l. perivolaropoulos, topological quintessence

Download L. Perivolaropoulos, Topological Quintessence

Post on 02-Jun-2015

574 views

Category:

Education

0 download

Embed Size (px)

DESCRIPTION

The SEENET-MTP Workshop BW2011Particle Physics from TeV to Plank Scale28 August – 1 September 2011, Donji Milanovac, Serbia

TRANSCRIPT

  • 1. Open pageGeneralizing CDM withTopological QuintessenceL. Perivolaropoulos BW2011Observational Constraints http://leandros.physics.uoi.grDepartment of Physics University of Ioannina Collaborators: I. Antoniou (Ioannina) J. Bueno-Sanchez (Madrid) J. Grande (Barcelona) S. Nesseris (Niels-BohrMadrid)1

2. Main PointsThe consistency level of CDM with geometrical data probes has been increasing with time during the last decade. There are some puzzling conflicts between CDM predictions anddynamical data probes (bulk flows, alignment and magnitude of low CMB multipoles,alignment of quasar optical polarization vectors, cluster halo profiles)Most of these puzzles are related to the existence of preferred anisotropy axes which appear to be surprisingly close to each other!The simplest mechanism that can give rise to a cosmological preferred axis is based on an off-center observerin a spherical energy inhomogeneity (dark matter or dark energy). Topological Quintessence is a physical mechanism that can inducebreaking of space translation invariance of dark energy.2 3. Direct Probes of the Cosmic Metric:Geometric Observational Probes Direct Probes of H(z): Luminosity Distance (standard candles: SnIa,GRB): Lz dz l= d L ( z )th = c ( 1 + z ) flat 4 d L0 H ( z )2SnIaObs dL ( z )SnIa : z (0,1.7] GRB GRB : z [0.1, 6] Significantly less accurate probesS. Basilakos, LP, MBRAS ,391, 411, 2008 arXiv:0805.0875Angular Diameter Distance (standard rulers: CMB sound horizon, clusters):c z dz dA ( z)rdA ( z) = s d A ( z )th = rs ( 1 + z ) 0 H ( z ) BAO : z = 0.35, z = 0.2CMB Spectrum : z = 1089 3 4. Geometric ConstraintsParametrize H(z):CDM ( w0 , w1 ) = ( 1, 0 ) zw ( z ) = w0 + w11+ z Chevallier, Pollarski, Linder 10 ( d L , A ( zi )obs ) 5log ( d L, A ( zi ; w0 , w1 ) th ) 2 N5log ( m , w0 , w1 ) = 2 = minMinimize:i =1i24 5. Geometric Probes: Recent SnIa DatasetsQ1: What is the Figure of Merit of each dataset?Q2: What is the consistency of each dataset with CDM?Q3: What is the consistency of each dataset with Standard Rulers?J. C. Bueno Sanchez, S. Nesseris, LP, 5 JCAP 0911:029,2009, 0908.2636 6. z w( z ) = w0 + w10 m = 0.28Figures of Merit1+ zThe Figure of Merit: Inverse area of the 2 CPL parameter contour.A measure of the effectiveness of the dataset in constraining the givenparameters.66 6 6 ESSENC GOLD06UNION4 SNLS4 4 4 E22 2 2w1 0 0w100w1 w1w1 2 2 2 2 4 4 4 4 6 6 6 6 2 .0 1 .5 1 .0 0 .50 .0 2 .0 1 .5 1 .0 0 .50 .0 2 .0 1 .5 1 .0 0 .50 .0 2 .0 1 .5 1 .0 0 .50 .0 w0w 0w0w 0 w0w 0 w0 w 06 6 6 CONSTITUTION UNION2 WMAP5+SDSS5 WMAP5+SDSS74 4 42w12 20 0 w1 w10 w1 2 2 2 4 4 4 6 6 6 6 2 .0 1 .5 1 .0 0 .5 0 .0 2 .0 1 .5 1 .0 0 .50 .0 w0 2 .0 1 .5 1 .0 0 .50 .0w 0w0w0w 0w0 w0 7. Figures of MeritThe Figure of Merit: Inverse area of the 2 CPL parameter contour.A measure of the effectiveness of the dataset in constraining the givenparameters.C U2 SDSSMLCS2k2G06U1SDSSSALTII SNLS ESDSS5 Percival et. al.SDSS7 Percival et. al.7 8. From LP, 0811.4684,I. Antoniou, LP, JCAP 1012:012, Puzzles for CDM2010, arxiv:1007.4347Large Scale Velocity Flows R. Watkins et. al. , Mon.Not.Roy.Astron.Soc.392:743-756,2009, 0809.4041.A. Kashlinsky et. al. Astrophys.J.686:L49-L52,2009 arXiv:0809.3734 - Predicted: On scale larger than 50 h-1Mpc Dipole Flows of 110km/sec or less. - Observed: Dipole Flows of more than 400km/sec on scales 50 h-1Mpc or larger. - Probability of Consistency: 1%Alignment of Low CMB Spectrum Multipoles M. Tegmark et. al., PRD 68, 123523 (2003), Copi et. al. Adv.Astron.2010:847541,2010.- Predicted: Orientations of coordinate systems that maximize planarity ( all2+ )al l 2 of CMB maps should be independent of the multipole l .- Observed: Orientations of l=2 and l=3 systems are unlikely close to each other.- Probability of Consistency: 1%Large Scale Alignment of QSO Optical Polarization Data D. Hutsemekers et. al.. AAS, 441,915(2005), astro-ph/0507274- Predicted: Optical Polarization of QSOs should be randomly oriented- Observed: Optical polarization vectors are aligned over 1Gpc scale along a preferred axis.- Probability of Consistency: 1%Cluster and Galaxy Halo Profiles: Broadhurst et. al. ,ApJ 685, L5, 2008, 0805.2617, S. Basilakos, J.C. Bueno Sanchez, LP., 0908.1333, PRD, 80, 043530, 2009.- Predicted: Shallow, low-concentration mass profiles- Observed: Highly concentrated, dense halos8- Probability of Consistency: 3-5% 9. Proximity of Axes Directions I. Antoniou, LP,JCAP 1012:012, 2010,arxiv: 1007.4347Q: What is the probability that theseindependent axes lie so close in the sky?Calculate: Compare 6 real directions with 6 random directions 9 10. Proximity of Axes DirectionsQ: What is the probability that these Simulated 6 Random Directions:independent axes lie so close in the sky?Calculate:6 Real Directions (3 away from mean value):Compare 6 real directionswith 6 random directions10 11. Distribution of Mean Inner Product of SixPreferred Directions (CMB included)The observed coincidence of the axes is astatistically very unlikely event. 8/1000 largerthan real datarequencies< |cosij|>=0.72 (observations)11 12. Models Predicting a Preferred Axis Anisotropic dark energy equation of state (eg vector fields) (T. Koivisto and D. Mota (2006), R. Battye and A. Moss (2009))Fundamentaly Modified Cosmic Topology or Geometry (rotating universe, horizon scalecompact dimension, non-commutative geometry etc) (J. P. Luminet (2008), P. Bielewicz and A. Riazuelo (2008), E. Akofor, A. P. Balachandran, S. G. Jo, A. Joseph,B. A. Qureshi (2008), T. S. Koivisto, D. F. Mota, M. Quartin and T. G. Zlosnik (2010)) Statistically Anisotropic Primordial Perturbations (eg vector field inflation) (A. R. Pullen and M. Kamionkowski (2007), L. Ackerman, S. M. Carroll and M. B. Wise (2007), K. Dimopoulos, M. Karciauskas, D. H. Lyth and Y. Ro-driguez (2009)) Horizon Scale Primordial Magnetic Field. (T. Kahniashvili, G. Lavrelashvili and B. Ratra (2008), L. Campanelli (2009), J. Kim and P. Naselsky (2009)) Horizon Scale Dark Matter or Dark Energy Perturbations (eg few Gpc void) (J. Garcia-Bellido and T. Haugboelle (2008), P. Dunsby, N. Goheer, B. Osano and J. P. Uzan (2010), T. Biswas, A. Notari and W. Valkenburg (2010)) 12 13. Simplest Model: Lematre-Tolman-Bondi Local spherical underdensity of matter (Void), no dark energy M out = 1 r0 M in 0.2 CentralObserverH in ( z )H out ( z ) Faster expansion rate at low redshifts (local space equivalent to recent times)13 14. Shifted Observer: Preferred DirectionLocal spherical underdensity of matter (Void) M out = 1 Preferredr0 Direction M in 0.2 Observer robsH in ( z ) H out ( z ) Faster expansion rate at low redshifts (local space equivalent to recent times) 14 15. Constraints: Union2 Data Central Observer Metric: FRW limit: A ( r, t ) = r a ( t ) , k ( r ) = k k ( r)0 1 ( r ) = H 0 ( r ) A ( r, t0 )22Cosmological Equation: 1 Geodesics: Luminosity Distance: M15 16. Constraints: Union2 Data Central Observer Advantages: 2 ( M in = 0.2, r0 = 1.86Gpc ) 556 1. No need for dark energy. 2. Natural Preferred Axis.( M in = 0.2, r0 = 1.86Gpc )3. Coincidence Problem Problems: 1. No simple mechanism to create such large voids. 2. Off-Center Observer produces too large CMB Dipole. 3. Worse Fit than LCDM. 2 CDM ( 0 m = 0.27 ) 541J. Grande, L.P., Phys. Rev. D 84, 023514 (2011). M in 16 17. Inhomogeneous Dark Energy: Why Consider? Coincidence Problem: Why Now?Time Dependent Dark EnergyStandard Model (CDM):1. Homogeneous - Isotropic Dark and Baryonic Matter.Alternatively:2. Homogeneous-Isotropic-Constant Dark Energy Why Here? Inhomogeneous Dark Energy(Cosmological Constant) 3. General RelativityConsider Because:1. New generic generalization of CDM (breakshomogeneity of dark energy). Includes CDM asspecial case.2. Natural emergence of preferred axis (off center observers)3. Well defined physical mechanism (topological quintessence with Hubble scale global monopoles).J. Grande, L.P., Phys. Rev. D 84, 023514 (2011). 17J. B. Sanchez, LP, in preparation. 18. Topological QuintessenceGlobal Monopole with Hubble scale Core (Topological Quintessence) = =0 Energy-Momentum (asymptotic): V ( ) Evolution Equations: = S2 18 19. Evolution of the MetricSpherically Symmetric Metric: Evolution: = 0.6 m pl rad ( ti ) = 0.1 vacRapid Expansion in the Monopole CorePreliminary ResultsJ. B. Sanchez, LP, in preparation. 19 20. Toy Model: Generalized LTB(Inhomogeneous Dark Energy) Isotropic Inhomogeneius Fluidwith anisotropic pressure 0 Cosmological Equation: Isocurvature Profiles(Flat): M out = 1 M ( r )J. Grande, L.P., Phys. Rev. D 84, 023514 (2011).. ( r ) + X ( r ) = 1 X ( r)r0 X out = 0 20 21. Constraints for On-Center Observer CDM limit Geodesics: 2 ; 541Luminosity Distance: 2 ( r0 , in )Union 2 2 contoursRuled out region at 3 r0

Recommended

View more >