living anionic polymerization of 1,4-divinylbenzene macromolecules, 2011, 44, 4579–4582 advisor :...

23
iving Anionic Polymerization of 1,4-Divinylbenzene Macromolecules, 2011, 44, 4579–4582 Advisor : Professor Guey-Sheng Liou Reporter : De-Cheng Huang Date : 2015/01/09 ra Hirao,* Shunsuke Tanaka, Raita Goseki, and Takashi Ishizon Course : 高高高高高高高 1

Upload: brandon-gray

Post on 03-Jan-2016

222 views

Category:

Documents


5 download

TRANSCRIPT

1

Living Anionic Polymerization of1,4-Divinylbenzene

Macromolecules, 2011, 44, 4579–4582

Advisor : Professor Guey-Sheng Liou

Reporter : De-Cheng Huang

Date : 2015/01/09

Akira Hirao,* Shunsuke Tanaka, Raita Goseki, and Takashi Ishizone

Course : 高分子合成特論

2

Outline Abstract Introduction Experiment Result and Discussion Conclusion

3

Abstract

1. Initiator system : oligo(α-methylstyryl)lithium and KOBut

2. Polymerization : at -78oC for 1 min

3. Repeating units : pendent vinyl group

4. Mn = 11,000~26,000 g/molPDI < 1.05

5. Copolymerization

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

Li+

α-MeStSec-BuLi

Initiator

R

vinyl group

4

Introduction Chain polymerization

Akira Hirao NTU(1)11072014.pdf

5

Living polymerization

1. High molecular weight polymer

2. High yield

1. Low molecular weight polymer

2. Broad molecularWeight distribution

Akira Hirao NTU(1)11072014.pdf

6

Introduction of monomer

1,4-divinylbenzene (1) 1,3-divinylbenzene 1,2-divinylbenzene

Isomers

Cross-linking agent

Other vinyl monomers

Cross-linked polymer

insoluble

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

7

Stabilize the chain end Become inactive toward the

pendant double bond

Li

NLi

HNexcess

• soluble polymers

• high yields ( 90%)∼

• This system was far from living polymerization

Teiji Tsuruta, J. MACROMOL. SCI.-CHEM., 1989, A26(8), 1043

LDA

DPA

8

Lead to the cross linkingLead to the soluble polymer

Lower reactivityHigher reactivity

Assumption

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

1. kinetic studies of the polymerization of 1,4-divinylbenzene 2. NMR analysis of the resulting polymers and model compounds

9

ExperimentSynthesis of 1,4-Divinylbenzene O H

P+H3CBr-

CH3

OKH3CH3C

4-formylstyrene methyltriphenylphosphonium bromide

Potassium tert-butoxide

4-formylstyrene

70.5mmol 9.30g

THF

60ml

mixture A

methyltriphenylphosphonium bromide

81.1mmol 29g

potassiumtert-butoxide

88.1 mmol 9.88g

+ + THF

40ml

mixture B

mixture A mixture Bdropwise into stir25oC

2h

extraction

diethyl ether

concentrated hexane

excess

precipitation

filtration column chromatography

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

10

Anionic Polymerization of 1,4-divinylbenzene

α-methylstyrene + sec-BuLi + THF + KOBut (at -78oC) mixture A (initiator)

THF + 1,4-divinylbenzene (at -78oC) mixture B

Mixture B is added to mixture A vigorous shaking

1. For 1 min 2. Quenched with degassed methanol3. Precipitated in methanol

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

11

Result and Discussion

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

The fisrt successful demonstration of the living anionic polymerization of (1)

THF , -78oCInitiator system : sec-BuLi

30 min

1 min

Insoluble polymer

soluble polymer

Highly branched not cross-linked product

12

SEC profiles of polymers

DVB-1

DVB-5

DVB-4

DVB-3

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

Initiator sec-BuLi sec-BuLi/α-MeSt /KOBut

sec-BuLi/α-MeSt /KOBut

sec-BuLi/α-MeSt /KOBut

KOBut (eq) 0 12 12 5

13

Table 1 : Anionic Polymerization of 1 in THF at 78 C for 1 mina

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

Adding excess LiCl didn’t influence polymerization.

The addition reaction of the living poly(1) to the pendant vinyl group in another polymer chain.

DVB-4 system was at a higher monomer to initiator ratio.

14

Monomer (1) v.s Poly (1)

H2C= -CH2-CH-

113.9ppm

113.1ppm Lower reactivity(electrophilicity)

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

Monomer (1)

Poly (1)

(1)vinyl polymerization

poly(1)

[pendant vinyl group]

K

15Akira Hirao, Macromolecules, 2011, 44, 4579–4582

AB diblock copolymer : poly-(1)-block-poly(tBMA)

K OO

At -78oC 3hr

Orange red → colorless

16

The formation of the AB diblock copolymer

→ To support the live nature of the polymerization of (1)

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

17

Conclusion

Living polymerization of (1) ----- excess KOBut

Soluble polymer : narrow molecular weight distribution

Poly(1)-block-poly(tBMA)

Akira Hirao, Macromolecules, 2011, 44, 4579–4582

Atom size : replace Li+ with K+

→ chain-end anion shifted to ion-pair

Steric effect : KOBut

Higher reactivity

lower reactivity

18

Thank you for your attention

19

P.9

根據老師提及 Wittig reaction 最早利用於聚合具光電性質的高分子 ,至所以可用於做高分子 , 在於其產率相當的高

R. N. McDonald and T. W. Campbell, ibid., 14, 1969 (1959).

1. 轉化率高 ( 可運用於聚合反應 )2. 當 Modal compound 產率接近 100% : 分子量大 polymer 不需要鑑定 ( 耗時耗成本 )

20

P.14

藉由末端基 -CH2-CH2- 的 protons 對應到的 NMR 上的 peak並且藉由判斷其主鏈上 -CH2-CH- 之 protons 的比例關係可以推敲其高分子的分子量

21

P.15

對於 divinylbenzene 之共軛性極佳 , 吸收位置為藍光波長 , 所以相對的所放出的光為橘色 , 但當我們具有拉電子基性能的 Methacrylate,會造成藍位移 , 所具有的平面堆疊能力下降 , 造成 polymer 的顏色變為無色

22

P.17

即便是 Atom size : K + >Li + 然而兩者都會由鏈末端陰離子轉移變成離子對其中要考慮的是 Solvent effect 當溶劑為極性溶劑 使得 Li+ 所支配的鏈末端陰離子其反應性會比 K + 來得高 , 因此可以證明 K + 所分配的鏈末端陰離子較能攻擊 monomer 形成可溶性高分子

23

額外 : 2013 年 Hirao 教授所做的 paper 差異為何 ?

1.添加劑不同2.異構物上的效應