lockheed martin challenge avionics systems presentation, fall 2008

65
Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Upload: richard-griffin

Post on 24-Dec-2015

227 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Lockheed Martin Challenge

Avionics Systems Presentation, Fall 2008

Page 2: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Problem Statement• Problem Statement  

Current UAV technology is not capable of launching vertically using a rail launch system into the atmosphere.  This presents the problem of not being practical for use in an urban environment because of the difficulty for soldiers to see preexisting dangers in an urban combat zone with current UAV technology.  

 

Page 3: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Need Statement• Need Statement

The Iowa State LM Challenge Team has been asked to design an unmanned autonomous vehicle to take off from a vertical or near vertical pneumatic launch system within the confines of an urban environment.  This vehicle will be used to fly low altitude reconnaissance missions prior to U.S. ground troops occupying the designated area. 

Page 4: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

System Block Diagram

Page 5: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Operating Environment

• The UAV is to be designed to operate in an urban environment, likely in regions of current military operation such as the Middle East

• Considerations of ground obstructions, heat, altitude, sand, hostile action

Page 6: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Deliverables

• Avionics package capable of autonomous navigation of aircraft using user-defined flightplan

• Camera system capable of 6” target resolution at 100’

• Operational range of 1 to 3 miles for video transmission

• Components integrated for a pneumatically-assisted vertically-launched aircraft

Page 7: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Layout

Page 8: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Layout

Page 9: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Layout

Page 10: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Schedule

Page 11: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Work BreakdownEstimated Time Commitment per Task per Person

Hours Adam Jacobs Robert Gaul Mike Plummer Daniel stone  Ronald Teo 

Choose Camera System 5 5 10 10 5Choose Xmitter/Receiver System 5 5 10 10 5

Test Camer/Xmitter/Receiver Systems 25 25 35 35 25Mount Camera/Xmitter Systems 20 20 25 25 20

Retest in-flight 30 30 30 30 30

Establish Requirements  15 5 5 5 5Choose Power Supply  10 5 5 5 5Choose Battery System 10 10 10 10 10

Finalize interface with flight systems 20 15 15 15 15test onboard power system 20 20 20 20 20

Mount on aircraft 5 5 5 5 5Test in-flight arrangement 5 5 5 5 5

Determine components required from video and autopilot systems 10 10 10 10 10Determine manual flight override in conjunction with ap development 20 15 15 15 15

Determine power source required  5 5 5 5 5Compile components and test  20 20 20 20 20

Refine Layout 5 5 5 5 5

Choose Autopilot system  15 20 15 15 20Choose transceiver system 5 15 5 5 15

independent testing/calibration  40 45 40 40 45integrate with aircraft systems 30 35 30 30 35

Re-test/Re-calibrate for in-flight 30 30 30 30 30

350 350 350 350 350Total Time

AutoPilot

Ground Station

Onboard Power System

Camera/Video System

Page 12: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Autopilot

Page 13: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Functional Requirements

• Be capable of autonomously navigating an aircraft using pre-programmed waypoint navigation

• Support communication with a ground station to display telemetry and position data

Page 14: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Non-Functional Requirements

• Operate off of 5 or 12V to simplify power system

• User-programmable to aid in support of vertical pneumatic launch

• Small size, weight, power requirements

Page 15: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Technical Challenges

• Complexity and time constraints promote purchase of a commercial autopilot system

• No commercially available autopilot that supports our method of launch by default

• Immense G-loads during launch saturate sensors(~15G)• Maintaining vertical orientation throughout launch phase • Detecting when UAV has left the launcher

Page 16: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Key Considerations

• Available technical support• Support for user programmable control loop• Support for custom code/command• Ability to handle additional sensors• RC override

Page 17: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Key Considerations

• Ground Station software capabilities• Sensors to aid in launch (eg, GPS)• Error handling• Size• Weight• Power consumption

Page 18: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Market Survey

• Micropilot 2128  • Procerus Kestral• Cloudcap Piccolo• O Navi Phoenix/AX

These four products satisfy the functional requirements of our system and were deemed as finalists for selection based on their relative merits

Page 19: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Trade AnalysisMicropilot 2128

Pros Cons•Excellent technical support•High frequency GPS•High customizability (Xtender)•Excellent ground station software•User defined control loops•Allows additional I/O•RC override•Error Handling•Light weight•Small size 

•Low saturation point IMU(2 G)•Costly

Page 20: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Trade AnalysisProcerus Kestral

Pros Cons•High IMU saturation point (10 G)•Extensive error handling•Lightweight•Small size 

•High power consumption•Low GPS frequency •Poor technical support

Page 21: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Trade AnalysisCloudcap Piccolo

Pros Cons•High frequency GPS•Built-in radio modem •Simple form factor

•Low saturation point IMU(2 G)•Costly•Large size•Heavy•High power consumption

Page 22: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Trade AnalysisO Navi Phoenix/AX

Pros Cons•Low power consumption•Small size•High IMU saturation point 

•No embedded or ground station software•Low GPS frequency 

Page 23: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Autopilot Selected ModelMicroPilot 2128

– Support for additional sensors increases our chances of safe and reliable launch and recovery

– MicroPilot has demonstrated excellent service and support – I/O ports and user-defined telemetry fields provide a superior ability 

to create a custom platform– HORIZON software provides excellent ground station as well as easy 

configuration of autopilot– Low saturation point of the IMU accelerometers, we feel can be 

overcome through the utilization of other onboard sensors and user defined launch sequence

– RC override provides us with the option for manual launch.

Page 24: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Subsystem

Camera, Video Transmitter, Video Receiver, Antennae

Page 25: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Functional Requirements

• Shall provide real-time video to ground station• Shall operate in an urban environment• Shall be capable of resolving a 6 inch target 

from an altitude of 100 feet• Shall be a fixed-position camera• Shall be designed to enable a modular payload 

system

Page 26: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Non-Functional Requirements

• Low-power consumption components• Light-weight components• Small physical size components• Video transmission shall not occur in the 900 MHz 

band to prevent interference with autopilot communication

• Components should utilize 5V or 12V when possible to simplify power requirements  and increase modularity of design

Page 27: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Camera: Necessary Resolution

• Below are some sample images taken from a digital camera as a test of the resolving power required in the video system

18 pixels per inch 9 pixels per inch 4.5 pixels per inch

Page 28: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Camera: Necessary Resolution

• Given camera has an effective resolution of 768 horizontal lines• Ratio of available pixels to linear distance:

– 0.63 pixels/inch in scenario one– 6.54 pixels/inch in scenario two

• From the last slide, a 4.5 ppi image allows viewer to resolve a 6 inch target.  The lens can provide a 6.5 ppi image, which exceeds this requirement

Scenario One – Wide Angle Scenario Two – Telephoto

x = 101.027 feet x = 9.87 feet

Page 29: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Camera Alternatives

• Few cameras designed for UAV use satisfy our resolution requirements

• Many cameras small and light enough are too sensitive for use in our project

Page 30: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Camera Alternatives

• Genwac/Watec • Maker of Industrial Box cameras• Adjustable frame rate, easily configurable• Heavier than other alternatives• Not designed for vibration and varying 

temperature and humidity of our application

Page 31: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Camera Selection: KT&C model KPC-650

• Exceeds resolution requirements• Demonstrated ability to perform in UAV’s• C and CS mount lens compatible - large variety of 

varifocal lenses from which to choose • Auto-iris compatible - the ability to dynamically 

adjust to changing light conditions during flight• NTSC video output using a coaxial connection 

(both standard – allows for simplicity of design and video transmission)

Page 32: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Camera Selection: KT&C model KPC-650

• Specifications– Power: 180mA @ 12VDC– Effective pixels (NTSC): 768(H) x 494 (V)– Weight: 137 grams– Size: 31mm(W) x 31mm(H) x 55mm(L)

Page 33: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Transmitter

• Must be robust in environments with RF interference• Must not interfere with other aircraft systems• Direct line-of-sight (LOS) often not possible in an urban 

environment, reducing transmission range• These limitations necessitate a powerful transmitter 

using a unique frequency• FCC regulations limit RF transmissions for civilians 

(maximum of 1 Watt)• A transmitter of 1 Watt will require a Technician Class 

radio license to operate

Page 34: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Transmitter: Estimated Bandwidth

• Using the Shannon-Hartley Theorem:– C is channel capacity– B is bandwidth in Hz– S/N is the signal-to-noise ratio (SNR)– For a 2.4GHz, 1W transmitter, assuming 10dB of 

noise:

– Standard NTSC signal (704 x 480 pixels at 30 frames/sec.) requires 243Mbps

2log 1S

C BN

2

12.4 9 log 1

10

314.722

WC E Hz

dB

C Mbps

Page 35: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Transmitter: Compensating for Interference• Due to obstructions (buildings, etc.) in an urban 

environment, weather conditions, and altitude, it can be difficult to maintain signal contact 

• Other EM sources present in the area further degrade and interfere with the signal

• Interference is offset by increased transmission power• As will be discussed, antenna choices also have a direct 

impact on the signal’s transmission range 

Page 36: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Transmitter Selection: LawMate TM-241800

• Chosen for maximum allowable power and small size

• Demonstrated ability to work in UAV’s• Standard SMA connector allows antennas to 

be easily changed• Accepts video data in composite NTSC format

– Readily compatible with our camera• Utilizes a 12V power source, simplifying 

onboard power requirements

Page 37: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Transmitter Selection:LawMate TM-241800

• Specifications– Power: 500mA at 12VDC– Output: 1W RF power– Weight: 30 grams– Size: 26 x 50 x 13mm

Page 38: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Receiver

• Receiver is subject to less restrictive size, weight, and power limitations

• Must operate in the 2.4GHz band to receive video signal from selected video transmitter

• Easy output to the display was also a consideration

Page 39: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Receiver Selection: LawMate RX-2480B

• Chosen for portability and compatibility with our transmitter

• Includes rechargeable battery – simplifying testing

• Supports reception on 8 channels with signal indicator to optimize reception

• Provides output in standard RCA composite video

Page 40: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video Receiver Selection: LawMate RX-2480B

• Specifications– Power: 800mA at 5V– Battery life: ~3.5 hrs.– Weight: 135 grams– 110 x 70 x 20mm

Page 41: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Video System Antennae• Weight, simplicity, range, and frequency (2.4GHz) were 

the driving factors when selecting an antenna for both the transmitter and the receiver

• Directional antenna on-board is preferred to omni-directional, but is not practical– Larger size/weight than omni-directional– Increased complexity – must be oriented to ground station 

at all times during flight• Ground station does not share these constraints, and 

thus a directional patch antenna will be utilized• Increases range while maintaining size and complexity 

only at the ground station

Page 42: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

DC-DC Converter

• Requirements– Facilitate power requirements for onboard systems

– Physical size must be small enough to fit easily into fuselage

Page 43: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

DC-DC Converter

• Major Onboard System Power Requirements

Component Current Rating Voltage Rating

Video Camera 180 mA 12 Vdc

Video Transmitter 500 mA 12 Vdc

Autopilot Core 160 mA @ 6.5 Vdc 4.2 – 27 Vdc

Radio Modem 730 mA 4.75 – 5 Vdc

Voltage Level Total Estimated Current

Total Estimated Power

12 Vdc 680 mA 8.16 W

5 Vdc 817 mA 4.085 W

Page 44: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

DC-DC Converter

• Initial Research– Tri-M Systems HESC104

• +5Vdc @ 12A• +12Vdc @ 2.5A• 3.55 x 3.75 x 0.5 in., 200 grams

– Fits power need but too large for fuselage

Page 45: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

DC-DC Converter

• Initial Research– Tri-M Systems IDD-936360A

• +5Vdc @ 10A• +12Vdc @ 3A• 1.57 x 3.94 in., 58 grams

– Meets size and power needs but no enclosure

Page 46: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

DC-DC Converter

• Selection– Murata Power Solutions – TMP-5/5-12/1-Q12-C

• +5Vdc @ 5A• +12Vdc @ 1A• 3.04 x 2.04 x 0.55 in, 170 grams

Page 47: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Onboard Radio Modem

• Requirements– Driven by autopilot communication requirements

– Minimum range of 3 miles

– Physical size must be small enough to fit easily into fuselage

Page 48: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Onboard Radio Modem

• Initial Research– Xtend-PKG

• 900MHz• Power Supply 7-28V• Max Current 900mA• Outdoor LOS Range 14 mi.• 2.75 x 5.5 x 1.13 in, 200 grams

– Physical size too large for our fuselage– Can be used for ground station

Page 49: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Onboard Radio Modem

• Selection– 9Xtend-PKG OEM

• 900 MHz• Power Supply 4.75-5.5Vdc• Max Current 730 mA• Outdoor LOS Range 14 mi.• 1.44 x 2.38 x 0.02 in, 18 grams

Page 50: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Ground Station and User Interface

• Requirements– Ability to communicate with and control autopilot– Ability to display real-time video feed– Mobile

• Must fit in the back of a military humvee

Page 51: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Ground Station and User Interface

• Components– Driven by onboard component selection– Laptop Computer

• Able to run HORIZON software package• Able to interface with Xtend-PKG radio modem

– Portable Television• Able to interface with LawMate RX-2480B video receiver

• Able to accept input from video storage device

Page 52: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Ground Station and User Interface

• HORIZON Software Package– Satisfies communication, control and telemetry 

display requirements

– Designed by autopilot manufacturer for use with our chosen autopilot system, ensuring compatibility and reliability 

Page 53: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

HORIZON Software Package

Page 54: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Performance

Projected Avionics Endurance: - 2000 mAh battery- Avionics components draw maximum 1650 mA- 2000 / 1650 ≈ 1.3 hours

Projected Transmission Range: -Based on reports of other users of our transmitter, receiver, and antenna setup report reliable reception out to 2 miles-Variables in our case include RF interference, altitude, antenna orientation

Project Requirements: Endurance – 2 hours is a desired max, 1 hour minimum

Range – Must be able to cover a small urban area, approximated to 1-3 miles of linear distance

Page 55: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

System Testing

• Video System– Independent from other systems

– Test Camera Resolution

– Test Camera Communication• Quality• Range

– Antenna Positioning

Page 56: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

System Testing

• Autopilot– Model flight characteristics of UAV during launch, 

flight and landing phases• Provided by Aero and Launch Teams

– From models, determine necessary control loops to program using HORIZON• Simulate autopilot controls using HORIZON

Page 57: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

System Testing

• Autopilot– Use Aero prototype to bench test autopilot 

system

– Test communication systems• Similar procedure to Video System testing

– Flight Test

Page 58: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Integration and Test Issues

- Integration- Communication: 

Radio modem and video transmission configuration and use, placement and adjustment of antennas

- Configuration:Autopilot configuration to aircraft, configuration of sensors, integrating RC control with

autopilot

-Test-Restrictions:

FCC & FAA regulations-Limitations:

Time frame, lack of trained pilot amongst avionics team-Environment:

Safety and legal issues prevent testing in target environment

Page 59: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Questions?

Page 60: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Specifications Appendix

Page 61: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Physical Characteristics MicroPilot

Weight 28 g

Dimensions (L x W x H) 100 mm x 40 mm x 15 mm

Power Requirements 140 mA @ 6.5 Volts

Supply Voltage 4.2 – 26 V

Separate supplies for main and servo power Yes

Functional Capabilities

Includes Ground Station software Yes

Max # of Waypoints 1000

In-flight waypoint modification possible Yes

GPS Update Rate 1 Hz

Number of servos 24

Sensors

Airspeed Yes, up to 500 kph

Altimeter Yes, up to 12000 MSL

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 2 G

GPS Yes

Data Collection

Allows user-defined telemetry Yes – max 100

Customization

User-definable error handlers Yes – loss of GPS Signal, loss of RC Signal, loss of Datalink, low battery

User-definable PID loops Yes – max 16

Autopilot can be loaded with custom program Yes – with XTENDER SDK (separate)

Page 62: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Physical Characteristics Procerus Kestral

Weight 16.65 g

Dimensions (L x W x H) 52.65 mm x 34.92 mm x ? mm

Power Requirements 500 mA

Supply Voltage 3.3V and 5V

Separate supplies for main and servo power Yes

Functional Capabilities

Includes Ground Station software Yes

Max # of Waypoints 100

In-flight waypoint modification possible Yes

GPS Update Rate 1 Hz

Number of servos 12

Sensors

Airspeed Yes, up to 130 m/s

Altimeter Yes, up to 11200 MSL

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 10 G

GPS Yes

Data Collection

Allows user-defined telemetry Unspecified

Customization

User-definable error handlers Yes, Loss of Datalink, Loss of GPS, Low Battery, Imminent Collision, Loss of RC Signal

User-definable PID loops Unspecified

Autopilot can be loaded with custom program Yes, Developer’s Kit available for $5000 for one year license

Page 63: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Physical Characteristics Cloudcap Piccolo

Weight 109 grams

Dimensions (L x W x H) 130.1 mm x 59.4 mm x 19.1 mm

Power Requirements 5 Watts ( ~ 400 mA @ 12V )

Supply Voltage 4.8 – 24 Volts

Separate supplies for main and servo power No

Functional Capabilities

Includes Ground Station software Yes, basic

Max # of Waypoints 100

In-flight waypoint modification possible Yes

GPS Update Rate 4 Hz

Number of servos 6

Sensors

Airspeed Yes

Altimeter Yes

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 2 G, 10G with external sensor package

GPS Yes

Data Collection

Allows user-defined telemetry Unspecified

Customization

User-definable error handlers Yes

User-definable PID loops Unspecified

Autopilot can be loaded with custom program Yes

Page 64: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

Physical Characteristics O Navi Phoenix AX

Weight 45 grams

Dimensions (L x W x H) 88.14 mm x 40.13 mm x 19 mm

Power Requirements 84 mA @ 12V

Supply Voltage 7.2-24 Volts

Separate supplies for main and servo power No

Functional Capabilities

Includes Ground Station software No

Max # of Waypoints Unspecified

In-flight waypoint modification possible Unspecified

GPS Update Rate 1 Hz

Number of servos 6

Sensors

Airspeed No

Altimeter Yes

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 10 G

GPS Yes

Data Collection

Allows user-defined telemetry Unspecified

Customization

User-definable error handlers Unspecified

User-definable PID loops Unspecified

Autopilot can be loaded with custom program Yes, REQUIRED

Page 65: Lockheed Martin Challenge Avionics Systems Presentation, Fall 2008

REPORT DISCLAIMER NOTICEDISCLAIMER: This document was developed as a part of the requirements of a multidisciplinary engineering course at Iowa State University, Ames, Iowa. This document does not constitute a

professional engineering design or a professional land surveying document. Although the information is intended to be accurate, the associated students, faculty, and Iowa State University make no claims,

promises, or guarantees about the accuracy, completeness, quality, or adequacy of the information. The user of this document shall ensure that any such use does not violate any laws with regard to

professional licensing and certification requirements. This use includes any work resulting from this student-prepared document that is required to be under the responsible charge of a licensed engineer or surveyor. This document is copyrighted by the students who produced this document and the associated

faculty advisors. No part may be reproduced without the written permission of the course coordinator.

Images within this presentation were obtained via the courtesy of their respective owners, listed below:

Lockheed Martin CorporationMicroPilotProcerus

Cloudcap TechnologyO Navi

Genwac/WatecRangeVideo

Tri M EngineeringMurata Power Systems

Digi Intl.