lovastatin in aspergillus terreus

Upload: alfian-iryanto

Post on 01-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    1/11

    Hindawi Publishing CorporationBioMed Research InternationalVolume , Article ID ,  pageshttp://dx.doi.org/.//

    Research ArticleLovastatin in Aspergillus terreus: Fermented RiceStraw Extracts Interferes with Methane Production andGene Expression in Methanobrevibacter smithii

    Mohammad Faseleh Jahromi,1 Juan Boo Liang,1 Yin Wan Ho,2 Rosfarizan Mohamad,3,4

     Yong Meng Goh,5 Parisa Shokryazdan,2 and James Chin6

    Institute o ropical Agriculture, Universiti Putra Malaysia (UPM), Selangor, Serdang, Malaysia Institute o Bioscience, Universiti Putra Malaysia (UPM), Selangor, Serdang, Malaysia Faculty o Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Selangor, Serdang, Malaysia Institute o ropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Selangor, Serdang, Malaysia Faculty o Veterinary Medicine, Universiti Putra Malaysia (UPM), Selangor, Serdang, Malaysia Faculty o Agriculture and Food Science, University o Queensland, Gatton, QLD , Australia

    Correspondence should be addressed to Juan Boo Liang; [email protected] 

    Received September ; Revised March ; Accepted March

    Academic Editor: Fabio Ferreira Perazzo

    Copyright © Mohammad Faseleh Jahromi et al. Tis is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

    properly cited.

    Lovastatin, a natural byproduct o some ungi, is able to inhibit HMG-CoA (-hydroxy-methyl glutaryl CoA) reductase. Tis is akey enzyme involved in isoprenoid synthesis and essential or cell membrane ormation in methanogenic Archaea. In this paper,experiments were designed to test the hypothesis that lovastatin secreted by  Aspergillus terreus   in ermented rice straw extracts(FRSE) can inhibit growth and CH

    4 production in  Methanobrevibacter smithii   (a test methanogen). By HPLC analysis, % o 

    the total lovastatin in FRSE was in the active hydroxyacid orm, and  in vitro studies conrmed that this had a stronger effect inreducing both growth and CH4 production in M. smithii compared to commercial lovastatin. ransmission electron micrographsrevealed distorted morphological divisions o lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normalcell membrane synthesis. Real-time PCR conrmed that both commercial lovastatin and FRSE increased ( < 0.01) the expressiono HMG-CoA reductase gene (hmg ). In addition, expressions o other gene transcripts in  M. smithii  with a key involvementin methanogenesis were also affected. Experimental conrmation that CH

    4 production is inhibited by lovastatin in A. terreus-

    ermented rice straw paves the way or its evaluation as a eed additive or mitigating CH4 production in ruminants.

    1. Introduction

    Te ormation o isoprenoid chains is a key component o membrane phospholipid synthesis in Archaea. Tis pathway requires the production o mevalonic acid rom -hydroxy-methyl glutaryl CoA catalyzed by the enzyme HMG-CoAreductase, a critical rate-limiting step sharedin common withcholesterol biosynthesis in humans (Figure ). Lovastatin isa natural polyketide synthesized by   Aspergillus terreus  andPleurotus ostreatus   (oyster mushroom), where it may occurat concentrations as high as .% dry weight []. Lovastatinprescribed at a dosage o mg daily can dramatically reduce

    cholesterol levels by % simply through the inhibition o HMG-CoA reductase activity. Trough intererence withmembrane synthesis (Figure ), lovastatin can inhibit thegrowth o methanogenic Archaea in the rumen withoutadverse effects on other cellulolytic bacteria [] and, in thisway, mediates reduction in methane (CH

    4) release into the

    environment. However, the high cost o lovastatin preemptsits use as a eed additive in the mitigation o ruminal CH

    4

    production. Another approach that may be economically  viable is to incorporate A. terreus as a eed supplement andinhibitor o methanogenic Archaea that produces methane inthe process o methanogenesis (Figure ). Furthermore, since

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    2/11

    BioMed Research International

    OPPI

    C

    C   O

    C

    O   P   O

    O

    OHO

    Ether   L-glycerol

    Phosphate

    Branched isoprene

    Archaeal phospholipid

    Thiolase

    Mevalonic acid

    Mevalonate kinase

    Phosphomevalonatekinase

    Mevalonate-5-phosphate

    Mevalonate-5-pyrophosphate

    Isopentenyl-ppisomerase

    Mevalonate-5-pyrophosphatedecarboxylase

    DimethylallylIsopentenyl-5-pyrophosphate (PP)

    Farnesyl-pp synthase

    Farnesyl-pp synthaseGeranyl PP

    Geranylgeranyl-PP

    Geranylgeranyl-PPsynthaseSqualene synthase

    Farnesyl-PP

    Cell membrane

    formation

    Squalenemonooxydenase

    Squalene

    2,3 Oxidosqualene

    Squalene epoxidase

    19 reactions

    Lanosterol

    Cholesterol

    Acetyl-CoA   Acetoacetyl-

    3-hydroxy-3-3methylglutaryl-CoA

    HMG-CoA synthase

    HMG-CoA reductase

    H2C

    CH2

    O

    O

    O

    H

    O

    H

    H

    HO

    Lovastatin

    CH3CH3

    H3C

    H3C

    F : Biosynthesis pathway o cholesterol production in humans (solid-line markers) and phospholipids production in Archaea(dotted-line markers). HMG-CoA reductase is the common enzyme converting HMG-CoA to mevalonic acid in the two pathways.Lovastatin is an inhibitor o HMG-CoA reductase and thus reduces the production o mevalonic acid in both pathways (modied romhttp://ourbiochemistry.blogspot.com///-cholesterol-synthesis.html).

     A. terreus  is a known producer o cellulolytic enzymes [–], it complements the degradation o lignocellulose compo-nents in the rumen enhance eed conversion efficiency. Tis

    paper describes a series o experiments to test the hypothesisthat lovastatin generated by  A. terreus   ermentation o ricestraw (ungal treated rice straw extracts or FRSE) inhibits thegrowth and methanogenesis by  Methanobrevibacter smithii(DSM ), a gastrointestinal methanogen similar to thedominant species in the rumen. Te molecular mechanismor this effect was also elucidated by real-time PCR.

    2. Materials and Methods

    .. Substrate, Microorganism, and Spore Suspension.   Ricestraw (RS) was collected rom the local rice elds in the stateo Selangor, Malaysia. Te material was dried and ground to

    uniorm size (No. mesh) and stored in plastic bags at ∘Cor later use as a substrate.

     A. terreus   ACC , obtained rom American ype

    Culture Collection (ACC), was maintained on potato dex-trose agar (PDA) slants at ∘C or days, stored at ∘C, andsubcultured every two weeks. Spore suspension was preparedin .% ween- solution in approximately 7 spores/mLconcentration.

    .. Solid-State Fermentation.  Solid state ermentation o RSwas carried out in L Erlenmeyer asks. About gramso RS, mL distilled water (containing % urea) wereadded to give moisture content o approximately %. Teasks were plugged with cotton-wool and autoclaved at ∘Cor min prior to inoculate with mL o an   A. terreusspore suspension (containing 7 spores/mL). A sample was

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    3/11

    BioMed Research International

    Formyl MFN

    Methyl-CoM

    Ethanol

    MethanolCOR-

    PRPRFA-P

    Formate

    and biosynthesis

    CO2

     wd 

    mch

    hmd 

    mer 

    mtr 

    mcr 

    adh and no

    mtaB

    raS

     dh

    Acetyl-CoA production

    F420H2

    5-Formyl H4MPT

    Methenyl-H4MPT

    Methylene- H4MPT

    Methyl- H4MPT

     fr 

    CH4

    CH3

    F : Methanogenesis pathway in M. smithii. M. smithii is able to use the Methyl H4MP in the middle step o methanogenesis pathway 

    or production o acetyl-CoA and biosynthesis reactions. Enzymes and genes encode: ormate dehydrogenase ( dh); ormyl-MF dehydro-genase ( wd ); MFN, methanouran; ribouranosylaminobenzene -phosphate (RFA-P); ribouranosylaminobenzene -phosphate synthase(raS); -phospho-a-D-ribosyl--pyrophosphate (PRPP); ormyl-MF: H

    4MP ormyltranserase ( fr ); tetrahydromethanopterin (H

    4MP);

    methenyl-H4MP cyclohydrolase (mch); methylene-H4MP dehydrogenase (hmd ); methylene-H4MP reductase (mer); methyl-H4MP:HS-CoM methyltranserase (mtr ); alcohol dehydrogenase (Adh); F-dependent NADP oxidoreductase ( no); methanol : cobalaminmethyltranserase (mtaB); methyl CoM Reductase (mcr ) (modied rom Hendrickson et al. []).

    ermentedat ∘C or days, conditions which hadpreviously been ound to be optimal []. At the end o ermentation, thesample was dried at ∘C or h.

    .. Preparation o FRSE.   For preparation o FRSE, g o the ermented rice straw was mixed with . L o methanoland shaken or h at room temperature. Te solid sam-

    ples were removed rom the suspension by vacuum l-tration (. m pore size, Pall Corporation, Ann Arbor,MI). Methanol was removed by rotary evaporation at ∘C(Eppendor, USA), and the solid residual or FRSE was usedin the urther experiments.

    .. Lovastatin Quantication by HPLC.   Te concentration o lovastatin in the FRSE was quantied using HPLC (Waters,USA, ) and an ODS column o Agilent (250 × 4.6 mmi.d., m). Te mobile phase consisted o acetonitrile andwater ( : by volume) containing .% acetic acid. TeUV photo diode array (PDA) detection range was set rom to nm, and lovastatin was detected at nm.

    Te sampleinjection volume was L, and the running timewas min. Different concentrationso lovastatin(mevinolin,%, HPLC grade, sigma, M) were used as standard.

    .. Microorganism and Anaerobic Microbial Culture. Meth-anobrevibacter smithii   DSM used in this study wasobtained rom the German Resource Centre or BiologicalMaterial (DSMZ, Germany). Te Balch medium was used

    or the growth o  M. smithii with some modication on it con-taining . g/L o K2HPO4, . g/L o KH2PO4, . g/L o (NH

    4)

    2SO

    4, . g/L o NaCl, .g/L o CaCl

    2⋅H2O, . g/Lo MgSO4⋅H2O, . g/L o NaHCO3, . g/L o rypticase,. g/L o yeast extract, . g/L o sodium acetate, . g/L o sodium ormate, 4.9 × 10−5 g/L o coenzyme M (sodium -mercaptoethane-sulonate), . g/L o cysteine⋅HCl, . g/Lo Na

    2S⋅H2O, and . g/L resazurin (pH .). Vitamin

    and trace mineral solutions were added according to Balchet al. [], and a VFA mixture was added according toLovley et al. []. Te mixture was ushed with CO2, andapproximately mL o medium was transerred into mLserum bottles under anaerobic conditions. Te bottles were

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    4/11

    BioMed Research International

    : Primers used in gene expression study.

    Official symbol Descriptor   Primer sequence (5 → 3)   Amplication size (bp)

     Met    S rRNA  Forward

    ReverseGCCAGAACACGGGCGGGGGCAAGGAG

     

    mcrA  Methyl coenzyme-M

    reductase, subunit AForwardReverse

    CGGGGACDCARAGRGCGBARGCGWAWCCGAGAACC

     

     no  F-dependent NADP

    reductaseForwardReverse

    GGGCAGCAGCAGAAAGGCACACAAGGGCGGA

     

    mta  Methanol: cobalamin

    methyltranseraseForwardReverse

    AGGGGCAAAAGGACCCCAGAGGGCACAAACAGCA

     

    adh   Alcohol dehydrogenase  Forward

    ReverseAAGAAGCCCGGAAGGGCCGAAGCCCCCCAA

     

    hmd   Methylene-HMP

    dehydrogenaseForwardReverse

    ACCCAGGGCGACCGAAAGGAAGCAGACCCGC

     

    mtr   Methyl-HMP: coenzyme

    M methyltranseraseForwardReverse

    AACAAAGCGGCCGGGAACGACACAAGACCCAGCAA

     

    hmg    HMG-CoA reductase  Forward

    ReverseGGCGGAAACCGCAAGGAACGGCCGGCACACCACA

     

    closedby rubber stoppers andaluminumseals andautoclavedin ∘C or min. Lovastatin in nal concentrations o , ,and g/mL and FRSE in nal concentration o , , and g/mL were lter-sterilized using . m sterile syringelters (Pall/Gelman, East Hills, NY, USA) and added into themedium afer autoclaving. Te samples were inoculated with%o a h culture o  M. smithii. Te gas phase in eachbottlewas exchanged with an % H2-% CO2   gas mixture at kPa. Te bottles were incubated at ∘C or h. Growthwas monitored rom the optical density at nm.

    .. Methane Determination.  Te concentration o CH4   inthe headspace gas phase was determined with an Agilent Series Gas Chromatograph (Wilmington, DE, USA).Separation o the gases was achieved using an HP-Plot Qcolumn ( m  ×   . mm ×   m) (Agilent echnologies,Wilmington, DE, USA) with N

    2  as the carrier gas with a

    ow rate o . mL/min (MOX, Kuala Lumpur, Malaysia).Te isothermal oven temperature was ∘C, and separatedgases were detected using a thermal conductivity detector.Methane was eluted in min. Calibration used standard gasprepared by Scott Specialty Gases (Supelco, Belleonte, PA,USA), which contain % o CH

    4, CO, CO

    2, O

    2,and H

    2 in N

    2.

    .. RNA Extraction and Gene Expression.   Cells rom twomilliliters o culture were harvested by centriugation at,rpmorminat∘C anddirectly used orRNA extrac-tion. RNA was extracted using the RiboPure Bacteria RNAIsolation kit (AMBION, AM, Austin, X, USA) accord-ing to the manuacturer’s protocol and reverse transcribedinto cDNA using First Strand cDNA synthesis Kit accordingto the manuacturer’s instructions (Maxime R-PCR Kit,iNtRON, Germany). In the next step, Real-time PCR wasperormed with the BioRad CFX ouch (Bio-Rad, USA)using optical grade plates. Te PCR reaction was perormedona total volumeo L using the iQSYBR Green Supermix(BioRad, USA). Each reaction included . L SYBR Green

    Supermix, L o each Primer, L o cDNA samples, and. L H2O. All real-time PCRs were perormed in duplicate.Primers used in this study are shown in able . S rRNA

    was used as reerence gene []. Te 2−ΔΔC method was usedor determination o relative gene expression []. Results o the real-time PCR data were represented as C values o thethreshold cycle number at which amplied product was rstdetected. ΔC is difference in C value o the target generom the C value o the reerence gene (S rRNA).  ΔΔCis  ΔC o treatment samples (lovastatin and FRSE) minusΔC o the untreated control. Data is presentedas old changeexpression in the target gene o a treatment sample compared

    to the normal sample.

    .. ransmission Electron Microscopy (EM).   Te procedureo sample preparation o Hayat [] with minor modied[] by the Electron Microscopy Unit, Institute o Bioscience,Universiti Putra, Malaysia, was used or the EM study. AHitachi H- (Japan) transmission electron microscopewas used.

    .. Statistical Analysis.   All o the experiments were per-ormed in triplicate. Data were analyzed as a completely randomized design (CRD) using the general linear model

    (GLM) procedure o SAS . []. All multiple comparisonsamong means were perormed using Duncan’s new multiplerange test ( = 0.05).

    3. Results

    .. Purity o Lovastatin.   Te purity o lovastatin in FRSE wascompared with the commercially available orm by HPLC.Figure   shows that commercial lovastatin was   >% inthe lactone orm. In contrast, the yield o lovastatin was mg/g dry matter in FRSE, and approximately % o thiswas in the bioactive hydroxyacid orm (mg/g DM). Moreinormation about production o lovastatin by  A. terreus  in

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    5/11

    BioMed Research International

    O

    O   O

    OHOOHOH

    CH3CH3

    O

    O

    OHO

    CH3

      CH3

    0.15

    0.1

    0.05

    0

    −0.05

    −0.1

    −0.15

          (     A     U      )

    1 2 3 4 5 6 7 8 9 10 11 12

    Minutes

    Hydroxyacid formLactone form

         1     0 .     8

         9     8

         6 .     6

         6     8

    H3C

    H3CH3C

    H3C

    F : Molecular structure and HPLC chromatogram o lovas-tatin.

    0.390

    0.284

    0.238

    0.065

    0.284

    0.167

    0.031

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

       C  o  n   t  r  o

        l

       O   p   t   i  c  a

        l    d  e

      n  s   i   t  y    (   6   2   0  n  m

        )

       L  o  v  a  s   t  a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R   S   E

        (       1       0       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       5       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   5   0   0

           g   /  m   L    )

       F   R   S   E    (   1   0   0

    A

    B  B

    C

    D

    E

    F

    F : Te effect o the addition o commercial lovastatin andermentedrice straw extract (FRSE)in the broth culture o  M. smithion growth rate afer h o incubation. Te error bar representsone standard deviation. A, B, C, D, E and F indicating differencesbetween means ( < 0.01).

    solid state ermentation was published in our previous paper[]. o evaluate the effectiveness o the commercial and FRESlovastatin, dilutions representing , , and g/mL o commercial lovastatin and , , and g/mL o FRSE(contain lovastatin) were used to investigate the biologicalactivity o lovastatin on growth morphology, methane pro-duction, and gene transcript activity.

    .. Microbial Growth and CH 4

     Production.  reatment withcommercial and FRSE lovastatin signicantly ( < 0.01)inhibited the growth o   M. smithii   (Figure ). Inhibition

    by commercial lovastatin at and g/mL was similarto that o and g/mL FRSE, respectively. At thesame concentration o total lovastatin, the growth inhibitory effect o FRSE on  M. smithi  was much stronger than whencommercial lovastatin was used alone.

    Commercial lovastatin and FRSE also inhibited CH4production afer h o incubation (Figure ). At the sameconcentrationo total lovastatin, CH

    4production in theFRSE

    treatments was lowerthan treatments containing commerciallovastatin. Tere wasno signicant difference in CH

    4produc-

    tion by g/mL commercial lovastatin and g/mL FRSE(equivalent to g/mL total lovastatin) while CH4  was notdetected in cultures containing g/mL FRSE (Figure ).

    8.673

    6.896

    5.261

    0.309

    5.66

    3.458

    0.0000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    D

    C

    E

    C

    B

    A

    E

       C  o  n   t  r  o

        l

       L  o  v  a  s   t  a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R   S   E

        (       1       0       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       5       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   5   0   0

           g   /  m   L    )

       F   R   S   E    (   1   0   0

       M  e   t

        h  a  n  e

        (   %  o

        f   t  o   t  a    l

        h  e  a

        d  s   p  a  c  e  g  a  s    )

    F : Te effect o the addition o commercial lovastatin andermentedrice straw extract (FRSE) in the brothculture o  M. smithion methane production (as % o total headspace gas) afer h o incubation. Te error bar represents one standard deviation. A, B,C, D, and E indicate differences between means ( < 0.01).

    .. Microbial Morphology.   Following growth with com-mercial lovastatin or FRSE, the morphology o   M. smithiiwas greatly altered (Figure ). Te lines o cell division in

     M. smithii or the control samples (Figures  (a)  and  (b))displayed symmetrical cell division, while mitotic guresin treated samples were off-centered resulting in aberrantdivision gures.

    .. Gene Expression.  o obtain some insight into the mech-anism o decreased CH

    4  production in   M. smithii,   real-

    time PCR was used to analyse the effect o commerciallovastatin and FRSE on expression o some o the key genesinvolved in the methanogenic pathway (Figure ). Since littlegrowth and CH4   are produced by   M. smithii   in the highconcentration o lovastatin and FRSE and it is not possibleto extract sufficient quantity o RNA in these samples, RNAwas extracted only rom control and two lower levels o treat-ments. Both commercial lovastatin and FRSE signicantly increased the expression o HMG-CoA reductase gene (hmg )( < 0.05). Fold change in expression o this gene in FRSEtreated cells was higher than those treated with commerciallovastatin (Figure (a)), and the maximal change caused by the g/mL FRSE was a -old increase.

    Te FRSE treatments, but not commercial lovastatin, alsohad a signicant effect on expression o methylene-H

    4MP

    dehydrogenase gene (hmd ) that encodes the enzyme or

    conversion the methenyl-H4MP into methylene-H4MP(Figure ). Similarly, with commercial lovastatin and FRSEreduced the expression o alcohol dehydrogenase gene (adh),this reduction was not signicant ( > 0.05) (Figure (c)).reatments containing g/mL Lovastatin, g/mL and g/mL FRSE signicantly ( < 0.01) reduced theexpression o F-dependent NADP reductase gene ( no)in M. smithii (Figure (d)). L-lovastatin and FRSE increasedthe expression o methyl-H

    4MP : coenzyme M methyl-

    transerase gene (mtr ) (Figure (e)). Tis gene producesthe enzyme or the transer o methyl group rom methyl-H

    4MP to HS-COM []. Methyl coenzyme-M reductase

    (mcr ) is the last enzyme in the methanogenesis pathway.

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    6/11

    BioMed Research International

    Cell dividing at center

    200nm

    (a)

    Cell dividing at center

    500nm

    (b)

    Cell dividing at off-center

    200nm

    (c)

    Cell dividing at irregular

    position

    500nm

    (d)

    F : ransmission electron micrograph o  M. smithii as affected by commercial lovastatin (c) and ermented rice straw extract (FRSE)(d). Division o normal  M. smithii cells (a) and (b) occurred at the middle orming two equal cells. In cultures treated with commerciallovastatin (c) and FRSE (d), cell division was off-center and irregular. Pictures were obtained using a Hitachi H- (Japan) transmissionelectron microscope (EM).

    Te effect o lovastatin and FRSE on expression o this gene isshown in Figure (). Te result shows that lovastatin has noeffect on the expression o this gene, but FRSE at both levelsincreased the expression o this gene in M. smithii ( < 0.01).Methanol : cobalamin methyltranserase gene (mta) is thegene or encoding o methanol : cobalamin methyltranserasethat catalyses the conversion o methanol into COR-CH

    3 and

    production o CH4

     in the process o methanogenesis. Bothlovastatin and FRSE signicantly increase the expressiono this gene in   M. smithii   ( < 0.01) (Figure (g)). Teenhancement effect o FRSE on expression o this gene washigher than L-lovastatin.

    4. Discussion

    Lovastatin is an effective therapy in the treatment o hypercholesterolemia because o its ability to inhibit HMG-CoA reductase activity, a key enzyme involved in cholesterolsynthesis []. Because o this, it is easy to ignore the actthat generic ungal statins have evolved to allow producerstrains to gain a competitive survival advantage in complexecological communities by interering with the assembly o isoprenoid chains required or membrane phospholipidsynthesis []. In this way, statin-producing ungi can arrestthe growth rates o susceptible strains [] by interering withcell wall ormation and arresting cellular division []. o test

    whether such a strategy could be used or the reduction o methane production by ruminants, it was necessary to show rstly that rice straws ermented with a representative statin-producing ungal strain o  Aspergillus terreus, was capable o synthesizing biologically active lovastatin. HPLC conrmedthat while commercial lovastatin existed primarily in abiologically inactive lactone (L) orm, the biologically activehydroxyacid or H-orm predominated in FRSE (Figure ).

    In the second stage, it was necessary to demonstratethat the lovastatin in FRSE was able to exert a biologicalimpact on growth and cell membrane assembly in thetarget experimental methanogen— M. smithii. As shown inFigure , growth rates o  M. smithii  were inhibited by both

    commercial lovastatin and FRSE. At the same time, electronmicrographs o  M. smithii showed abnormal ormation o cellmembranes in mitosis, presumably caused by intererence inthe synthesis o isoprenoid building blocks. Although bothtreatments signicantly ( < 0.01) inhibited the growth o 

     M. smithii, the growth inhibitory effect o FRSE on  M. smithiwas much stronger than when control L-lovastatin was usedalone. It is likely that this could have been the consequenceo having to convert the lactone orm to the hydroxy orm o lovastatin beore the inhibition o HMG-CoA reductase canoccur in M. smithii.

    Commercial lovastatin contains % o the active H-orm o lovastatin, so their titrations o , , and ug/mL

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    7/11

    BioMed Research International

    0

    2

    4

    6

    8

    10

    12

       F  o

        l    d  c

        h  a  n  g  e   i  n  g  e  n  e

      e  x   p  r  e  s  s   i  o  n

    C

    B

    A AA

       C  o  n   t  r  o    l

       L  o  v  a  s   t  a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R   S   E

        (       1       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   1   0   0

    (a) Effects o treatments on expression o HMG-CoA reductasegene,hmg  ( < 0.01)

    0

    0.5

    1

    1.5

    2

       F

      o    l    d  c

        h  a  n  g  e   i  n  g  e  n  e

      e  x   p  r  e  s  s   i  o  n

    AA

    AB C BC

       C  o  n   t  r  o    l

       L  o  v  a  s   t  a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R   S   E

        (       1       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   1   0   0

    (b) Effect o treatments on expression o methylene-H4MP dehydro-genase gene, hmd  ( < 0.01)

    0

    0.20.40.60.8

    11.21.4

       F  o

        l    d  c

        h  a  n  g  e   i  n  g  e  n  e

      e  x   p  r  e  s  s   i  o  n

       C  o  n   t  r  o    l

       L  o  v  a  s   t  a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R   S   E

        (       1       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   1   0   0

    (c) Expression o alcohol dehydrogenase gene, adh ( > 0.05)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

       F  o

        l    d  c

        h  a  n  g  e   i  n  g  e  n  e

      e  x   p  r  e  s  s   i  o  n

    BBBA

    A

       C  o  n   t  r  o    l

       L  o  v  a  s   t  a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R   S   E

        (       1       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   1   0   0

    (d) Effects o treatments on expression o F-dependent NADPreductase gene, no ( < 0.01)

    0

    1

    2

    3

    4

       F  o

        l    d  c

        h  a  n  g  e   i  n  g  e  n  e

      e  x   p  r  e  s  s   i  o  n

       C  o  n

       t  r  o

        l

       L  o  v  a  s   t

      a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R

       S   E

        (       1       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   1   0   0

    (e) Effects o treatments on expression o methyl-H 4MP: coenzyme Mmethyltranserase gene, mtr  ( > 0.05)

    0

    1

    2

    3

    4

    5

    6

       F  o

        l    d  c

        h  a  n  g  e   i  n  g  e  n  e

      e  x   p  r  e  s  s   i  o  n

    A

    A

    BBB

       C  o  n

       t  r  o

        l

       L  o  v  a  s   t

      a   t   i  n

        (       1       g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0       g   /  m   L    )

       F   R

       S   E

        (       1       0       g   /  m   L    )

           g   /  m   L    )

       F   R   S   E    (   1   0   0

    () Expression o methyl coenzyme-M reductase gene subunit A, mcrA( < 0.01)

    B

    ABB

    A

    AB

    0

    2

    4

    6

    8

    10

    12

       F  o

        l    d  c

        h  a  n  g  e   i  n  g  e  n  e

      e  x   p  r  e  s  s   i  o  n

       C

      o  n   t  r  o

        l

       L  o  v

      a  s   t  a   t   i  n

        (       1     

      g   /  m   L    )

       L  o  v  a  s   t  a   t   i  n

        (       1       0     

      g   /  m   L    )

       F   R   S   E

        (       1       0     

      g   /  m   L    )

         

      g   /  m   L    )

       F   R   S

       E    (   1   0   0

    (g) Effects o treatments on expression o methanol:cobalamin methyl-transerase gene, mta ( < 0.05)

    F : Effect o lovastatin and FRSE on genes expression in  M. smithii. S rRNA was used as reerence gene. Data were normalized by control and reerence genes. Error bar represent standard deviation. Letters on the columns indicating differences between means( < 0.05).

    represent ., ., and ug H-orm per mL. Te FRSEcontains .% H-orm o lovastatin and , , and ugDM/mL FRSE are actually ., ., and . ug/mL H-lovastatin. Tus, their lowest concentration o FRSE is similar

    in H-orm content with their highest commercial lovastatinconcentration, which was much more inhibitory in the exper-iments shown in both Figures  and . Similarly, in Figure , ug/mL o the commercial orm appears to be roughly 

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    8/11

    BioMed Research International

    equivalent to ug/mL o FRSE. In Figure , ug/mL o the commercial orm appears to be roughly equivalent to ug/mL o FRSE. Tis would seem to suggest that on a total(H + L-orm) lovastatin basis, the FRSE appears to be roughly equivalent to possibly -old more active.

    It is important to note that this activity o lovastatin

    against a methanogen operates differently rom its antiproli-erative activity against eukaryote cells. Damage o the humancell division by lovastatin has been reported in a previousstudy [].VandeDonketal.[] showed that lovastatin neg-atively affected membrane structure in the myeloma plasmacells and reduced the plasma cell viability, but this was due tothe induction o apoptosis and inhibition o prolieration andprobably a pleiotropic effect o statins on nuclear receptorsin eukaryote cells []. Lovastatin intererence with nuclearreceptors can act synergistically with its ability to inhibitpolyisoprenylation and subsequent downstream distortiono intracellular matrix reorganization during cell division[, , ]. Te antiprolierative activity o statins had oundincreasing use as anticancer drugs in cancer therapy [, ].

    Microbial diversity in the rumen enables ruminants toconvert lignocellulosic materials into useul nutrients suchas VFA and microbial protein or the host animal. Tisis complemented by another group o microorganisms, themethanogenic Archaea which coexists within the rumenecosystem by converting H2 and CO2 into CH4, a greenhousegas which has been a serious contender or global warmingand climate change. Mitigation o rumen CH

    4 production

    has two advantages: reduction o dietary energy loss, thusimproving the efficiency o nutrient utilization by the hostanimal, and mitigation o enteric CH4   production. Bothcommercial lovastatin and FRSE signicantly inhibited CH

    4

    production, growth, and cell division o   M. smithii. Otherstrategies or mitigation o CH4   production in the rumenecosystem have been extensively researched but with limitedsuccess. Te idea o applying lovastatin to suppress methano-genesis in methanogenic Archaea [] has been tested pre-

     viously. Tese authors reported that commercial lovastatininhibited growtho methanogenic Archaea without adversely affecting other cellulolytic bacteria. In practical terms, it issimply uneconomical to use lovastatin as a eed additiveor reduction o methanogenesis in ruminants under armconditions.

    A major difference between Archaea and other microor-ganisms lies in the structure o their cell membrane. Te lipidarm o phospholipids in Archaea is made up o branched

    isoprenoid, but in other microorganisms, it is atty acid[]. Te process o isoprenoid and phospholipid biosyn-thesis in Archaea (Figure   in dotted-line markers) sharesimilarities with cholesterol biosynthesis in eukaryotic cells(Figure  in solid-line markers) with HMG-CoA reductaseas a key enzyme in both pathways, primarily to convert -hydroxy--methylglutaryl-CoA (HMG-CoA) to mevalonicacid. Figure (a) showed a signicant increase in HMG-CoAreductase gene (hmg ) transcripts in   M. smithii   ollowinglovastatin exposure, a result consistent with increased cellularneed or more HMG-CoA reductase enzyme to processa buildup o HMG-CoA because o lovastatin-mediatedcompetitive inactivation o HMG-CoA reductase. It is also

    evident rom  Figure (a)   that H-lovastatin in FRSE wasmore effective than commercial L-lovastatin in generatinga buildup o   hmg   gene transcripts. Tis is the rst reporto statins on expression o HMG-CoA reductase gene inArchaea and complements other  in vitro  and  in-vivo exper-iments showing increases (seven old afer atorvastatin treat-

    ment) and decreases (two-old afersimvastatin treatment) inHMG-CoA reductase gene activation [] in eukaryote cells.As well, enhancement o the relative expression o  hmg  genesand protein productioninvolved in cholestrol biosynthesis by lovastatin have also been reported or many other systems[–]. Essentially, the mode o action o FRSE lovastatinon HMG-CoA reductase in Archaea is similar to its effect inanimal cells.

    While the experimental evidence so ar supports theworking hypothesis that intererence o the isoprenoid syn-thetic pathway by lovastatin inhibition o HMG CoA syn-thetase is primarily responsible or reduced cell growth anddecreased methane production, it is likely that the pleiotropicconsequences o lovastatin on eukaryote cells in terms o itsanti-prolierative and antimetabolic activity may have similareffects on other metabolic pathways in Archaea. For instance,quantitative proteomic analysis has revealed that lovastatininduced perturbation in multiple cellular pathways in HL-cells []. In the case o Archaea, methane production couldalso be affected by lovastatin by intererence in its syntheticpathway. o assess this possibility, the biosynthetic pathway o methanogenesis is summarized in Figure . Methyl H

    4MP

    is a pivotal component in this pathway because its synthesisis vital or the production o acetyl-CoA, a key element incellular processes and metabolism []. We selected genes—hmd , adh, and no that are involved in the synthesis o MethylH4MP and others responsible or methane synthesis—mtr, mcr,  and  mta  or real-time PCR assays using the sameRNA message transcripts rom cultures sampled or   hmg analysis. Te results in  Figure   show that   hmd   (B),   adh(C), and  no  (D) gene transcripts were all depressed in  M.smithii   ollowing exposure to lovastatin. We propose thatlovastatin intererence o isoprenyl precursor synthesis hascaused an increased buildup o acetyl-CoA in the metabolicpool resulting in eedback suppression o genes engaged inthe synthesis o Methyl H4MP. Surprisingly, despite a dropin overall CH

    4  production in the cultures, there was an

    increased expression in the three genes (mtr, mcr, and  mta)responsible or CH4 synthesis. We propose that this anomaly is not spurious but represents the transcriptome o  M. smithii

    cells that are not dividing because they have been adversely affected by lovastatin. In these cells,  mtr, mcr,  and  mta genetranscripts (Figures (e), (), and (g), resp.) are working incohort to dissipate intracellular pools o Methyl-H

    4MP.

    In conclusion, we have shown that sufficient levels o biologically active H-lovastatin are produced in rice strawsermented by  A. terreus,  and ermented rice straw extractsare able to disrupt cell wall ormation in the chosen rumentestmethanogen M. smithii. Tis disruption is associated withdecreased CH4 production drivenin part by intererence withisoprenyl synthesis and also through pleiotropic intererenceo lovastatin in other metabolic pathways. Te incorporationo FRSE as a eed additive or ruminants appears to be an

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    9/11

    BioMed Research International

    economically viable and environmentally sustainable strategy to mitigate CH

    4 production.

     Acknowledgment

    Tis study was supported by the Fundamental Research

    Grant Scheme (FRGS / UPM) o the Department o Higher Education, Malaysia.

    References

    [] J. Alarcón, S.   Águila, P. Arancibia-Avila, O. Fuentes, E.Zamorano-Ponce, and M. Hernández, “Production and puri-cation o statins rom   Pleurotus ostreatus   (Basidiomycetes)strains,” Zeitschrif ur Naturorschung , vol. , no. -, pp. –, .

    [] . L. Miller and M. J. Wolin, “Inhibition o growth o methane-producing bacteria o the ruminant orestomach by hydrox-ymethylglutarylSCoA reductase inhibitors,”   Journal o Dairy Science, vol. , no. , pp. –, .

    [] M. F. Jahromi, J. B. Liang, M. Rosarizan, Y. M. Goh, P.Shokryazdan, and Y. W. Ho, “Efficiency o rice straw lignocel-luloses degradability by  Aspergillus terreus ACC in solidstate ermentation,” Arican Journal o Biotechnology , vol. , no., pp. –, .

    [] G. S. Lakshmi, C. S. Rao, R. S. Rao, P. J. Hobbs, and R. S.Prakasham, “Enhanced production o xylanase by a newly isolated Aspergillus terreus under solid state ermentation usingpalm industrial waste: a statistical optimization,”   Biochemical Engineering Journal , vol. , no. , pp. –, .

    [] J. Gao, H. Weng, D. Zhu, M. Yuan, F. Guan, and Y. Xi,“Production and characterization o cellulolytic enzymes romthe thermoacidophilic ungal   Aspergillus terreus   M undersolid-state cultivation o corn stover,”   Bioresource echnology , vol. , no. , pp. –, .

    [] M. F. Jahromi, J. B. Liang, Y. W. Ho, M. Rosarizan, Y. M.Goh, and P. Sokryazdan, “Lovastatin production by  Aspergillusterreus using agro-biomass as substrate in solid state ermen-tation,”   Journal o Biomedicine and Biotechnology , vol. ,Article ID , pages, .

    [] W. E. Balch, G. E. Fox, L. J. Magrum et al., “Methanogens:reevaluation o a unique biological group,”  Microbiology and  Molecular Biology Reviews, vol. , no. , pp. –, .

    [] D. R. Lovley, R. C. Greening, and J. G. Ferry, “Rapidly growingrumen methanogenic organism that synthesizes coenzyme Mand has a high affinity or ormate,” Applied and Environmental  Microbiology , vol. , no. , pp. –, .

    [] Y. Q. Guo, J. X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman, andC. S. McSweeney, “Effect o tea saponin on methanogenesis,microbial community structure and expression o mcrA gene,in cultures o rumen micro-organisms,”   Letters in Applied  Microbiology , vol. , no. , pp. –, .

    [] K. J. Livak and . D. Schmittgen, “Analysis o relative geneexpression data using real-time quantitative PCR and the -[Delta][Delta] C method,”  Methods, vol. , no. , pp. –, .

    [] M. A. Hayat, Principles and echniques o Electron Microscopy:Biological Applications, vol. , Cambridge University Press,.

    [] M. Faseleh Jahromi, J. B. Liang, R. Mohamad, Y. M. Goh, P.Shokryazdan, and Y. W. Ho, “Lovastatin-enriched rice straw 

    enhances biomass quality and suppresses ruminal methano-genesis,” BioMed Research International , vol. , Article ID, pages, .

    [] SAS, SAS OnlineDoc .. SAS Institute Inc., Cary, NC, USA,.

    [] E. L. Hendrickson, A. K. Haydock, B. C. Moore, W. B. Whitman,

    and J. A. Leigh, “Functionally distinct genes regulated by hydrogen limitation and growth ratein methanogenic Archaea,”Proceedings o the National Academy o Sciences o the United States o America, vol. , no. , pp. –, .

    [] B. S. Samuel, E. E. Hansen, J. K. Manchester et al., “Genomicand metabolic adaptations o  Methanobrevibacter smithii to thehuman gut,” Proceedings o the National Academy o Sciences o the United States o America, vol. , no. , pp. –,.

    [] A. W. Alberts, “Discovery, biochemistry and biology o lovas-tatin,”  Te American Journal o Cardiology , vol. , no. , pp.–, .

    [] A. Smit and A. Mushegian, “Biosynthesis o isoprenoids viamevalonate in Archaea: the lostpathway,” Genome Research, vol.

    , no. , pp. –, .[] M. S. Chinn, S. E. Nokes, and H. J. Strobel, “Inuence o 

    process conditions on end product ormation rom Clostridiumthermocellum in solid substrate cultivation on paper pulpsludge,”   Bioresource echnology , vol. , no. , pp. –,.

    [] I. G. Macreadie, G. Johnson, . Schlosser, and P. I. Macreadie,“Growth inhibition o  Candida species and Aspergillus umiga-tus by statins,”  FEMS Microbiology Letters, vol. , no. , pp.–, .

    [] H. Mo and C. E. Elson, “Studies o the isoprenoid-mediatedinhibition o mevalonate synthesis applied to cancerchemotherapy and chemoprevention,”   Experimental Biology and Medicine, vol. , no. , pp. –, .

    [] N. van de Donk, M. Kamphuis, H. M. Lokhorst, and A. C.Bloem, “Te cholesterol lowering drug lovastatin induces celldeath in myeloma plasma cells,”  Leukemia, vol. , no. , pp.–, .

    [] K. Howe, F. Sanat, A. E. Tumser, . Coleman, and N. Plant,“Te statin class o HMG-CoA reductase inhibitors demon-strate differential activation o the nuclear receptors PXR, CAR and FXR,as well as their downstream target genes,” Xenobiotica, vol. , no. , pp. –, .

    [] M. Jakobisiak, S. Bruno, J. S. Skierski, and Z. Darzynkiewicz,“Cell cycle-specic effects o lovastatin,”   Proceedings o theNational Academy o Sciences o the United States o America , vol. , no. , pp. –, .

    [] J. E. DeClue, W. C. Vass, A. G. Papageorge, D. R. Lowy, andB. M. Willumsen, “Inhibition o cell growth by lovastatin isindependent o ras unction,” Cancer Research, vol., no. ,pp.–, .

    [] K. K. W. Chan, A. M. Oza, and L. L. Siu, “Te statins asanticancer agents,” Clinical Cancer Research, vol., no. ,pp. –, .

    [] J. Clendening and L. Penn, “argeting tumor cell metabolismwith statins,” Oncogene, vol. , no. , pp. –, .

    [] Z. Konrad and J. Eichler, “Lipid modication o proteins inArchaea: attachment o a mevalonic acid-based lipid moiety to the surace-layer glycoprotein o  Haloerax volcanii  ollowsprotein translocation,” Biochemical Journal , vol. , part , pp.–, .

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    10/11

    BioMed Research International

    [] K. Conde, S. Roy, H. C. Freake, R. S. Newton, and M. L.Fernandez, “Atorvastatin and simvastatin have distinct effectson hydroxy methylglutaryl-CoA reductase activity and mRNAabundance in the guinea pig,” Lipids, vol. , no. , pp. –, .

    [] J. L. Song, C. N. Lyons, S. Holleman, B. G. Oliver, and .C. White, “Antiungal activity o uconazole in combinationwith lovastatin and their effects on gene expression in theergosterol and prenylation pathways in   Candida albicans,” Medical Mycology , vol. , no. , pp. –, .

    [] M. S. Brown, J. R. Faust, J. L. Goldstein et al., “Inductiono -hydroxy--methylglutaryl coenzyme A reductase activity in human broblasts incubated with compactin (ML-B), acompetitive inhibitor o the reductase,” Te Journal o Biological Chemistry , vol. , no. , pp. –, .

    [] M. Nakanishi, J. L. Goldstein, and M. S. Brown, “Multivalentcontrol o -hydroxy--methylglutaryl coenzyme A reductase.Mevalonate-derived product inhibits translation o mRNA andaccelerates degradation o enzyme,”   Te Journal o Biological Chemistry , vol. , no. , pp. –, .

    [] J. Wong, C. M. Quinn, I. C. Gelissen, and A. J. Brown,“Endogenous (S),-epoxycholesterol ne-tunes acute con-trol o cellular cholesterol homeostasis,” Te Journal o Biological Chemistry , vol. , no. , pp. –, .

    [] X. Dong, Y. Xiao, X. Jiang, and Y. Wang, “Quantitative pro-teomic analysis revealed lovastatin-induced perturbation o cellular pathways in HL- cells,” Journal o Proteome Research, vol. , no. , pp. –, .

  • 8/9/2019 Lovastatin in Aspergillus Terreus

    11/11

    Submit your manuscripts at

    http://www.hindawi.com