lecture 12.0

42
Lecture 12.0 Lecture 12.0 Deposition

Upload: darice

Post on 31-Jan-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Lecture 12.0. Deposition. Materials Deposited. Dielectrics SiO2, BSG Metals W, Cu, Al Semiconductors Poly silicon (doped) Barrier Layers Nitrides (TaN, TiN), Silicides (WSi 2 , TaSi 2 , CoSi, MoSi 2 ). Deposition Methods. Growth of an oxidation layer Spin on Layer - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture 12.0

Lecture 12.0Lecture 12.0

Deposition

Page 2: Lecture 12.0

Materials DepositedMaterials Deposited

Dielectrics– SiO2, BSG

Metals– W, Cu, Al

Semiconductors– Poly silicon (doped)

Barrier Layers– Nitrides (TaN, TiN), Silicides (WSi2, TaSi2, CoSi,

MoSi2)

Page 3: Lecture 12.0

Deposition MethodsDeposition Methods

Growth of an oxidation layer Spin on Layer Chemical Vapor Deposition (CVD)

– Heat = decomposition T of gasses– Plasma enhanced CVD (lower T process)

Physical Deposition– Vapor Deposition– Sputtering

Page 4: Lecture 12.0

Critical IssuesCritical Issues

Adherence of the layerChemical Compatibility

– Electro Migration– Inter diffusion during subsequent

processing • Strong function of Processing

Even Deposition at all wafer locations

Page 5: Lecture 12.0

CVD of SiCVD of Si33NN44 - Implantation mask - Implantation mask

3 SiH2Cl2 + 4 NH3Si3N4 + 6 HCl + 6 H2

– 780C, vacuum

– Carrier gas with NH3 / SiH2Cl2 >>1

Stack of wafer into furnace– Higher temperature at exit to compensate for

gas conversion losses

Add gases Stop after layer is thick enough

Page 6: Lecture 12.0

CVD of Poly Si – Gate conductorCVD of Poly Si – Gate conductor

SiH4 Si + 2 H2

– 620C, vacuum

– N2 Carrier gas with SiH4 and dopant precursor

Stack of wafer into furnace– Higher temperature at exit to compensate for

gas conversion losses

Add gases Stop after layer is thick enough

Page 7: Lecture 12.0

CVD of SiOCVD of SiO22 – Dielectric – Dielectric

Si0C2H5 +O2SiO2 + 2 H2

– 400C, vacuum– He carrier gas with vaporized(or atomized)

Si0C2H5 and O2 and B(CH3)3 and/or P(CH3)3 dopants for BSG and BPSG

Stack of wafer into furnace– Higher temperature at exit to compensate for

gas conversion losses Add gases Stop after layer is thick enough

Page 8: Lecture 12.0

CVD of W – Metal plugsCVD of W – Metal plugs

3H2+WF6 W + 6HF– T>800C, vacuum– He carrier gas with WF6

– Side Reactions at lower temperatures• Oxide etching reactions• 2H2+2WF6+3SiO2 3SiF4 + 2WO2 + 2H2O• SiO2 + 4HF 2H2O +SiF4

Stack of wafer into furnace– Higher temperature at exit to compensate for gas conversion

losses Add gases Stop after layer is thick enough

Page 9: Lecture 12.0

Chemical EquilibriumChemical Equilibrium

Page 10: Lecture 12.0

CVD ReactorCVD Reactor

Wafers in Carriage (Quartz)

Gasses enterPumped out via

vacuum systemPlug Flow

Reactor

Vacuum

Page 11: Lecture 12.0

CVD ReactorCVD Reactor

Macroscopic Analysis– Plug flow reactor

Microscopic Analysis– Surface Reaction

• Film Growth Rate

Page 12: Lecture 12.0

Macroscopic AnalysisMacroscopic Analysis

Plug Flow Reactor (PFR)– Like a Catalytic PFR Reactor– FAo= Reactant Molar Flow

Rate– X = conversion– rA=Reaction rate = f(CA)=kCA

– Ci=Concentration of Species, i.– Θi= Initial molar ratio for species i

to reactant, A.– νi= stoichiometeric coefficient– ε = change in number of moles

TR

PC

T

T

P

P

X

XCC

V

AXr

dXFV

g

AoAo

o

o

iiioi

X

reactor

waferA

Aoreactor

1

)(0

'

Page 13: Lecture 12.0

Combined EffectsCombined Effects

Contours = Concentration

Page 14: Lecture 12.0

Reactor LengthReactor Length Effects Effects

SiH2Cl2(g) + 2 N2O(g) SiO2(s)+ 2 N2(g)+2 HCl(g)

nwafer VReactorPerWafer a

FAo0

X

X1

r'A X( )

d n X( )FAo

VReactorPerWafer a 0

X

X1

r'A X( )

d

rate X( )

r'A X( )4

Dwafer2

SiO2

MwSiO2Awafer

0 50 100 1500

2000

4000

6000

Wafer Number

Th

ick

ness

(nm

)

rate X'( ) 10 minnm

n X'( )0 0.5 10

200

400

600

Conversion

Dep

osi

tio

n R

ate

, W

afe

r N

um

ber

rate X( )

nm

min

n X( )

X

How to solve? Higher T at exit!

Page 15: Lecture 12.0

Deposition Rate over the RadiusDeposition Rate over the Radius

r

wAsA

A

pABe

wA

Ae

RrCC

rfiniteC

ConditionsBoundary

DD

V

Ar

dr

CdrD

dr

d

r

,

0,

1 "

CAs

Thiele Modulus Φ1=(2kRw/DABx)1/2

Page 16: Lecture 12.0

Radial EffectsRadial Effects

This is bad!!!

Pseudo First Order Results

CA 1

sinh 1 sinh 1

00.510.97

0.98

0.99

1

r/R.wafer

Con

cent

rati

on

CA

00.51

4900

4950

5000

5050

r/R.wafer

Thi

ckne

ss(n

m)

rate 1 CA 10 min

nm

x 0.5

Page 17: Lecture 12.0

Combined Length and Radial EffectsCombined Length and Radial Effects

00.512400

2600

2800

3000

3200

3400

3600

r/R.wafer

Th

ick

ness

Rate 10 10 minnm

Rate 20 10 minnm

Wafer 20

Wafer 10

Page 18: Lecture 12.0

CVD ReactorCVD Reactor

External Convective Diffusion– Either reactants or products

Internal Diffusion in Wafer Stack– Either reactants or products

AdsorptionSurface ReactionDesorption

Page 19: Lecture 12.0

Microscopic Analysis -Reaction StepsMicroscopic Analysis -Reaction Steps

Adsorption – A(g)+SA*S– rAD=kAD (PACv-CA*S/KAD)

Surface Reaction-1 – A*S+SS*S + C*S

– rS=kS(CvCA*S - Cv CC*S/KS) Surface Reaction-2

– A*S+B*SS*S+C*S+P(g)– rS=kS(CA*SCB*S - Cv CC*SPP/KS)

Desorption: C*S<----> C(g) +S– rD=kD(CC*S-PCCv/KD)

Any can be rate determining! Others in Equilib. Write in terms of gas pressures, total site conc.

Page 20: Lecture 12.0

Rate Limiting StepsRate Limiting Steps

Adsorption– rA=rAD= kADCt (PA- PC /Ke)/(1+KAPA+PC/KD+KIPI)

Surface Reaction – (see next slide)

Desorption– rA=rD=kDCt(PA - PC/Ke)/(1+KAPA+PC/KD+KIPI)

Page 21: Lecture 12.0

Surface ReactionsSurface Reactions

Page 22: Lecture 12.0

Deposition of GeDeposition of Ge

3"

22

22

1 HHGeClA

HGeClHAsDep

PKPK

PPKKkr

Ishii, H. and Takahashik Y., J. Electrochem. Soc. 135,1539(1988).

Page 23: Lecture 12.0

Silicon DepositionSilicon Deposition

Overall Reaction– SiH4 Si(s) + 2H2

Two Step Reaction Mechanism– SiH4 SiH2(ads) + H2

– SiH2 (ads) Si(s) + H2

Rate=kadsCt PSiH4/(1+Ks PSiH4)

– Kads Ct = 2.7 x 10-12 mol/(cm2 s Pa)

– Ks=0.73 Pa-1

Page 24: Lecture 12.0

Silicon Epitaxy vs. Poly SiSilicon Epitaxy vs. Poly Si

Substrate has Similar Crystal Structure and lattice spacing– Homo epitaxy Si on Si– Hetero epitaxy GaAs on Si

Must have latice match– Substrate cut as specific angle to assure latice match

Probability of adatoms getting together to form stable nuclei or islands is lower that the probability of adatoms migrating to a step for incorporation into crystal lattice.– Decrease temp.– Low PSiH4

– Miss Orientation angle

Page 25: Lecture 12.0

Surface DiffusionSurface Diffusion

Page 26: Lecture 12.0

Monocrystal vs. PolycrystallineMonocrystal vs. Polycrystalline

PSiH4=? torr

Page 27: Lecture 12.0

Dislocation DensityDislocation Density

Epitaxial Film– Activation

Energy of Dislocation

• 3.5 eV

Page 28: Lecture 12.0

Physical Vapor DepositionPhysical Vapor Deposition

Evaporation from Crystal

Deposition of Wall

Page 29: Lecture 12.0
Page 30: Lecture 12.0

Physical Deposition - SputteringPhysical Deposition - Sputtering

Plasma is usedIon (Ar+) accelerated into a target

materialTarget material is vaporized

– Target Flux Ion Flux* Sputtering YieldDiffuses from target to waferDeposits on cold surface of wafer

Page 31: Lecture 12.0

DC PlasmaDC Plasma

Glow Discharge

Page 32: Lecture 12.0

RF Plasma Sputtering for RF Plasma Sputtering for Deposition and for EtchingDeposition and for Etching

RF + DC field

Page 33: Lecture 12.0

Sputtering ChemistriesSputtering Chemistries

Target– Al– Cu– TiW– TiN

Gas– Argon

Deposited Layer– Al– Cu– TiW– TiN

Poly Crystalline Columnar Structure

Page 34: Lecture 12.0

Deposition RateDeposition Rate

Sputtering Yield, S– S=α(E1/2-Eth

1/2)

Deposition Rate – Ion current into Target *Sputtering Yield– Fundamental Charge

gas(x) andtarget(t) ofnumbersatomic

)(

2.53/2

4/33/23/2

i

xt

x

xt

t

Z

energybindingsurfaceU

ZZ

Z

ZZ

Z

U

Page 35: Lecture 12.0

RF PlasmaRF Plasma

Electrons dominate in the Plasma– Plasma Potential, Vp=0.5(Va+Vdc)– Va = applied voltage amplitude (rf)

Ions Dominate in the Sheath– Sheath Potential, Vsp=Vp-Vdc

Reference Voltage is ground such that Vdc is negative

Plasma rfSheath

Sheath

Page 36: Lecture 12.0

Floating PotentialFloating Potential

Sheath surrounds objectFloating potential, Vf

kBTe=eV – due to the accelerating Voltage

eTemperaturelectronT

3.2ln

2q

Tk -VV

e

eBpf

e

i

m

M

Page 37: Lecture 12.0

Plasma ChemistryPlasma Chemistry

Dissociation leading to reactive neutrals

– e + H2 H + H + e

– e + SiH4 SiH2 + H2 + e

– e + CF4 CF3 + F + e

– Reaction rate depends upon electron density

– Most Probable reaction depends on lowest dissociation energy.

Page 38: Lecture 12.0

Plasma Chemistry Plasma Chemistry

Ionization leading to ion– e + CF4 CF3

- + F

– e + SiH4 SiH3+ + H + 2e

Reaction depend upon electron density

Page 39: Lecture 12.0

Plasma ChemistryPlasma Chemistry

Electrons have more energyConcentration of electrons is ~108 to

1012 1/ccIons and neutrals have 1/100 lower

energy than electronsConcentration of neutrals is 1000x

the concentration of ions

Page 40: Lecture 12.0

Oxygen PlasmaOxygen Plasma

Reactive Species– O2+eO2

+ + 2e

– O2+e2O + e

– O + e O-

– O2+ + e 2O

Page 41: Lecture 12.0

Plasma ChemistryPlasma Chemistry

Reactions occur at the Chip Surface– Catalytic Reaction Mechanisms

– Adsorption– Surface Reaction– Desorption

• e.g. Langmuir-Hinshelwood Mechanism

Page 42: Lecture 12.0

Plasma Transport EquationsPlasma Transport Equations

Flux, J

mobilityelectronμ

mobilityionμ

e

i

electronsforEndx

dnDJ

ionsforEndx

dnDJ

neutralsfordx

dnDJ

eee

ee

iii

ii

nnn