macroscopic quantum coherence

38
Macroscopic Quantum Coherence Carlo Cosmelli, G. Diambrini Palazzi Dipartimento di Fisica, Universita`di Roma “La Sapienza” Istituto Nazionale di Fisica Nucleare Commissione Nazionale II- Relazione Finale – 19.11.2003 MQC

Upload: kasi

Post on 25-Feb-2016

56 views

Category:

Documents


6 download

DESCRIPTION

MQC. Macroscopic Quantum Coherence. Carlo Cosmelli, G. Diambrini Palazzi Dipartimento di Fisica, Universita`di Roma “La Sapienza”. Istituto Nazionale di Fisica Nucleare Commissione Nazionale II- Relazione Finale – 19.11.2003. Sommario. Introduzione storica, la proposta di A. Leggett - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Macroscopic Quantum Coherence

Macroscopic Quantum Coherence

Carlo Cosmelli, G. Diambrini Palazzi Dipartimento di Fisica, Universita`di Roma “La Sapienza”

Istituto Nazionale di Fisica NucleareCommissione Nazionale II- Relazione Finale – 19.11.2003

MQC

Page 2: Macroscopic Quantum Coherence

Sommario

• Introduzione storica, la proposta di A. Leggett• MQC con rf SQUID, MQC a Roma• Misure e risultati intermedi:

• Il dispositivo• (Il Laser switch)• Misure non invasive• Misure di dissipazione quantistica

• Misura delle oscillazioni di Rabi: MQC con un dc SQUID• Sviluppi a Roma e nel mondo: la computazione quantistica

Page 3: Macroscopic Quantum Coherence

Quantum Mechanics (QM) Classical Mechanics (CM)

Superposition Principle Macrorealism

1985 - A. Leggett : Can we have a non classical behavior in a macroscopic system? MQC = Macroscopic Quantum Coherence

1935 - Einstein, Podolski, Rosen : The description of (microscopic) reality given by the quantum wave function is not complete1964 - J. Bell : We can imagine a two particle experiment giving different results for CM (locality) or QM (non locality).

1972 - A. Aspect : Bell experiment with two polarized photons.Violation of Bell inequalities. Non locality.

Page 4: Macroscopic Quantum Coherence

A. J. Leggett, 1985, first proposal of MQC

Page 5: Macroscopic Quantum Coherence

The double well potential:

Leggett 1985: propose a device having a double well potential (a SQUID) to create a double well potential

Page 6: Macroscopic Quantum Coherence

rf SQUID states: L & R U()

L> R>

[ ] 22E21 p

ASRLASτω±ω=ψ±ψ=ψ hh

,, ;

[ ]ASASRL 21

,,, ψ±ψ=ψESEA

( ) ( ) ( )[ ]tEE121

21

As21

LP AsAS −+=ψ+ψ?ψ+ψ= cos**

( ) ( ) ( )[ ]tEE121

21

As21

RP AsAS −−=ψ−ψ?ψ−ψ= cos**

2t

2t

2

2

τ

τ

ω

ω

sin

cos

I

Page 7: Macroscopic Quantum Coherence

MQC (Rabi Oscillations) :QM vs. MR :

P(L,tL, t=0) cos2 ωτtwhere ωτ= tunnelling frequency between wells P(t)

t

1

1/2

0

tP LL♦

τ0

1

0.5

Page 8: Macroscopic Quantum Coherence

Il gruppo MQC: (in giallo i membri temporanei)

•Università La Sapienza• G. Diambrini Palazzi, C. Cosmelli, F. Chiarello, D. Fargion, INFN Roma

• Istituto Fotonica e Nanotecnologie – CNR, Roma• M.G. Castellano, R. Leoni, G. Torrioli, INFN Roma

• Università dell’Aquila•P. Carelli, G. Rotoli, INFN G. C. Sasso/Tor Vergata

• Università di Tor Vergata•M. Cirillo, INFN Tor Vergata

• Istituto di Cibernetica – CNR- Napoli• R. Cristiano, G. Frunzio, B.Ruggiero, P. Silvestrini, INFN Napoli

• Istituto Regina Elena –Centro Ricerche•L. Chiatti

• 9 Laureandi, 2 Dottorandi

Page 9: Macroscopic Quantum Coherence

Organizzazione:• Roma – CNR, L’Aquila

• Progettazione dispositivi superconduttori• Realizzazione dispositivi• Test preliminari a T= 4.2 K

• Roma – La Sapienza• Simulazioni •Test a rf a T=4.2 K• Test a T<100mK• Analisi Risultati

Page 10: Macroscopic Quantum Coherence

• N : 1010 Cooper pairs; I 1-10 A• The system dynamics can be controlled and measured in the classical regime ( J. Clarke, 1987).• The intrinsic dissipation can be made negligible [ exp(-Tc/T)]• The system Hamiltonian is non linear.• The effect can be seen in reasonable short times (nss).

L (superconducting) + Josephson Junction = SQUID

I

MQC can be realized with a SQUID

Page 11: Macroscopic Quantum Coherence

Il potenziale dello SQUID (rf-dc-jj...)• La pendenza media può essere variata dall’esterno (corrente-flusso)• Varia l’altezza della barriera di potenziale• Variano le frequenze di tunneling• Variano le distanze fra i vari livelli energetici

E1> E2> E3

analogamente variano le

risonanze con i livelli energetici

delle buche adiacenti

Page 12: Macroscopic Quantum Coherence

Experimental Requirements•Suppose we want to observe oscillations

from one well to the other with tunneling frequency ω

•The tunneling probability is exponentially depressed by dissipation (Caldeira, Leggett, Garg)

•P(t) =1/2[1+cos (ωt) exp (- t)]

low temperature :T< 20mKlow dissipation : R > 1 M

8 2

20

RTk

hφ =P(t)

t

1

1/2

0

Page 13: Macroscopic Quantum Coherence

• T=9 mK, power= 200 W at 120 mK

• 3 -metal shields (> 40 dB between dc and 100 Hz)

• 2 Al shields (> 90 dB at 1 MHz)• Set of Helmoltz coils 1.5x1.5x1.5

m3 (34 dB attenuation of Earth magnetic field within 1 dm3)

• Magnetically levitated turbo pump

• Vibration Isolation platform, frequency cut ~1 Hz.

• Sample immersed in the liquid 3He-4He mixture.

Rome groupLeiden cryogenics

Low Temperature: 3He-4He dilution refrigerator

Page 14: Macroscopic Quantum Coherence

SQUID Switch

SQUID Amplifier

SQUID rf

rf bias

dc biaslaser

Vout()

Scheme of the experimental SQUID system

Page 15: Macroscopic Quantum Coherence

Chip for the MQC experiment

dc-SQUIDamplifier

readouthystereticdc-SQUID

tunablerf-SQUID

coils

100m

Page 16: Macroscopic Quantum Coherence

Lo SQUID di letturaper effettuare misure non

invasive (un dc SQUID)

Page 17: Macroscopic Quantum Coherence

Utilizzo di un dc-SQUID per la misura non invasiva dello SQUID rf

= R Vout= 0 = L Vout 0

Il dc SQUID viene “acceso” da un impulso di corrente, che lo mantiene nello stato superconduttore, V=0

NIM: Non Invasive Measurement Misura Invasiva: si scarta

R

voutIb

L

voutIb

Page 18: Macroscopic Quantum Coherence

Sensibilità: larghezza della transizione V=0 V0

0.290 0.295 0.300

0.0

0.2

0.4

0.6

0.8

1.0

18 mK 73 mK 150 mK 283 mK 373 mK 535 mK 626 mK

P switch

exτ (

0)

Switch probability of hysteretic dc-SQUID as a function of applied magnetic flux and temperature

Page 19: Macroscopic Quantum Coherence

Detection efficiency:prediction: 98%measured: 98%

82 84 86 88 90 92 94 96 98 100 1020.0

0.2

0.4

0.6

0.8

1.0(a)

(b)

U()f rf

U()f rf

L

R

0 20 40 60 80 100 120 140 160 180 200

t (ms)

P

(m0)

current bias of hysteretic SQUID

voltage output of hysteretic SQUID

voltage output of SQUID magnetometer

optimal bias point

Page 20: Macroscopic Quantum Coherence

The Problem of Dissipation

•Shield all cables from high temperature signals•Shield from external e.m. fields•Shield from mechanical vibrations•Leave only intrinsic dissipation•Measure overall dissipation.

Page 21: Macroscopic Quantum Coherence

U(x )Diminuendo l’altezza della barriera si provoca l’escape per tunneling dei vari livelli energetici: si misura =1/τ in funzione dello sbilanciamento

Dalla forma di si calcola il valore della dissipazione effettiva del sistema

2c

Misure di Energy Level Quantization per valutare la dissipazione intrinseca del sistema

Page 22: Macroscopic Quantum Coherence

(s-1)105

103

101

10-1

.964 .968 .972 .976 I/Ic

e0

-.46-.47-.48

Escape rate for a Josephson junction T= 20 mK - R 1 M

Escape rate for an rf SQUIDT=35mK - R 4 M

103

101

10-1

(s-1)

Experimental results

(C. Cosmelli et al. Phys. Rev. Lett. 1999)

(C. Cosmelli et al. Phys. Rev. 1998)

Page 23: Macroscopic Quantum Coherence

Energy level quantization in thermal regime

fast sweeping of the current, non-stationary regime, T > Tcrossover

T=1.3 K

(IC-Napoli)

Page 24: Macroscopic Quantum Coherence

Misura delle oscillazioni di Rabi

in un sistema macroscopico(un dc SQUID non un rf SQUID!)

Page 25: Macroscopic Quantum Coherence

Test with continuous microwaves - I

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46

0.0

0.2

0.4

0.6

0.8

1.0

0.405 0

0.391 0P

Φx (Φ0)

Switching probability P at different x:

- switching curve- peaks

• For each flux: sequence of current pulses• For each pulse: voltage read-out (0 or 2.7mV)

Ib

V

Ib

x

V • Continuous microwaves at fixed frequency f• Different fluxes x

Page 26: Macroscopic Quantum Coherence

Test with continuos microwaves - II

E0

E1

E2

U()

To find the peaks positions:

- Hamiltonian Eigenenergies E0, E1, E2, ...- Fluxes to have f= (En-E0)h

Microwaves can excite the system when f=(En-E0)h

x0 ()

f (GHz)

( E- E)/ h1 0

( E- E)/ h2 0

0.391 Φ00.405 Φ0

Microwaves

Peaks at the expected positions

f = 14.999 GHzIpulse = 5.5 Atpulse = 50 nsI0max = 19 ACtot = 1.1 pFL = 12 pHT = 60 mK

Experimental values

Page 27: Macroscopic Quantum Coherence

Test with short pulses of microwaves • Flux fixed on the second peak at x = 0.405 0

• A short (100 ns – 500 ns) pulse of microwaves is applied to the dc SQUID• A reading current pulse of proper shape is send to the dc SQUID• The voltage across the SQUID (0 or 2,7 mV) is read at a proper time.

rfpulse

Ib

V

τ τ

1

0

1

0

wave pulse

Page 28: Macroscopic Quantum Coherence

Results: Rabi Oscillations on a Macroscopic Results: Rabi Oscillations on a Macroscopic SystemSystem

• frequency of oscillations =7,4 MHz• Decoherence time τ = 150 ns• Tc (thermal/quantum regime) 100 mK

0.1 0.2 0.3 0.4 0.50.00.10.20.30.40.50.60.70.80.91.0

P

τ (s)

The plot represents the probability P[ |1>,t ; |0>, 0] as a function of the microwave pulse duration t

f = 14.999 GHzhf/KB=720 mKx = 0.405 0

Ipulse = 5.5 Atpulse = 50 nsI0max = 19 ACtot = 1.1 pFL = 12 pHT = 60 mK

System parameters

Page 29: Macroscopic Quantum Coherence

World state of art – observation of coherence on macroscopic systems (SQUIDs)

Group SystemIndirect

obs.(level rep.)

Direct obs. Rabi osc.

Stony BrookUSA rfSQUID 1JJ xDelft, NL SQUID 3JJ x xRome, Italy dcSQUID

2JJ xWork in progress: Berkeley (USA), IBM (USA)

Page 30: Macroscopic Quantum Coherence

peak and dip under -waveresonance between photon and energy spacing between lowest quantum states level repulsion

Page 31: Macroscopic Quantum Coherence

Sviluppi futuri: SQCSuperconducting

Quantum Computing

SQC è attualmente finanziato in gruppo V – end 2004

Page 32: Macroscopic Quantum Coherence

Carlo Cosmelli, Roma

ClassicalClassicalcomputer computer bitbit

1 bit two states0

1

:It is deterministicreadinga bitgives always the value of its state

0 or 1

Theoutput is

0 or 1

: a :

2

qubitIt is probabilisticreading

gives the value|0> with probability

|1> with probability 2

Theoutput is0 or 1

Quantum computing vs.Quantum computing vs.ClassicalClassicalComputingComputing

Quantum computer Quantum computer qubitqubit|0>

1 qubit |0> + |1>

|1> states states

Page 33: Macroscopic Quantum Coherence

Carlo Cosmelli, Roma

What kind of problems can be solved only What kind of problems can be solved only by a QC?by a QC?

The complexity of a problem can beThe complexity of a problem can be: : (N=number of digit in input)(N=number of digit in input)•• Polynomial P: op Polynomial P: op ∝∝ NN

•• NoNo-- Polyo il NP: o Polyo il NP: o ∝∝ ex(N)ex(N)

Ex: cτorizτio o iτeer i ri e cτors is NP Ex: cτorizτio o iτeer i ri e cτors is NP e koω oω τo solve τe role , uτ ωe do oτ ve e koω oω τo solve τe role , uτ ωe do oτ ve τe τi e !τe τi e !

Te τi e is roorτiolTe τi e is roorτiol

τo τe τo τe oo o oerτioso oerτios0 5 10 15 20 25 30

100

101

102

103

104

105

106

Time - n

o of operations

number of digits N

exp(N) N2

Page 34: Macroscopic Quantum Coherence

Factorization times: QC powerFactorization times: QC power

•1977 M. Gardner propose the factorization of a 129 bit 1977 M. Gardner propose the factorization of a 129 bit number number

•1994 The number is factorized: 1000 Workstations – 8 1994 The number is factorized: 1000 Workstations – 8 monthsmonths

2000 2005 2010 2015 2020 2025 203010-3

100

103

106

109

1012

1015

miniaturization limit

2048 bits

1024 bits

512 bit - 4 days

τ(yers)

Yer o ricτio

Classical Classical computercomputer

100 1000 1000010-1

100

101

102

103

2048 bits

1024 bits

4096 bits

512 bits

Factorization timesQuantum Computer [clock frequency: 100MHz]

τ(iuτes)

Nu er o iτs

Quantum Quantum ComputerComputer

Page 35: Macroscopic Quantum Coherence

A hysteretic dc SQUID as a qubit system

0cosBbBUII≅−−Potential

()()()()0000,12cos/,,,xxbxbxIiUIEIπΦ≅ΦΦΔΦΦTunable system

“Artificial atom”

- Qubit states: |E0>, |E1> - Manipulation: Rabi oscillations- Read-out: current pulse to reduce U in order to have escape from E1 and not from E0

E0

E1

U()

=E-E10

U

Ib

x

V =ddτB

Microωves

0/2/2Bhee……hi0 : single junction critical current

Page 36: Macroscopic Quantum Coherence

A double rf SQUID as a qubit system()()201cos/2BBxUIL≅−ΦΦΦ+Φ−ΦPotential

()()()()0002cos/,,,xdcxdcxxdcxxdcIiUπεΦ≅ΦΦΔΦΦΔΦΦTunable system

“Pseudo-spin ½ system”- Qubit states: |L>, |R> - Manipulation: Rabi oscillations, external fluxes variations- Read-out: SQUID magnetometer or flux comparatore

U

|>ΦL |>ΦR

Φ

U()Φ

x

Φdcx ΦΦdc

Microwaves

Flux read-outSQUI D

Page 37: Macroscopic Quantum Coherence

Quantum Information Quantum Information Technology:Technology:

Public Founding, next 5 yearsPublic Founding, next 5 years

• JapanJapan 20 M€/year20 M€/year• Europe (EC)Europe (EC) 7 M€/year + 7 M€/year + Single Single StatesStates

• USAUSA 6 M€/year + 6 M€/year + UniversitiesUniversitiesIncludes all QIT (Solid State, Photons,

Quantum Dots, Atoms, Semiconductors, Molecules, ....) for experimental and theoretical research.

Page 38: Macroscopic Quantum Coherence

World SolidWorld Solid State qubits State qubits –– Rabi Rabi obsobs..

Boulder, J J

Kansas, J J

(Maryland, J J , 2)

Saclay, Qbox

Delf t, 3J SQUI D Tsukuba, Qbox, 2

Roma, dc SQUI D