReductiveTermination

OxidativeTermination

X

H

X

H

ReductiveGeneration

OxidativeGeneration

Page 3: Manganese Triacetate-Promoted Cyclizations & Annulations

1 Heiba, E. I. et al. J. Am. Chem. Soc. 1969, 91, 138.

Mn(OAc)2 + KMnO4 Mn(OAc)3.2H2O

AcOH

Ac2OMn(NO3)2 Mn(OAc)3

82%

90-98%

Distorted Octahedron (High Spin)

t2g

eg

Mn(III) d4

t2g

eg

Mn(II) d5

+1 e-

Mn(OAc)Mn(OAc)33

An Underappreciated OxidantAn Underappreciated Oxidant

Preparation1

Electronic and Redox Properties

Inner-Sphere Electron Transfer Outer-Sphere Electron Transfer

L MnIII L MnII+ MnIIIR + MnIIR +

MnIIIR + MnIIR +H H

Mn(OAc)3.2H2O

311$/100g (Aldrich)

Page 4: Manganese Triacetate-Promoted Cyclizations & Annulations

1 Hessel, C. et al. Recl. Trav. Chim. Pays-Bas 1969, 88, 545.2 Christou, G. et al. Polyhedron 2003, 22, 133.

Mn(OAc)Mn(OAc)33

Solid State StructureSolid State Structure

Mn(OAc)3.2H2O : [Mn2O(OAc)4].2AcOH.3H2O1

“Anhydrous Mn(OAc)3” : [Mn3O(OAc)7].AcOH2

Mn MnMnMn OO

OO

n

Mn

Mn

MnO

O

HOAc

O

n

Mn1 Mn2

Mn3

O16

Bond Distance (A)

Mn1-O16 1.848

Mn2-O16 1.858

Mn3-O16 2.108

Bond Distance (A)

Mn-O1 1.898

Mn-O2 2.176

Mn-O3 1.936

O O

Page 5: Manganese Triacetate-Promoted Cyclizations & Annulations

• Polynuclear solution structure proposed

• [Mn3O(OAc)7] and Mn(OAc)3.2H2O are indistinguishable in solution

• [Mn3O(OAc)7] is slightly more reactive than Mn(OAc)3.2H2O (~1.7x)

• Metathesis with other acids occurs readily

Mn(OAc)Mn(OAc)33

Solution Structure (AcOH)Solution Structure (AcOH)

Mn

Mn

MnO

HOAc

AcO

Mn MnMnMn OO

OO

n

Mn

Mn

MnO

O

HOAc

O

n

Mn

H

MnO

AcO

HOAc

OAcAcO

AcOH

O O

Page 6: Manganese Triacetate-Promoted Cyclizations & Annulations

Mn(OAc)Mn(OAc)33

InitiationInitiation

Classical Carbonyls Compounds (High T° Required)

Activated Methylenes (Low T° Required)

Enolization Precedes Inner-Sphere Electron Transfer

H

O

- HOAc

AcOMnIII

OMnIII

OMnII

1 eV = 23.1 kCal/mol

I.P. (eV) = 10.65 10.2 9.0 8.8 8.0 7.74 7.25

Me

O

OEt

OO

HMe H

OEt

OEt

OTESMe

Me

OEt

OTES

Me OH

OMe

OEt

Me

H

Most Common Substrates

Fristad, W. E. et al. J. Org. Chem. 1985, 50, 10.

EWGH

R R'

MnIII EWGR

R'

EWGH

R R'EWG = Acid, Ketone, Anhydridre, Nitro, (Aldehyde)

EWGEWG

R HEWG = Acid, Ester, Amide, Nitrile, Ketone, Nitro, Sulfone, Sulfoxide

Page 7: Manganese Triacetate-Promoted Cyclizations & Annulations

Mn(OAc)Mn(OAc)33

InitiationInitiation

Oxidation of Alkenes

Alkene I.P. (eV)

Alkene Electron Transfer (%)

Acetic acid

(IP = 10.65 eV)

Acetic anhydride

(IP = 10.00 eV)

Dimethyl Malonate

(IP ~ 9.2)

1-Hexene 9.65 0 - 0

Cyclohexene 8.95 0 - 0

p-Methylstyrene 8.20 6 - 0

-Methystyrene 8.17 22 - 0

Indene 8.14 54 22 0

trans-Stillbene 8.00 96 75 0

Anethole 7.68 100 - 0

Fristad, W. E. et al. Tetrahedron 1986, 42, 3429.

Alkene Electron Transfer

RR'

EWG

R'

RMn(OAc)3Ligand

Electron Transfer

EWG

R'

H

RR

R

EWGH

R R'

MnIII EWGR

R'

Me

MeO

Me

MeO

OAc

OAc

Mn(OAc)3.2H2O

AcOH, reflux

70%

1,2-Diacetate Formation

Page 8: Manganese Triacetate-Promoted Cyclizations & Annulations

Mn(OAc)Mn(OAc)33

Seminal WorksSeminal Works

First Reported Reactions

1 Bush, J. B. et al. J. Am. Chem. Soc. 1968, 90, 5903.2 Heiba, E. I. et al. J. Am. Chem. Soc. 1968, 90, 5905.

3 Heiba, E. I. et al. J. Org. Chem. 1974, 39, 3456.

O

OMn(OAc)3

.2H2O

AcOH, reflux

O

OH+

Proposed Mechanism1,3

Annulation to -Lactone1,2

Annulation to 2,3-dihydrofuran3

O

Mn(OAc)3.2H2O

AcOH, 45°C

EWG

R

+R

O

EWG

H H

X

O

X

O

X

O

R

Mn(OAc)3

-HOAc

X = OH

X = OH

X

OMn(OAc)2

-Mn(OAc)2

RX

O

R

OR O

OR X

Mn(OAc)3

-Mn(OAc)2

Page 9: Manganese Triacetate-Promoted Cyclizations & Annulations

[KOAc] MnIII (equiv) Reaction Time Yield

0.005 2.5 23 h 67%

0.010 2.5 >12 h 78%

0.500 2.0 7.5 h 85%

3.050 2.0 1.3 h 81%

Fristad, W. E. et al. J. Org. Chem. 1985, 50, 10.

Lactone AnnulationLactone AnnulationRate-Determining StepRate-Determining Step

Enolization Proposed as the Rate-Determining Step

Added Base Accelerates Lactone Formation

O

O

R'

R' , Mn(OAc)3.2H2O

AcOH, R

OH

O R

R pKA (ester) Relative Rate

H 25 1.0

Cl 22 1.1 x 101

SO2Ph 14 3.8 x 103

CO2Me 13 1.1 x 104

CO2H 13 1.4 x 104

CN 9 4.0 x 105

C6H12O

O

C6H12

Mn(OAc)3.2H2O, KOAc

AcOH, reflux

R O

O

R

Mn(OAc)3

AcOH

Page 10: Manganese Triacetate-Promoted Cyclizations & Annulations

Enolization must occur irreversibly at a complexed acetate2

Mn(OAc)3

orMn(OAc)2

CH3CO2H + CD3CO2D CHnD3-nCO2H(D)KOAc,

OH

O

OH

OH

K = 4 x 10-20

1 Guthrie, J. P. et al. Can. J. Chem. 1995, 73, 1395.2 Fristad, W. E. et al. Tetrahedron 1986, 42, 3429.

Lactone AnnulationLactone AnnulationRate-Determining StepRate-Determining Step

Enolization of Carboxylic Acids

Enolization of a Complexed Acetate

Conclusion:

Acetic acid enol content negligible1 Mn(II) and Mn(III) have no effect on deuterium incorporation2

O

O

C8H17

C8H17AcOH,

Mn(OAc)3.2H2O

OIIIMn

OMnIIOO

IIIMnO

MnIIIOO

IIIMnO

MnIIIO

slow fast

OAc

R O

O

R

Mn(OAc)3

AcOH

Page 11: Manganese Triacetate-Promoted Cyclizations & Annulations

R R2 pKA Deuterium Incorporation

Me H 10.7 100 % after 2 h @ 25°C

Et Me 12.5 50 % after 10 h @ 40°C

Lactone AnnulationLactone AnnulationRate-Determining StepRate-Determining Step

Concerted Oxidation-Addition Proposed

RO

O

OH

O

R2 HRO

O

OH(D)

O

R2 D

AcOD

Rate-Determining Step is Substrate-Dependant

R R2 IP Oxidation Time

Me H ~ 9.2 56 h, 6-8 h (excess alkene)

Et Me ~ 8.8 6-8 h, 6-8h (excess alkene)

Snider, B. B. et al. J. Org. Chem. 1988, 53, 2137.

R O

O

R

Mn(OAc)3

AcOH

O

OH

O

O

OHO

Mn(OAc)3.2H2O Mixture of overoxidized

productsMn(OAc)3

.2H2O

2 days >14 days

RDSHO

O

OR

O

MnIIIR'

HO

O

OR

O

MnII

R'

H

HO

OMnOMn

Mn

Donor

Acceptor

ProductsRO

O

OH

O

R2

Mn(OAc)3.2H2O

AcOH

Page 12: Manganese Triacetate-Promoted Cyclizations & Annulations

1 Fristad, W. E. et al. J. Org. Chem. 1985, 50, 10.2 Davies, D. I. et al. J. Chem. Soc. Perkin Trans. 1 1978, 227.

3 Snider, B. B. Chem. Rev. 1996, 96, 339.

Lactone AnnulationLactone AnnulationTerminationTermination

Secondary Carbocation Not a Predominant Intermediate1,2

Fristad: Radical Cyclization1

Snider: MnIV Intermediate3

OO

Mn(OAc)3

AcOH

CO2H

OAc+

63% 1%

CO2H

H2SO4 (50%)

60 min OO + A/B = 1.2

A B

O

O

O OR

OxidationReductiveElimination

OIIIMn

OMnIIO

R

OIVMn

O

OIIMnR O

MnIIIIMn

Carbocations are generated from tertiary, alylic and benzylic radicals.

O OR

RadicalCyclization Oxidation

OIIIMn

OMnIIO

R

OIIIMn

OMnIIO

R

OMnIIIIMn

R O

O

R

Mn(OAc)3

AcOH

Page 13: Manganese Triacetate-Promoted Cyclizations & Annulations

Lactone Annulation Lactone Annulation Scope and SelectivityScope and Selectivity

Pr PrPr

PrO

O

Pr Pr

Mn(OAc)3.2H2O

AcOH

Mn(OAc)3.2H2O

AcOH

dr 3.3 : 1

60% 69%

-Lactone Annulation Isn’t Stereospecific

O

PhMe

O

O

PhMeO2C

O

68% 82%

rr

dr

41 : 1

26 : 1

rr

dr

38 : 1

67 : 1

O

O

MePh

80%

rr

dr

160 : 1

-

O

O

EtEtMe

43%

rr

dr

only

-

O

CO2BuMe

O

57%

rr

dr

3.8 : 1

only

79%

rr

dr

40 : 1

-

O

O

C8H17

1 Fristad, W. E. et al. J. Org. Chem. 1985, 50, 10.2 Fristad, W. E. et al. J. Org. Chem. 1985, 50, 3143.

R O

O

R

Mn(OAc)3

AcOH

Reaction Scope

Page 14: Manganese Triacetate-Promoted Cyclizations & Annulations

Lactone Annulation Lactone Annulation Scope and SelectivityScope and Selectivity

Pr PrPr

PrO

O

Pr Pr

Mn(OAc)3.2H2O

AcOH

Mn(OAc)3.2H2O

AcOH

dr 3.3 : 1

60% 69%

-Lactone Annulation Isn’t Stereospecific

O

PhMe

O

O

PhMeO2C

O

68% 82%

rr

dr

41 : 1

26 : 1

rr

dr

38 : 1

67 : 1

O

O

MePh

80%

rr

dr

160 : 1

-

O

O

EtEtMe

43%

rr

dr

only

-

O

CO2BuMe

O

57%

rr

dr

3.8 : 1

only

79%

rr

dr

40 : 1

-

O

O

C8H17

1 Fristad, W. E. et al. J. Org. Chem. 1985, 50, 10.2 Fristad, W. E. et al. J. Org. Chem. 1985, 50, 3143.

O

O

50%

dr 1.5 : 1

O

O

69%

dr 3.3 : 1

52%

dr 1.25 : 1

O

O

C8H17

Cl

C8H17 C8H17

NCCl O

PrPr

O

33%

dr 7.3 : 6.3 : 2 : 1

O

PrPr

O

Cl Cl O

PrPr

O

O

PrPr

O

Cl Cl

R O

O

R

Mn(OAc)3

AcOH

Reaction Scope

Page 15: Manganese Triacetate-Promoted Cyclizations & Annulations

Lactone AnnulationLactone AnnulationRadical Addition SelectivityRadical Addition Selectivity

Relative Rate of Addition (Competition Study)1

OO

OH

Me

BzO

HO

OTIPS

MeMe

O

O

OTIPSH

NC

CO2HNC

Mn3O(OAc)7

KOAc, MeCNrt, 15h, 48%

(±)-Paeoniflorigenin

Ph

Me

Ph

PhPh

C5H11

Me

PhMe

PhPh C6H13

Relative rate : 27 19 15 12 2.4 2.1 1.3 1.0

Ph4-Me

R O

O

R

Mn(OAc)3

AcOH

Relevant Examples2,3

1 Heiba, E. I. et al. J. Am. Chem. Soc. 1968, 90, 5905.2 Corey, E. J. et al. J. Am. Chem. Soc. 1993, 115, 8871.

3 Garda, C. Synth. Coomm. 1984, 14, 1191.

1. Mn(OAc)3.2H2O

AcOH, reflux 2. HCO2H

43%

O

O

(±)-Norbisabolide

OTIPS

Me

Major impurity(yield not specified)

Page 16: Manganese Triacetate-Promoted Cyclizations & Annulations

2,3-Dihydrofuran Annulation2,3-Dihydrofuran AnnulationReaction ScopeReaction Scope

O

Mn(OAc)3.2H2O

AcOH, 45°C

EWG

R

+R

O

EWG

H H

O

COMe

MePh

100%1

O

COMe

MeMe

Pr O

O

MePr

74%131%1

O

COMe

MeH13C6

10%1

O

COMe

Me

50-77%2

ArAr

O

CO2Et

MePh

57%1

OMeO

86%3

CO2Et

Me O

53%4

CO2Et

MeO

H

H O

47%5

CO2Et

MeOO

1 Heiba, E. I. et al. J. Org. Chem. 1974, 39, 3456.2 Shi, M. et al. J. Org. Chem. 2005, 70, 3859.

3 Corey, E. J. et al. Chem. Lett. 1987, 223.4 Mellor, J. M. et al. Tetrahedron 1993, 49, 7557.

5 Mellor, J. M. et al. Tetrahedron Lett. 1991, 7107.

Reaction yield depends mostly on the ease of carbocation formation

Page 17: Manganese Triacetate-Promoted Cyclizations & Annulations

2,3-Dihydrofuran Annulation2,3-Dihydrofuran AnnulationSynthetic Studies: PodophyllotoxinSynthetic Studies: Podophyllotoxin

O

OO

OH

MeO

OMe

OMe

O

Podophyllotoxin

Fristad, W. E. et al. Tetrahedron Lett. 1987, 28, 1493.

Mn(OAc)3.2H2O

AcOH, 30 min

O

EtO2C

O

O

CO2Et

OMe

OMe

OMe

56%

O

O

O

MeO

OMe

OMe

CO2Et

CO2Et

CO2Et

O

O

O MeO

OMe

OMe

CO2Et

+

O

O

O

Ar

CO2Et

CO2Et

via:

SnCl4, rt, 70 h81%

Page 18: Manganese Triacetate-Promoted Cyclizations & Annulations

2,3-Dihydrofuran Annulation2,3-Dihydrofuran AnnulationChiral AuxiliariesChiral Auxiliaries

Oxazolidinone Auxiliaries

ON

O O

Bn

Ar

O

CO2R

MeAr

O*Aux

Ar = 4-MeOPh

O

OR

O

Mn(OAc)3.2H2O

AcOH, 70°C, 3 hO

CO2R

MeAr

OMeOLiBr, DBU

THF:MeOH

R = MeR = i-Pr

80%75%

80-85%

dr 9 : 1Brun, F. et al. Tetrahedron Lett. 2000, 41, 9803.

Scope & Cleavage

ON

O O

X

Ar

MnIII

O

CO2RMe

Ar O

Aux*R

ON

O O

X

MnIII

Ar

R

R =

O

OMe

O

X = i-Pr t-Bu Bn

dr = 2.7 : 1 5.3 : 1 9.0 : 1

or

O

Oi-Pr

O

Page 19: Manganese Triacetate-Promoted Cyclizations & Annulations

TerminationTerminationGeneral SchemeGeneral Scheme

X

O

RX

O

R

X

O

X

O

R

R

H

O

X

R

X

O

R

X

O

R

O

N R

X

O

R

X

O

R

CuIII

X

O

R

or

HydrogenAbstraction

Additionto CO

Cyclization

Additionto R-CN

Addition

to CuII

Additionto ArH

Additionto Alkenes

Oxidation

R

Page 20: Manganese Triacetate-Promoted Cyclizations & Annulations

TerminationTerminationHydrogen AbstractionHydrogen Abstraction

Hydrogen Abstraction

Solvent HAA Rate

Acetic Acid 2 x 102 s-1M-1

Acetonitrile 3 x 102 s-1M-1

Ethanol 5.9 x 102 s-1M-1

R

O

R'R

O

R'

H

R H

R

Hydrogen abstraction predominates when primary or secondary radicals are involved

EtO2C CO2Et EtO2C CO2Et

Mn(OAc)3.2H2O

55°C, 28 h EtO2C CO2Et EtO2C CO2Etn

16% 4% 75%40%

Acetic Acid:Ethanol:

Snider, B. B. et al. J. Org. Chem. 1991, 56, 5544.Snider, B. B. et al. J. Org. Chem. 1993, 58, 6217.

O

Me

CO2Me

O

Me

CO2Me

Me24% R = H60% R = D

Mn(OAc)3.2H2O

AcOH, rt, 24hR

Page 21: Manganese Triacetate-Promoted Cyclizations & Annulations

Mn Relative Rate

MnIII 1

CeIV 12

CuII 350

TerminationTerminationCupric SaltsCupric Salts

Radical Oxidation by Cupric Salts1

Rate of Oxidation of Secondary Radicals2

Rate of reaction between CuII and secondary radicals ~ 106 s-1M-1

R + CuII R CuIII

Me

O

C6H13

Mn

Me

O

C6H13

Mn+1

R

O

R' R

O

R'

CuX2

R

O

R'

R

O

R'

Nu

CuX2

R

O

R'

X

R

O

R' Oxidation

OxidativeSubstitution

OxidativeElimination

LigandTransfer

1 Kochi, J. K. et al. J. Am. Chem. Soc. 1968, 90, 4616.2 Heiba, E. I. et al. J. Am. Chem. Soc. 1971, 93, 524.

Page 22: Manganese Triacetate-Promoted Cyclizations & Annulations

TerminationTerminationCupric SaltsCupric Salts

Oxidative SubstitutionSN1-Like Substitution1

R + CuII R CuIII

Applications in Lactone Annulation2

OEtO2C CO2Et

O OEtO2C CO2Et

OO O

EtO2C CO2EtO O

EtO2C CO2Et

94%82%71%72%dr 1 : 1

O OEtO2C CO2Et

86%

OH

O

EtO2C

CO2Et O O

EtO2C CO2Et

Mn(OAc)3 , 80°C

AcOH : 50%Cu(OTf)2, MeCN : 100%Cu(BF4)2, MeCN : 100%

1 Kochi, J. K. et al. J. Am. Chem. Soc. 1968, 90, 4616.2 Burton, J. W. et al. Chem. Comm. 2005, 4687.

H CuX2 H CuX

-X

H NuH

CuX

Nu

Page 23: Manganese Triacetate-Promoted Cyclizations & Annulations

TerminationTerminationCupric SaltsCupric Salts

Oxidative EliminationConcerted Elimination1

Follows Hofmann Rule, Stereoselective for trans-Alkene2

R + CuII R CuIII

O

CO2Me

O

MeO2C

O

MeO2C

O

MeO2C

70% 5%

Cu(OAc)2+

Mn(OAc)3

O

CO2EtMe

O

CO2EtMe

O

CO2EtMe

O

CO2EtMe

39% 13%

Cu(OAc)2+

Mn(OAc)3

1 Kochi, J. K. et al. J. Am. Chem. Soc. 1968, 90, 4616.2 Snider, B. B. et al. J. Org. Chem. 1990, 55, 1965.

Cu(OAc)

H Cu(OAc)2

CuOAcOO

H

Page 24: Manganese Triacetate-Promoted Cyclizations & Annulations

X

O

R X

O

R

O

X

O

R

OMnIII MnII

CO

MeO2C

MeO2CCO2H

MeO2C CO2MeMn(OAc)3

.2H2OCO (600 psi)

AcOH, 70°C, 10h50%

TerminationTerminationNitriles & Carbon MonoxideNitriles & Carbon Monoxide

Nitriles1

Carbon Monoxide2

X

O

R X

O

R

N

X

O

R

HN

R' CN

R'Hydrogen

Abstraction R'

1 Snider, B. B. et al. J. Org. Chem. 1992, 57, 322. 2 Alper H. et al. J. Am. Chem. Soc. 1993,115, 1543.

CO2EtMe

O

CO2EtMe

O

N

CO2EtMe

O

N

N

Mn(OAc)3CO2Et

Me

O

O

Hydrogen Abstraction

then w.-up.21%

Page 25: Manganese Triacetate-Promoted Cyclizations & Annulations

CyclizationCyclizationRadical Aromatic SubstitutionRadical Aromatic Substitution

Mechanism

EWG EWG EWG EWG EWG EWG

Mn(OAc)3

EWG EWG

-Mn(OAc)2

-HOAc

Mn(OAc)3

-Mn(OAc)2

-HOAc

Monocyclization Scope

Citterio, A. et al. J. Org. Chem. 1989, 54, 2713.

N

EtO2C CO2EtMeO

EtO2C CO2EtO2N

EtO2C CO2EtAcHN

EtO2C CO2EtH

EtO2C CO2Et

EtO2C CO2Et

O

EtO2C CO2Et

90% 93%

CO2EtCO2Et

100%39%

85% 80% 88% 85%

Page 26: Manganese Triacetate-Promoted Cyclizations & Annulations

Radical Aromatic SubstitutionRadical Aromatic SubstitutionModel Studies: TronocarpineModel Studies: Tronocarpine

Synthesis of Tetrahydroindolizines

N

NH

O

HO

Tronocarpine

O

Me

Kerr, M. A. et al. Org. Lett. 2006, ASAP.

N

O

CO2Me

CO2Me

CN

N

O

CO2Me

CO2Me

CN

N

NH

OCO2Me

O

NH

CN

Cl

O

CO2Me

CO2Me

NaHMn(OAc)3

.2H2OMeOH, reflux, 18 h

72%

H2, Ra-NiEtOH:THF, 48 h

87%

33%

N

X

CO2Me

CO2MeN

CO2MeCO2Me

X = H2 56%X = O 70%

Mn(OAc)3

MeOH, reflux, 16-24h

Synthesis of the Tronocarpine Skeleton

Page 27: Manganese Triacetate-Promoted Cyclizations & Annulations

CyclizationCyclizationExo Exo vsvs Endo Cyclization Mode Endo Cyclization Mode

Diastereoselectivity (Beckwith-Houk Model)

Representative rates

Reversibility of Cyclization

5-exo & 6-exo Cyclizations

Boat-Like Chair-Like

n nn

kexo

kopenn n

kterm ktermkexo

kopen

k5-exo : 2 x 105 s-1

k6-endo : 4 x 103 s-1

k6-exo : 5 x 103 s-1

k7-endo : 7 x 102 s-1

kopen : 1 x 104 s-1

kterm : 3 x 106 s-1M-1 (Bu3SnH)

Page 28: Manganese Triacetate-Promoted Cyclizations & Annulations

CyclizationCyclizationExo Exo vsvs Endo Cyclization Mode Endo Cyclization Mode

Reversible Cyclization

Rate of Hydrogen Abstraction < Rate of Ring Opening2

Rate of Iodine Abstraction > Rate of Ring Opening1

Rate of Oxidation > Rate of Ring Opening3

kopen = 1 x 104 s-1

kI = 2 x 109 s-1M-1

kOx = 1 x 106 s-1M-1

1 Halpern, J. Acc. Chem. Res. 1971, 4, 386.2 Curran, D. P. et al. J. Org. Chem. 1989, 54, 3140.3 Snider, B. B. J. Am. Chem. Soc. 1991, 113, 6609.

IEtO2CNC CO2EtNC CO2EtNC

90 10

II

(Me3Sn)2, hv

Bz2O2HEtO2CNC CO2EtNC CO2EtNC

14 86

HMeO2CMeO2C CO2EtMeO2C CO2EtNCMn(OAc)3

Cu(OAc)2

93 7

Page 29: Manganese Triacetate-Promoted Cyclizations & Annulations

Baldwin Rulesfor sp2-sp2

cyclization

Hexenyl Radical CyclizationHexenyl Radical Cyclization5-exo 5-exo vsvs 6-endo Cyclization Mode 6-endo Cyclization Mode

O

CO2Me

R3

R2

R1

X

CO2Me

O

R1

R2R2

R3

R1OH

CO2MeMn(OAc)3

AcOH

5-exo 6-endo

Substrate Conditions Products Ref

R1 R2 R3 5-exo 6-endo X

H H H4 Mn(OAc)3

Cu(OAc)2

- 94 - Peterson, J. R. et al. Tetrahedron Lett. 1987, 6109.

Me Me H4 Mn(OAc)3

Cu(OAc)2

- 91 - Snider, B. B. et al. J. Org. Chem. 1989, 54, 38.

H H Me2 Mn(OAc)3

Cu(OAc)2

21 5 Snider, B. B. et al. J. Org. Chem. 1985, 50, 3661.

H H Ph 2 Mn(OAc)3 70 - Peterson, J. R. et al. Tetrahedron Lett. 1987, 6109.Ph

OAc

YX

MOR

YMX

OR

Favored 3-7-(enolexo)-exo-trig

R

MO YX

R

HOYM

X

Favored 6-7-(enolendo)-exo-trigDisfavored 3-5-(enolendo)-exo-trig

Page 30: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical CyclizationHexenyl Radical Cyclization5-exo 5-exo vsvs 6-endo Cyclization Mode 6-endo Cyclization Mode

Presence of heteroatoms favors 5-exo cyclization mode

O

O

CO2MeMe

OO

Me

H

O O

O

O

CO2MeMe

O

O

CO2MeMe

O

O

CO2MeMe

1 : 2

Mn(OAc)3.2H2O

Cu(OAc)2

AcOH, NaOAc, reflux73%

OO

Me

Me

O O

O

O

CO2MeMe

Mn(OAc)3.2H2O

Cu(OAc)2

AcOH, NaOAc, reflux21%

Mn(OAc)3.2H2O

Cu(OAc)2

AcOH, NaOAc, reflux71%, dr 2 : 1

O

O

CO2MeMe

AcO3 : 1

Snider, B. B. et al. Tetrahedron 1993, 49, 9447.

Page 31: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical CyclizationHexenyl Radical CyclizationFormal Synthesis: Gibberelic AcidFormal Synthesis: Gibberelic Acid

OH

CO2HHMe

HO

O

O

Gibberelic Acid

R

O

CO2Me R

O

CO2Me O

R

MeO2C O

R

MeO2C

Snider, B. B. et al. J. Org. Chem. 1987, 52, 5487.Snider, B. B. et al. J. Org. Chem. 1991, 55, 5544.

O

R

CO2Me

O

R

CO2MeMn(OAc)3.2H2O

Cu(OAc)2

AcOH, rt, 24h

R = HR = CH3

R = OPO(OEt)2

R = OMEM

O

H

OO

48%66%77%52% (EtOH, Hydrolysis in AcOH)

18%

OH

CO2HHMe

HO

O

O

OMEM

O

H

Page 32: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical Cyclization Hexenyl Radical Cyclization Model Studies: NemorosoneModel Studies: Nemorosone

O

HO O

Ph

O

Me

Me

MeMe

Nemorosone

Kraus, G. A. et al. Tetrahedron Lett. 2003, 44, 659.Kraus, G. A. et al. Tetrahedron 2003, 59, 8975.

O

MeMe

H CO2Me

HO O

O

MeMe

H CO2Me

O Br

O

MeMe

H CO2Me

O

CO2Me

MeMe

1. NaH, AllylBr2. Mn(OAc)3, Cu(OAc)2

AcOH, 80°C, 16 h

56% MeO2C

O

MeMe

1. NBS (3.3 equiv)2. AcOH:H2O

90%

ONa1.2. 140-170°C

45-54% overall

Page 33: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical Cyclization Hexenyl Radical Cyclization Model Studies: BilobalideModel Studies: Bilobalide

O

O

O

O

O

O

H

H

OHOH

t-Bu

Bilobalide

CO2H

OO

O

HH H

H

O

O

HH H

CO2MeOO

O

O

HH H

CO2MeOH

O

O

HH H

O

O

H

Mn(OAc)3

AcOH, rt, 1h52%

NaH

BrOMe

O

Al/Hg

THF:H2O65% (2 steps)

1. MsCl, Et3N2. LiOH

79%

Corey, E. J. et al. J. Am. Chem. Soc. 1984, 106, 5384.

Page 34: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical Cyclization Hexenyl Radical Cyclization Synthesis : Podocarpic AcidSynthesis : Podocarpic Acid

OMe

CO2HMe

Me

H

Podocarpic Acid

OMe

OCO2EtMe

OMe

OCO2EtMe

Me

H

Zn, HCl60%Mn(OAc)3

AcOH, rt, 1h50%

OMe

CO2EtMe

Me

H

Snider, B. B. et al. J. Org. Chem. 1985, 50, 3659.

O

Me

EtO2C

OMe

Page 35: Manganese Triacetate-Promoted Cyclizations & Annulations

Today’s QuestionToday’s Question(Beer Break)(Beer Break)

OMe CO2Et

OMe CO2Et

Me

H

H

Mn(OAc)3

Cu(OAc)2

MeOH, rt, 3h35% one isomer

Predict Diastereoselectivity of this Cyclization (32 possible diastereoisomers!)

Page 36: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical Cyclization Hexenyl Radical Cyclization Synthesis : IsosteviolSynthesis : Isosteviol

OMe CO2Et

OMe CO2Et

Me

H

H

HOMe CO2Et

Me O

H

H

Me CO2Et

Me O

H

HMe CO2H

Me O

H

H

Isosteviol

Mn(OAc)3

Cu(OAc)2

MeOH, rt, 3h35%

1. NaBH4 (99%)2. OsO4, NaIO4 (93%)

1. DEAD, PPh3

2. H2, Pd/C

79%

1. LAH (95%)2. Jones (72%)

Snider, B. B. et al. J. Org. Chem. 1998, 63, 7945.

O

Me

EtO2C

Page 37: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical Cyclization Hexenyl Radical Cyclization Chiral AuxiliariesChiral Auxiliaries

Substrate Products Yield dr

- - -

B 28 96 : 4

A 44 100 : 0

B 90 93 : 7

A + B 45 -

PhS

O

O N

O

i-Pr

N

O

Me

Me

O

O

O

Me

PhMeMe

Et2N

O

Snider, B. B. et al. J. Org. Chem. 1991, 56, 328; J. Org. Chem. 1993, 58, 7640

R

O

Me

O

R Me

O

Me

RMn(OAc)3

Cu(OAc)2

AcOH

A B

Page 38: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical CyclizationHexenyl Radical CyclizationChiral AuxiliariesChiral Auxiliaries

β-Ketosulfoxide Auxiliary

Snider, B. B. et al. J. Org. Chem. 1991, 56, 328.

S

O

Me

O

PhOS Me

Mn(OAc)3

Cu(OAc)2

AcOH, rt, 14 h44%, one isomer

Ph

O

MeS

O

Ph O

O

S OPhMe

O

Me O

PhOSMe

O

PhOS Me

SOPh

O

SMe

O

PhO

S OPhMe

Page 39: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical CyclizationHexenyl Radical CyclizationChiral AuxiliariesChiral Auxiliaries

Phenylmethyl and Pyrrolidine Auxiliaries

N

O

Me

O

ON

Me

MeMe

O

OO

Me

Ph

MeMe

O

Me

R

O

OPh

O

Addition from top faceAddition from bottom face

Selectivity difficult to rationalize with tertiary radicals.

N

Me

Me

O

Met-BuN

Me

Me

O

HR

HX

17:1 4:1

Minimzed A(1,3) strain

Porter, N, A, et al. J. Am. Chem. Soc. 1991, 113, 7002.

Page 40: Manganese Triacetate-Promoted Cyclizations & Annulations

Hexenyl Radical CyclizationHexenyl Radical CyclizationChiral AuxiliariesChiral Auxiliaries

Phenylmenthyl and Sultam-Based Auxiliaries

Snider, B. B. et al. J. Org. Chem. 1993, 58, 7640.Zoretic, P. A. et al. Tetrahedron Lett. 1992, 33, 2637.

Curran; Porter; Geise In Stereochemistry of Radical Reactions,VCH: Weinheim, 1996, 198.

NSO2

O

O

NSO2

O

O

Me

HH

Mn(OAc)3

Cu(OAc)2

AcOH, rt, 4h49%, dr 75 :25

NS O

O

O

H

O

NS O

O

O

H

NS O

O

OH

27 : 1

Similar example

OMe

OMeRO2C

OMe

O

MeRO2C

Me

H

Mn(OAc)2

AcOH, 15°C, 1h dr 88 : 12

R = PhenylmenthylMeOH, 0°C, 8h

dr 91 : 9

Page 41: Manganese Triacetate-Promoted Cyclizations & Annulations

Heptenyl Radical CyclizationHeptenyl Radical Cyclization 6-exo 6-exo vsvs 7-Endo Cyclization Mode 7-Endo Cyclization Mode

O

CO2R

R1

R2

Mn(OAc)3, Cu(OAc)2

AcOH

6-exo 7-endo

O

R2R1

CO2R CO2R

R1

R2

O

Substrate ProductsRef

R R1 R2 6-exo 7-endo

Et H H 12% 32% Snider Tetrahedron Lett. 1988, 29, 5209.

Me H Me - 68% Snider Tetrahedron 1991, 47, 8663.

Me Me Me 67% - Snider J. Org. Chem. 1987, 52, 5487.

H

Me

O

CO2Me

H

H

O

CO2MeMe

H

Me

O

CO2MeH

CO2Me

H O

Me

HCO2Me

H O

Me

H

Page 42: Manganese Triacetate-Promoted Cyclizations & Annulations

Heptenyl Radical CyclizationHeptenyl Radical Cyclization Synthesis: Upial & Synthesis: Upial & epiepi-Upial-Upial

Me

Me O

OEt

Me O

O

MeO

O

Me Me

1. LiHMDS, 1-iodo-3-hexene2. HCl, THF

(57%, dr 6:1)

Mn(OAc)3.2H2O

Cu(OAc)2

AcOH, rt, 2h(85%)

Upial

Snider: Formal Synthesis1,2

Paquette: 14-epi-Upial3

Snider, B. B. et al. Tetrahedron 1995, 51, 12983.Taschner, M. J. et al. J. Am. Chem. Soc. 1985, 107, 5570.

Paquette, L. A. et al. Tetrahedron 1987, 43, 5567.

OO

CO2Me

OMOM

Me

H Me

Me OMOMMe

CO2HMeO2C

Me

MeOMOMHO2C

MeO2C

Me

OMOMMe

CO2Me

CO2H

OO

CO2Me

OMOM

H

Me Me

Me OMOMMe

CO2HMeO2C

Mn(OAc)3

AcOH,70°C68%

Mn(OAc)3

AcOH,70°C9%

OO

H

Me Me

CHO

Upial

Page 43: Manganese Triacetate-Promoted Cyclizations & Annulations

Heptenyl Radical CyclizationHeptenyl Radical Cyclization Synthesis: Dihydropallescensin DSynthesis: Dihydropallescensin D

White, J. D. et al. Tetrahedron Lett. 1990, 31, 59.

Me

Me

OMeMe

Me

OMeMeCO2Me

OH

OHH

HMeMe

OHH

HMeMe O

H

HMeMe O

CO2Me

H

HMeMe

OMe

MeO

El

Nu

1. Li, NH3, t-BuOH2. LDA, NCCO2Me

52%

Mn(OAc)3, Cu(OAc)2

AcOH, rt, 3h61%

1. LiCl, DMSO, D2. (i-Pr)2NMgBr, TMSCl, Et3N3. mCPBA

64%

1. 2. K2CO3, MeOH

81%

LiTMS

HgSO4

2N H2SO4

62%

Dihydropallescencin D

Page 44: Manganese Triacetate-Promoted Cyclizations & Annulations

Heptenyl Radical CyclizationHeptenyl Radical CyclizationSynthesis:Synthesis: GymnomitrolGymnomitrol

KNH NH2

KAPA =

Application to the acetylene zipper reaction:

Snider, B. B. et al. J. Org. Chem. 1997, 62, 1970.

Brown, C. A. et al. J. Am. Chem. Soc. 1975, 97, 891.

O

Me

Me

1. LiHMDS, 1-iodo-2-butyne2. NaH, MeI

1. KAPA (71%)

2. LDA, TMSCl (92%)O

Me

Me

Me

Me

O

Me

Me

MeTMS

O

MeMe

Me

TMS

MeMe

MeHO H

(56%, 2 steps)

Mn(OAc)3.2H2O

9:1 EtOH/HOAc90°C, 22 h

(62%, dr 1.4:1)

1. HOAc (80%)2. NaBH4 (88%)

Gymnomitrol

Page 45: Manganese Triacetate-Promoted Cyclizations & Annulations

Oxidative Ring OpeningOxidative Ring OpeningSynthesis: SilphiperfoleneSynthesis: Silphiperfolene

Snider, B. B. et al. J. Org. Chem. 1994, 59, 5419.

N

t-Bu

CO2t-Bu

Me

CO2H

Me Me

Me

HMe

HO

Me

HMe

O

Me

HMe

Me

Me

HMe

O

BrMg1.

2. PDC, DMF (84%)

(65%)

20 : 1

(COCl)2, DMAP

i-Pr2NEt, PhMe(79%)

Li.EDA

(79%)

Mn(OAc)3.2H2O,

EtOH (46%)

Mn(pic)3, DMF (58%)

Na, NH3, EtOH

(69%)

Me

(93%) Me

HMe

MeLi

Me OHMe

Silphiperfolene

pic =N CO2H

Page 46: Manganese Triacetate-Promoted Cyclizations & Annulations

SummarySummary

Mn(OAc)3 is a unique one electron oxidant.

There are no reliable equivalent to the one-step Mn(OAc)3- mediated lactone and dihydrofuran annulations.

Cyclizations often exhibits very high selectivity.

Selectivity observed with chiral auxiliaries aren’t well understood.

Low yields and large amounts of by-products are common.