lecture 15 - 1 ers 482/682 (fall 2002) erosion and sediment transport ers 482/682 small watershed...

33
ERS 482/682 (Fall 2002) Lecture 15 - 1 Erosion and sediment transport ERS 482/682 Small Watershed Hydrology

Post on 21-Dec-2015

225 views

Category:

Documents


0 download

TRANSCRIPT

ERS 482/682 (Fall 2002) Lecture 15 - 1

Erosion and sediment transport

ERS 482/682Small Watershed Hydrology

ERS 482/682 (Fall 2002) Lecture 15 - 2

Figure 7.1 (Brooks et al. 1991)

ERS 482/682 (Fall 2002) Lecture 15 - 3

Figure 15-1: Dunne & Leopold (1978)

ERS 482/682 (Fall 2002) Lecture 15 - 4

Figure 15-3: Dunne and Leopold (1978)

ERS 482/682 (Fall 2002) Lecture 15 - 5

Water erosion

Figure 7.2 (Brooks et al. 1991)

Rainfall intensity Kinetic energy

ERS 482/682 (Fall 2002) Lecture 15 - 6

Water erosion

• Surface runoff– Transports soil particles– Closes soil surface increase surface runoff

• Rill erosion– Microchannels (50-300 mm wide; up to 300

mm deep)

• Sheet erosion (inter-rill erosion)– Movement of semi-suspended particles over

land surface

Gully erosion

ERS 482/682 (Fall 2002) Lecture 15 - 7

Gully erosion

Figure 8.1 (Brooks et al. 1991)

ERS 482/682 (Fall 2002) Lecture 15 - 8

Pawnee Buttes, CO

Knickpoint

Gully erosion

ERS 482/682 (Fall 2002) Lecture 15 - 9

Figure 15-15: Dunne and Leopold (1978)

ERS 482/682 (Fall 2002) Lecture 15 - 10

Universal Soil-Loss EquationRKLSCPA

where A = soil loss (tons per acre)R = rainfall erosivity indexK = soil erodibility indexL = hillslope-length factorS = hillslope-gradient factorC = cropping-management factorP = erosion-control practice factor

ERS 482/682 (Fall 2002) Lecture 15 - 11

Universal Soil-Loss Equation

• Rainfall erosivity index, R– Depends on kinetic energy and rainfall

intensity

RKLSCPA

3010log331916 IE 100

130

n

iii IE

R

where E = kinetic energy (ft ton ac-1 in-1)I30 = maximum 30-minute intensity (in hr-1)n = total number of storms in period of interest

ERS 482/682 (Fall 2002) Lecture 15 - 12

Universal Soil-Loss Equation

• Rainfall erosivity index, R– Depends on kinetic energy and rainfall

intensity

RKLSCPA

Figure 15-16 (Dunne & Leopold 1978)

ERS 482/682 (Fall 2002) Lecture 15 - 13

Universal Soil-Loss Equation

• Soil erodibility factor, K– Average soil loss (per rainfall erosivity)

when the soil is exposed as cultivated bare fallow under specified conditions of hillslope length and gradient

RKLSCPA

ERS 482/682 (Fall 2002) Lecture 15 - 14

Universal Soil-Loss Equation

• Soil erodibility factor, K

RKLSCPA

Figure 7.4 (Brooks et al. 1991)

ERS 482/682 (Fall 2002) Lecture 15 - 15

Universal Soil-Loss Equation

• Length and slope factors, LS

RKLSCPA

Figure 15-19 (Dunne & Leopold 1978)

ERS 482/682 (Fall 2002) Lecture 15 - 16

Universal Soil-Loss Equation

• Cropping-management factor, C– Examples from Dunne and Leopold (1978):

• Agricultural land (Table 15-2)• Woodland (Table 15-3)• Pasture, rangeland, and idle land (Table 15-4)

RKLSCPA

ERS 482/682 (Fall 2002) Lecture 15 - 17

Universal Soil-Loss Equation

• Erosion control practice factor, P– Varies with technique

RKLSCPA

Table 15-5: Dunne and Leopold (1978)

ERS 482/682 (Fall 2002) Lecture 15 - 18

Modified USLE VMRKLSA

where VM = vegetation management factor

ERS 482/682 (Fall 2002) Lecture 15 - 19

Figure 7.5 (Brooks et al. 1991)

How high canopy isand how muchcanopy cover

How muchground cover

% of fineroots in ground

ERS 482/682 (Fall 2002) Lecture 15 - 20

Soil mass movement

• Downslope movement of finite masses of soil, rock and debris– Driven by gravity

Figure 8.5 (Brooks et al. 1991)

ERS 482/682 (Fall 2002) Lecture 15 - 21

Figure 15-29 (Dunne and Leopold 1978)

ERS 482/682 (Fall 2002) Lecture 15 - 22

Pawnee Buttes, CO

Rockfall

Slump

ERS 482/682 (Fall 2002) Lecture 15 - 23

Figure 15-40: Dunne and Leopold (1978)

ERS 482/682 (Fall 2002) Lecture 15 - 24

Figure 15-41 (Dunne and Leopold 1978)

Figure 8.5 (Brooks et al. 1991)

ERS 482/682 (Fall 2002) Lecture 15 - 25

Sediment yield

• Total sediment outflow from a watershed for a specific period of time at a defined point in the channel

Expressed as:•Weight per area per time or•Volume per area per time

kg ha-1 yr-1

m3 ha-1 yr-1

tonne = 1000 kg

ERS 482/682 (Fall 2002) Lecture 15 - 26

Sediment transport

Figure 9.1 (Brooks et al. 1991)

ERS 482/682 (Fall 2002) Lecture 15 - 27

Sediment transport

Figure 9.2 (Brooks et al. 1991)

Particles beingpicked up

Particles beingdeposited

ERS 482/682 (Fall 2002) Lecture 15 - 28

Estimating sediment yield

• USLE• Measuring suspended sediment

concentrations

Figure 7.1 (Stednick 1991)

ERS 482/682 (Fall 2002) Lecture 15 - 29

Estimating sediment yield

• USLE• Measuring suspended sediment

concentrations

Figure 3.8A: Knighton (1998)

Discharge

SS

ERS 482/682 (Fall 2002) Lecture 15 - 30

Estimating sediment yield

• USLE• Measuring suspended sediment

concentrations• Regress with discharge or turbidity (Lewis 1996)• Does not account for bedload

ERS 482/682 (Fall 2002) Lecture 15 - 31

Estimating sediment yield

• USLE• Measuring suspended sediment

concentrations• Lake/reservoir surveys

Figure 3.8C and Figure 3.8D (Knighton 1998)

ERS 482/682 (Fall 2002) Lecture 15 - 32

Estimates of sediment yield

Table 3.1 and Table 3.2 (Knighton 1998)

ERS 482/682 (Fall 2002) Lecture 15 - 33