kiến trúc 3g wcdma umts r3

120
KIẾN TRÚC 3G WCDMA UMTS R3 WCDMA UMTS R3 hỗ trợ cả kết nối chuyển mạch kênh lẫn chuyển mạch gói: đến 384 Mbps trong miền CS và 2Mbps trong miền PS. Các kết nối tốc độ cao này đảm bảo cung cấp một tập các dich vụ mới cho người sử dụng di động giống như trong các mạng điện thoại cố định và Internet. Các dịch vụ này gồm: điện thoại có hình (Hội nghị video), âm thanh chất lượng cao (CD) và tốc độ truyền cao tại đầu cuối. Một tính năng khác cũng được đưa ra cùng với GPRS là "luôn luôn kết nối" đến Internet. UMTS cũng cung cấp thông tin vị trí tốt hơn và vì thế hỗ trợ tốt hơn các dịch vụ dựa trên vị trí. Một mạng UMTS bao gồm ba phần: thiết bị di động (UE: User Equipment), mạng truy nhập vô tuyến mặt đất UMTS (UTRAN: UMTS Terrestrial Radio Network), mạng lõi (CN: Core Network) (xem hình 1.8). UE bao gồm ba thiết bị: thiết bị đầu cuối (TE), thiết bị di động (ME) và module nhận dạng thuê bao UMTS (USIM: UMTS Subscriber Identity Module). UTRAN gồm các hệ thống mạng vô tuyến (RNS: Radio Network System) và mỗi RNS bao gồm RNC (Radio Network Controller: bộ điều khiển mạng vô tuyến) và các nút B nối với nó. Mạng lõi CN bao gồm miền chuyển mạch kênh, chuyển mạch gói và HE (Home Environment: Môi trường nhà). HE bao gồm các cơ sở dữ liệu: AuC (Authentication Center: Trung tâm nhận thực), HLR (Home Location Register: Bộ ghi định vị thường trú) và EIR (Equipment Identity Register: Bộ ghi nhận dạng thiết bị). 1

Upload: gauthier-toudjeu

Post on 09-Apr-2016

48 views

Category:

Documents


2 download

DESCRIPTION

Kiến Trúc 3g Wcdma Umts r3

TRANSCRIPT

Page 1: Kiến Trúc 3g Wcdma Umts r3

KIẾN TRÚC 3G WCDMA UMTS R3

WCDMA UMTS R3 hỗ trợ cả kết nối chuyển mạch kênh lẫn chuyển mạch gói: đến 384 Mbps trong miền CS và 2Mbps trong miền PS. Các kết nối tốc độ cao này đảm bảo cung cấp một tập các dich vụ mới cho người sử dụng di động giống như trong các mạng điện thoại cố định và Internet. Các dịch vụ này gồm: điện thoại có hình (Hội nghị video), âm thanh chất lượng cao (CD) và tốc độ truyền cao tại đầu cuối. Một tính năng khác cũng được đưa ra cùng với GPRS là "luôn luôn kết nối" đến Internet. UMTS cũng cung cấp thông tin vị trí tốt hơn và vì thế hỗ trợ tốt hơn các dịch vụ dựa trên vị trí.

Một mạng UMTS bao gồm ba phần: thiết bị di động (UE: User Equipment), mạng truy nhập vô tuyến mặt đất UMTS (UTRAN: UMTS Terrestrial Radio Network), mạng lõi (CN: Core Network) (xem hình 1.8). UE bao gồm ba thiết bị: thiết bị đầu cuối (TE), thiết bị di động (ME) và module nhận dạng thuê bao UMTS (USIM: UMTS Subscriber Identity Module). UTRAN gồm các hệ thống mạng vô tuyến (RNS: Radio Network System) và mỗi RNS bao gồm RNC (Radio Network Controller: bộ điều khiển mạng vô tuyến) và các nút B nối với nó. Mạng lõi CN bao gồm miền chuyển mạch kênh, chuyển mạch gói và HE (Home Environment: Môi trường nhà). HE bao gồm các cơ sở dữ liệu: AuC (Authentication Center: Trung tâm nhận thực), HLR (Home Location Register: Bộ ghi định vị thường trú) và EIR (Equipment Identity Register: Bộ ghi nhận dạng thiết bị).

Hình 1.8. Kiến trúc 3G WCDMA UMTS R3

1.6.1. Thiết bị người sử dụng (UE)

UE (User Equipment: thiết bị người sử dụng) là đầu cuối mạng UMTS của người sử dụng. Có thể nói đây là phần hệ thống có nhiều thiết bị nhất và sự phát triển của nó sẽ ảnh hưởng lớn lên các ứng dụng và các dịch vụ khả dụng. Giá thành giảm nhanh chóng sẽ tạo điều kiện cho người sử dụng mua thiết bị của UMTS. Điều này đạt được nhờ tiêu chuẩn hóa giao diện vô tuyến và cài đặt mọi trí tuệ tại các card thông minh.

1

Page 2: Kiến Trúc 3g Wcdma Umts r3

1.6.1.1. Các đầu cuối (TE)

Vì máy đầu cuối bây giờ không chỉ đơn thuần dành cho điện thoại mà còn cung cấp các dịch vụ số liệu mới, nên tên của nó được chuyển thành đầu cuối. Các nhà sản xuất chính đã đưa ra rất nhiều đầu cuối dựa trên các khái niệm mới, nhưng trong thực tế chỉ một số ít là được đưa vào sản xuất. Mặc dù các đầu cuối dự kiến khác nhau về kích thước và thiết kế, tất cả chúng đều có màn hình lớn và ít phím hơn so với 2G. Lý do chính là để tăng cường sử dụng đầu cuối cho nhiều dịch vụ số liệu hơn và vì thế đầu cuối trở thành tổ hợp của máy thoại di động, modem và máy tính bàn tay.

Đầu cuối hỗ trợ hai giao diện. Giao diện Uu định nghĩa liên kết vô tuyến (giao diện WCDMA). Nó đảm nhiệm toàn bộ kết nối vật lý với mạng UMTS. Giao diện thứ hai là giao diện Cu giữa UMTS IC card (UICC) và đầu cuối. Giao diện này tuân theo tiêu chuẩn cho các card thông minh.

Mặc dù các nhà sản xuất đầu cuối có rất nhiều ý tưởng về thiết bị, họ phải tuân theo một tập tối thiểu các định nghĩa tiêu chuẩn để các người sử dụng bằng các đầu cuối khác nhau có thể truy nhập đến một số các chức năng cơ sở theo cùng một cách.

Các tiêu chuẩn này gồm: Bàn phím (các phím vật lý hay các phím ảo trên màn hình) Đăng ký mật khẩu mới Thay đổi mã PIN Giải chặn PIN/PIN2 (PUK) Trình bầy IMEI Điều khiển cuộc gọi

Các phần còn lại của giao diện sẽ dành riêng cho nhà thiết kế và người sử dụng sẽ chọn cho mình đầu cuối dựa trên hai tiêu chuẩn (nếu xu thế 2G còn kéo dài) là thiết kế và giao diện. Giao diện là kết hợp của kích cỡ và thông tin do màn hình cung cấp (màn hình nút chạm), các phím và menu.

1.6.1.2. UICC

UMTS IC card là một card thông minh. Điều mà ta quan tâm đến nó là dung lượng nhớ và tốc độ bộ xử lý do nó cung cấp. Ứng dụng USIM chạy trên UICC.

1.6.1.3. USIM

Trong hệ thống GSM, SIM card lưu giữ thông tin cá nhân (đăng ký thuê bao) cài cứng trên card. Điều này đã thay đổi trong UMTS, Modul nhận dạng thuê bao UMTS được cài như một ứng dụng trên UICC. Điều này cho phép lưu nhiều ứng dụng hơn và nhiều chữ ký (khóa) điện tử hơn cùng với USIM cho các mục đích khác (các mã truy nhập giao dịch ngân hàng an ninh). Ngoài ra có thể có nhiều USIM trên cùng một UICC để hỗ trợ truy nhập đến nhiều mạng.

2

Page 3: Kiến Trúc 3g Wcdma Umts r3

USIM chứa các hàm và số liệu cần để nhận dạng và nhận thực thuê bao trong mạng UMTS. Nó có thể lưu cả bản sao hồ sơ của thuê bao.

Người sử dụng phải tự mình nhận thực đối với USIM bằng cách nhập mã PIN. Điểu này đảm bảo rằng chỉ người sử dụng đích thực mới được truy nhập mạng UMTS. Mạng sẽ chỉ cung cấp các dịch vụ cho người nào sử dụng đầu cuối dựa trên nhận dạng USIM được đăng ký.

1.6.2. Mạng truy nhập vô tuyến UMTS

UTRAN (UMTS Terrestrial Radio Access Network: Mạng truy nhập vô tuyến mặt đất UMTS) là liên kết giữa người sử dụng và CN. Nó gồm các phần tử đảm bảo các cuộc truyền thông UMTS trên vô tuyến và điều khiển chúng.

UTRAN được định nghĩa giữa hai giao diện. Giao diện Iu giữa UTRAN và CN, gồm hai phần: IuPS cho miền chuyển mạch gói và IuCS cho miền chuyển mạch kênh; giao diện Uu giữa UTRAN và thiết bị người sử dụng. Giữa hai giao diện này là hai nút, RNC và nút B.

1.6.2.1. RNC

RNC (Radio Network Controller) chịu trách nhiệm cho một hay nhiều trạm gốc và điều khiển các tài nguyên của chúng. Đây cũng chính là điểm truy nhập dịch vụ mà UTRAN cung cấp cho CN. Nó được nối đến CN bằng hai kết nối, một cho miền chuyển mạch gói (đến GPRS) và một đến miền chuyển mạch kênh (MSC).

Một nhiệm vụ quan trọng nữa của RNC là bảo vệ sự bí mật và toàn vẹn. Sau thủ tục nhận thực và thỏa thuận khóa, các khoá bảo mật và toàn vẹn được đặt vào RNC. Sau đó các khóa này được sử dụng bởi các hàm an ninh f8 và f9.

RNC có nhiều chức năng logic tùy thuộc vào việc nó phục vụ nút nào. Người sử dụng được kết nối vào một RNC phục vụ (SRNC: Serving RNC). Khi người sử dụng chuyển vùng đến một RNC khác nhưng vẫn kết nối với RNC cũ, một RNC trôi (DRNC: Drift RNC) sẽ cung cấp tài nguyên vô tuyến cho người sử dụng, nhưng RNC phục vụ vẫn quản lý kết nối của người sử dụng đến CN. Vai trò logic của SRNC và DRNC được mô tả trên hình 1.9. Khi UE trong chuyển giao mềm giữa các RNC, tồn tại nhiều kết nối qua Iub và có ít nhất một kết nối qua Iur. Chỉ một trong số các RNC này (SRNC) là đảm bảo giao diện Iu kết nối với mạng lõi còn các RNC khác (DRNC) chỉ làm nhiệm vụ định tuyến thông tin giữa các Iub và Iur. Chức năng cuối cùng của RNC là RNC điều khiển (CRNC: Control RNC). Mỗi nút B có một RNC điều khiển chịu trách nhiệm cho các tài nguyên vô tuyến của nó.

3

Page 4: Kiến Trúc 3g Wcdma Umts r3

Hình 1.9. Vai trò logic của SRNC và DRNC

1.6.2.2. Nút B

Trong UMTS trạm gốc được gọi là nút B và nhiệm vụ của nó là thực hiện kết nối vô tuyến vật lý giữa đầu cuối với nó. Nó nhận tín hiệu trên giao diện Iub từ RNC và chuyển nó vào tín hiệu vô tuyến trên giao diện Uu. Nó cũng thực hiện một số thao tác quản lý tài nguyên vô tuyến cơ sở như "điều khiển công suất vòng trong". Tính năng này để phòng ngừa vấn đề gần xa; nghĩa là nếu tất cả các đầu cuối đều phát cùng một công suất, thì các đầu cuối gần nút B nhất sẽ che lấp tín hiệu từ các đầu cuối ở xa. Nút B kiểm tra công suất thu từ các đầu cuối khác nhau và thông báo cho chúng giảm công suất hoặc tăng công suất sao cho nút B luôn thu được công suất như nhau từ tất cả các đầu cuối.

1.6.3. Mạng lõi

Mạng lõi (CN) được chia thành ba phần, miền PS, miền CS và HE. Miền PS đảm bảo các dịch vụ số liệu cho người sử dụng bằng các kết nối đến Internet và các mạng số liệu khác và miền CS đảm bảo các dịch vụ điện thoại đến các mạng khác bằng các kết nối TDM. Các nút B trong CN được kết nối với nhau bằng đường trục của nhà khai thác, thường sử dụng các công nghệ mạng tốc độ cao như ATM và IP. Mạng đường trục trong miền CS sử dụng TDM còn trong miền PS sử dụng IP.

1.6.3.1. SGSN

SGSN (SGSN: Serving GPRS Support Node: nút hỗ trợ GPRS phục vụ) là nút chính của miền chuyển mạch gói. Nó nối đến UTRAN thông qua giao diện IuPS và đến GGSN thông quan giao diện Gn. SGSN chịu trách nhiệm cho tất cả kết nối PS của tất cả các thuê bao. Nó lưu hai kiểu dữ liệu thuê bao: thông tin đăng ký thuê bao và thông tin vị trí thuê bao.

Số liệu thuê bao lưu trong SGSN gồm: IMSI (International Mobile Subsscriber Identity: số nhận dạng thuê bao di động

quốc tế) Các nhận dạng tạm thời gói (P-TMSI: Packet- Temporary Mobile Subscriber

Identity: số nhận dạng thuê bao di động tạm thời gói) Các địa chỉ PDP (Packet Data Protocol: Giao thức số liệu gói)

Số liệu vị trí lưu trên SGSN: Vùng định tuyến thuê bao (RA: Routing Area) Số VLR Các địa chỉ GGSN của từng GGSN có kết nối tích cực

1.6.3.2. GGSN

4

Page 5: Kiến Trúc 3g Wcdma Umts r3

GGSN (Gateway GPRS Support Node: Nút hỗ trợ GPRS cổng) là một SGSN kết nối với các mạng số liệu khác. Tất cả các cuộc truyền thông số liệu từ thuê bao đến các mạng ngoài đều qua GGSN. Cũng như SGSN, nó lưu cả hai kiểu số liệu: thông tin thuê bao và thông tin vị trí.

Số liệu thuê bao lưu trong GGSN: IMSI Các địa chỉ PDP

Số liệu vị trí lưu trong GGSN: Địa chỉ SGSN hiện thuê bao đang nối đến

GGSN nối đến Internet thông qua giao diện Gi và đến BG thông qua Gp.

1.6.3.3. BG

BG (Border Gatway: Cổng biên giới) là một cổng giữa miền PS của PLMN với các mạng khác. Chức năng của nút này giống như tường lửa của Internet: để đảm bảo mạng an ninh chống lại các tấn công bên ngoài.

1.6.3.4. VLR

VLR (Visitor Location Register: bộ ghi định vị tạm trú) là bản sao của HLR cho mạng phục vụ (SN: Serving Network). Dữ liệu thuê bao cần thiết để cung cấp các dịch vụ thuê bao được copy từ HLR và lưu ở đây. Cả MSC và SGSN đều có VLR nối với chúng.

Số liệu sau đây được lưu trong VLR: IMSI MSISDN TMSI (nếu có) LA hiện thời của thuê bao MSC/SGSN hiện thời mà thuê bao nối đến

Ngoài ra VLR có thể lưu giữ thông tin về các dịch vụ mà thuê bao được cung cấp.Cả SGSN và MSC đều được thực hiện trên cùng một nút vật lý với VLR vì thế

được gọi là VLR/SGSN và VLR/MSC.

1.6.3.5. MSC

5

Page 6: Kiến Trúc 3g Wcdma Umts r3

MSC thực hiện các kết nối CS giữa đầu cuối và mạng. Nó thực hiện các chức năng báo hiệu và chuyển mạch cho các thuê bao trong vùng quản lý của mình. Chức năng của MSC trong UMTS giống chức năng MSC trong GSM, nhưng nó có nhiều khả năng hơn. Các kết nối CS được thực hiện trên giao diện CS giữa UTRAN và MSC. Các MSC được nối đến các mạng ngoài qua GMSC.

1.6.3.6. GMSC

GMSC có thể là một trong số các MSC. GMSC chịu trách nhiệm thực hiện các chức năng định tuyến đến vùng có MS. Khi mạng ngoài tìm cách kết nối đến PLMN của một nhà khai thác, GMSC nhận yêu cầu thiết lập kết nối và hỏi HLR về MSC hiện thời quản lý MS.

1.6.3.7. Môi trường nhà

Môi trường nhà (HE: Home Environment) lưu các hồ sơ thuê bao của hãng khai thác. Nó cũng cung cấp cho các mạng phục vụ (SN: Serving Network) các thông tin về thuê bao và về cước cần thiết để nhận thực người sử dụng và tính cước cho các dịch vụ cung cấp. Tất cả các dịch vụ được cung cấp và các dịch vụ bị cấm đều được liệt kê ở đây.

Bộ ghi định vị thường trú (HLR)

HLR là một cơ sở dữ liệu có nhiệm vụ quản lý các thuê bao di động. Một mạng di động có thể chứa nhiều HLR tùy thuộc vào số lượng thuê bao, dung lượng của từng HLR và tổ chức bên trong mạng.

Cơ sở dữ liệu này chứa IMSI (International Mobile Subsscriber Identity: số nhận dạng thuê bao di động quốc tế), ít nhất một MSISDN (Mobile Station ISDN: số thuê bao có trong danh bạ điện thoại) và ít nhất một địa chỉ PDP (Packet Data Protocol: Giao thức số liệu gói). Cả IMSI và MSISDN có thể sử dụng làm khoá để truy nhập đến các thông tin được lưu khác. Để định tuyến và tính cước các cuộc gọi, HLR còn lưu giữ thông tin về SGSN và VLR nào hiện đang chịu trách nhiệm thuê bao. Các dịch vụ khác như chuyển hướng cuộc gọi, tốc độ số liệu và thư thoại cũng có trong danh sách cùng với các hạn chế dịch vụ như các hạn chế chuyển mạng.

HLR và AuC là hai nút mạng logic, nhưng thường được thực hiện trong cùng một nút vật lý. HLR lưu giữ mọi thông tin về người sử dụng và đăng ký thuê bao. Như: thông tin tính cước, các dịch vụ nào được cung cấp và các dịch vụ nào bị từ chối và thông tin chuyển hướng cuộc gọi. Nhưng thông tin quan trọng nhất là hiện VLR và SGSN nào đang phụ trách người sử dụng.

Trung tâm nhận thực (AuC)

AUC (Authentication Center) lưu giữ toàn bộ số liệu cần thiết để nhận thực, mật mã hóa và bảo vệ sự toàn vẹn thông tin cho người sử dụng. Nó liên kết với HLR

6

Page 7: Kiến Trúc 3g Wcdma Umts r3

và được thực hiện cùng với HLR trong cùng một nút vật lý. Tuy nhiên cần đảm bảo rằng AuC chỉ cung cấp thông tin về các vectơ nhận thực (AV: Authetication Vector) cho HLR.

AuC lưu giữ khóa bí mật chia sẻ K cho từng thuê bao cùng với tất cả các hàm tạo khóa từ f0 đến f5. Nó tạo ra các AV, cả trong thời gian thực khi SGSN/VLR yêu cầu hay khi tải xử lý thấp, lẫn các AV dự trữ.

Bộ ghi nhận dạng thiết bị (EIR)

EIR (Equipment Identity Register) chịu trách nhiệm lưu các số nhận dạng thiết bị di động quốc tế (IMEI: International Mobile Equipment Identity). Đây là số nhận dạng duy nhất cho thiết bị đầu cuối. Cơ sở dữ liệu này được chia thành ba danh mục: danh mục trắng, xám và đen. Danh mục trắng chứa các số IMEI được phép truy nhập mạng. Danh mục xám chứa IMEI của các đầu cuối đang bị theo dõi còn danh mục đen chứa các số IMEI của các đầu cuối bị cấm truy nhập mạng. Khi một đầu cuối được thông báo là bị mất cắp, IMEI của nó sẽ bị đặt vào danh mục đen vì thế nó bị cấm truy nhập mạng. Danh mục này cũng có thể được sử dụng để cấm các seri máy đặc biệt không được truy nhập mạng khi chúng không hoạt động theo tiêu chuẩn.

1.6.4. Các mạng ngoàiCác mạng ngoài không phải là bộ phận của hệ thống UMTS, nhưng chúng cần

thiết để đảm bảo truyền thông giữa các nhà khai thác. Các mạng ngoài có thể là các mạng điện thoại như: PLMN (Public Land Mobile Network: mạng di động mặt đất công cộng), PSTN (Public Switched Telephone Network: Mạng điện thoại chuyển mạch công cộng), ISDN hay các mạng số liệu như Internet. Miền PS kết nối đến các mạng số liệu còn miền CS nối đến các mạng điện thoại.1.6.5. Các giao diện

Vai trò các các nút khác nhau của mạng chỉ được định nghĩa thông qua các giao diện khác nhau. Các giao diện này được định nghĩa chặt chẽ để các nhà sản xuất có thể kết nối các phần cứng khác nhau của họ.

Giao diện Cu. Giao diện Cu là giao diện chuẩn cho các card thông minh. Trong UE đây là nơi kết nối giữa USIM và UE

Giao diện Uu. Giao diện Uu là giao diện vô tuyến của WCDMA trong UMTS. Đây là giao diện mà qua đó UE truy nhập vào phần cố định của mạng. Giao diện này nằm giữa nút B và đầu cuối.

Giao diện Iu. Giao diện Iu kết nối UTRAN và CN. Nó gồm hai phần, IuPS cho miền chuyển mạch gói, IuCS cho miền chuyển mạch kênh. CN có thể kết nối đến nhiều UTRAN cho cả giao diện IuCS và IuPS. Nhưng một UTRAN chỉ có thể kết nối đến một điểm truy nhập CN.

Giao diện Iur. Đây là giao diện RNC-RNC. Ban đầu được thiết kế để đảm bảo chuyển giao mềm giữa các RNC, nhưng trong quá trình phát triển nhiều tính năng mới được bổ sung. Giao diện này đảm bảo bốn tính năng nổi bật sau:

1. Di động giữa các RNC2. Lưu thông kênh riêng

7

Page 8: Kiến Trúc 3g Wcdma Umts r3

3. Lưu thông kênh chung4. Quản lý tài nguyên toàn cục

Giao diện Iub. Giao diện Iub nối nút B và RNC. Khác với GSM đây là giao diện mở.

1.7. KIẾN TRÚC 3G WCDMA UMTS R4

Hình 1.10 cho thấy kiến trúc cơ sở của 3G UMTS R4. Sự khác nhau cơ bản giữa R3 và R4 là ở chỗ khi này mạng lõi là mạng phân bố và chuyển mạch mềm. Thay cho việc có các MSC chuyển mạch kênh truyền thống như ở kiến trúc trước, kiến trúc chuyển mạch phân bố và chuyển mạch mềm được đưa vào.

Về căn bản, MSC được chia thành MSC server và cổng các phương tiện (MGW: Media Gateway). MSC chứa tất cả các phần mềm điều khiển cuộc gọi, quản lý di động có ở một MSC tiêu chuẩn. Tuy nhiên nó không chứa ma trận chuyển mạch. Ma trận chuyển mạch nằm trong MGW được MSC Server điều khiển và có thể đặt xa MSC Server.

Hình 1.10. Kiến trúc mạng phân bố của phát hành 3GPP R4

Báo hiệu điều khiển các cuộc gọi chuyển mạch kênh được thực hiện giữa RNC và MSC Server. Đường truyền cho các cuộc gọi chuyển mạch kênh được thực hiện giữa RNC và MGW. Thông thường MGW nhận các cuộc gọi từ RNC và định tuyến các cuộc gọi này đến nơi nhận trên các đường trục gói. Trong nhiều trường hợp đường trục gói sử dụng Giao thức truyền tải thời gian thực (RTP: Real Time Transport Protocol) trên Giao thức Internet (IP). Từ hình 1.10 ta thấy lưu lượng số liệu gói từ RNC đi qua SGSN và từ SGSN đến GGSN trên mạng đường trục IP. Cả số liệu và tiếng đều có thể sử dụng truyền tải IP bên trong mạng lõi. Đây là mạng truyền tải hoàn toàn IP.

8

Page 9: Kiến Trúc 3g Wcdma Umts r3

Tại nơi mà một cuộc gọi cần chuyển đến một mạng khác, PSTN chẳng hạn, sẽ có một cổng các phương tiện khác (MGW) được điều khiển bởi MSC Server cổng (GMSC server). MGW này sẽ chuyển tiếng thoại được đóng gói thành PCM tiêu chuẩn để đưa đến PSTN. Như vậy chuyển đổi mã chỉ cần thực hiện tại điểm này. Để thí dụ, ta giả thiết rằng nếu tiếng ở giao diện vô tuyến được truyền tại tốc độ 12,2 kbps, thì tốc độ này chỉ phải chuyển vào 64 kbps ở MGW giao tiếp với PSTN. Truyền tải kiểu này cho phép tiết kiệm đáng kể độ rộng băng tần nhất là khi các MGW cách xa nhau.

Giao thức điều khiển giữa MSC Server hoặc GMSC Server với MGW là giao thức ITU H.248. Giao thức này được ITU và IETF cộng tác phát triển. Nó có tên là điều khiển cổng các phương tiện (MEGACO: Media Gateway Control). Giao thức điều khiển cuộc gọi giữa MSC Server và GMSC Server có thể là một giao thức điều khiển cuộc gọi bất kỳ. 3GPP đề nghị sử dụng (không bắt buộc) giao thức Điều khiển cuộc gọi độc lập vật mang (BICC: Bearer Independent Call Control) được xây dựng trên cơ sở khuyến nghị Q.1902 của ITU.

Trong nhiều trường hợp MSC Server hỗ trợ cả các chức năng của GMSC Server. Ngoài ra MGW có khả năng giao diện với cả RAN và PSTN. Khi này cuộc gọi đến hoặc từ PSTN có thể chuyển nội hạt, nhờ vậy có thể tiết kiệm đáng kể đầu tư.

Để làm thí dụ ta xét trường hợp khi một RNC được đặt tại thành phố A và được điều khiển bởi một MSC đặt tại thành phố B. Giả sử thuê bao thành phố A thực hiện cuộc gọi nội hạt. Nếu không có cấu trúc phân bố, cuộc gọi cần chuyển từ thành phố A đến thành phố B (nơi có MSC) để đấu nối với thuê bao PSTN tại chính thành phố A. Với cấu trúc phân bố, cuộc gọi có thể được điều khiển tại MSC Server ở thành phố B nhưng đường truyền các phương tiện thực tế có thể vẫn ở thành phố A, nhờ vậy giảm đáng kể yêu cầu truyền dẫn và giá thành khai thác mạng.

Từ hình 1.10 ta cũng thấy rằng HLR cũng có thể được gọi là Server thuê bao tại nhà (HSS: Home Subscriber Server). HSS và HLR có chức năng tương đương, ngoại trừ giao diện với HSS là giao diện trên cơ sở truyền tải gói (IP chẳng hạn) trong khi HLR sử dụng giao diện trên cơ sở báo hiệu số 7. Ngoài ra còn có các giao diện (không có trên hình vẽ) giữa SGSN với HLR/HSS và giữa GGSN với HLR/HSS.

Rất nhiều giao thức được sử dụng bên trong mạng lõi là các giao thức trên cơ sở gói sử dụng hoặc IP hoặc ATM. Tuy nhiên mạng phải giao diện với các mạng truyền thống qua việc sử dụng các cổng các phương tiện. Ngoài ra mạng cũng phải giao diện với các mạng SS7 tiêu chuẩn. Giao diện này được thực hiện thông qua cổng SS7 (SS7 GW). Đây là cổng mà ở một phía nó hỗ trợ truyền tải bản tin SS7 trên đường truyền tải SS7 tiêu chuẩn, ở phía kia nó truyền tải các bản tin ứng dụng SS7 trên mạng gói (IP chẳng hạn). Các thực thể như MSC Server, GMSC Server và HSS liên lạc với cổng SS7 bằng cách sử dụng các giao thức truyền tải được thiết kế đặc biệt để mang các bản tin SS7 ở mạng IP. Bộ giao thức này được gọi là Sigtran.

1.8. KIẾN TRÚC 3G WCDMA UMTS R5 và R6

Bước phát triển tiếp theo của UMTS là đưa ra kiến trúc mạng đa phương tiện IP (hình 1.11). Bước phát triển này thể hiện sự thay đổi toàn bộ mô hình cuộc gọi. Ở đây cả tiếng và số liệu được xử lý giống nhau trên toàn bộ đường truyền từ đầu cuối của

9

Page 10: Kiến Trúc 3g Wcdma Umts r3

người sử dụng đến nơi nhận cuối cùng. Có thể coi kiến trúc này là sự hội tụ toàn diện của tiếng và số liệu.

Hình 1.11. Kiến trúc mạng 3GPP R5 và R6Điểm mới của R5 và R6 là nó đưa ra một miền mới được gọi là phân hệ đa

phương tiện IP (IMS: IP Multimedia Subsystem). Đây là một miền mạng IP được thiết kế để hỗ trợ các dịch vụ đa phương tiện thời gian thực IP. Từ hình 1.11 ta thấy tiếng và số liệu không cần các giao diện cách biệt; chỉ có một giao diện Iu duy nhất mang tất cả phương tiện. Trong mạng lõi giao diện này kết cuối tại SGSN và không có MGW riêng.

Phân hệ đa phương tiện IP (IMS) chứa các phần tử sau: Chức năng điều khiển trạng thái kết nối (CSCF: Connection State Control Function), Chức năng tài nguyên đa phương tiện (MRF: Multimedia Resource Function), chức năng điều khiển cổng các phương tiện (MGCF: Media Gateway Control Function), Cổng báo hiệu truyền tải (T-SGW: Transport Signalling Gateway) và Cổng báo hiệu chuyển mạng (R-SGW: Roaming Signalling Gateway).

Một nét quan trọng của kiến trúc toàn IP là thiết bị của người sử dụng được tăng cường rất nhiều. Nhiều phần mềm được cài đặt ở UE. Trong thực tế, UE hỗ trợ giao thức khởi đầu phiên (SIP: Session Initiation Protocol). UE trở thành một tác nhân của người sử dụng SIP. Như vậy, UE có khả năng điều khiển các dịch vụ lớn hơn trước rất nhiều.

CSCF quản lý việc thiết lập , duy trì và giải phóng các phiên đa phương tiện đến và từ người sử dụng. Nó bao gồm các chức năng như: phiên dịch và định tuyến. CSCF hoạt động như một đại diện Server /hộ tịch viên.

10

Page 11: Kiến Trúc 3g Wcdma Umts r3

SGSN và GGSN là các phiên bản tăng cường của các nút được sử dụng ở GPRS và UMTS R3 và R4. Điểm khác nhau duy nhất là ở chỗ các nút này không chỉ hỗ trợ dịch vụ số liệu gói mà cả dịch vụ chuyển mạch kênh (tiếng chẳng hạn). Vì thế cần hỗ trợ các khả năng chất lượng dịch vụ (QoS) hoặc bên trong SGSN và GGSN hoặc ít nhất ở các Router kết nối trực tiếp với chúng.

Chức năng tài nguyên đa phương tiện (MRF) là chức năng lập cầu hội nghi được sử dụng để hỗ trợ các tính năng như tổ chức cuộc gọi nhiều phía và dịch vụ hội nghị .

Cổng báo hiệu truyền tải (T-SGW) là một cổng báo hiệu SS7 để đảm bảo tương tác SS7 với các mạng tiêu chuẩn ngoài như PSTN. T-SGW hỗ trợ các giao thức Sigtran. Cổng báo hiệu chuyển mạng (R-SGW) là một nút đảm bảo tương tác báo hiệu với các mạng di động hiện có sử dụng SS7 tiêu chuẩn. Trong nhiều trường hợp T-SGW và R-SGW cùng tồn tại trên cùng một nền tảng.

MGW thực hiện tương tác với các mạng ngoài ở mức đường truyền đa phương tiện. MGW ở kiến trúc mạng của UMTS R5 có chức năng giống như ở R4. MGW được điều khiển bởi Chức năng cổng điều khiển các phương tiện (MGCF). Giao thức điều khiển giữa các thực thể này là ITU-T H.248.

MGCF cũng liên lạc với CSCF. Giao thức được chọn cho giao diện này là SIP.Tuy nhiên có thể nhiều nhà khai thác vẫn sử dụng nó kết hợp với các miền

chuyển mạch kênh trong R3 và R4. Điều này cho phép chuyển đồi dần dần từ các phiên bản R3 và R4 sang R5. Một số các cuộc gọi thoại có thể vẫn sử dụng miền CS một số các dịch vụ khác chẳng hạn video có thể được thực hiện qua R5 IMS. Cấu hình lai ghép được thể hiện trên hình 1.12.

Hình 1.12. Chuyển đổi dần từ R4 sang R5

1.9. CHIẾN LƯỢC DỊCH CHUYỂN TỪ GSM SANG UMTS

Trong phần này ta sẽ xét chiến lược dịch chuyển từ GSM sang UMTS của hãng Alcatel. Alcatel dự kiến phát triển RAN từ GSM lên 3G UMTS theo ba phát hành: 3GR1, 3GR2 và 3GR3. Với mỗi phát hành, các sản phẩm mới và các tính năng mới được đưa ra.

11

Page 12: Kiến Trúc 3g Wcdma Umts r3

1.9.1. 3GR1 : Kiến trúc mạng UMTS chồng lấn

Phát hành 3GP1 dựa trên phát hành của 3GPP vào tháng 3 và các đặc tả kỹ thuật vào tháng 6 năm 2000. Phát hành đầu của 3GR1 chỉ hỗ trợ UTRA-FDD và sẽ được triển khai chồng lấn lên GSM. Chiến lược dịch chuyển từ GSM sang UMTS phát hành 3GR1 được chia thành ba giai đoạn được ký hiệu là R1.1, R1.2 và R1.3 (R: Release: phát hành). Trong các phát hành này các phần cứng và các tính năng mới được đưa ra. Các nút B được gọi là MBS (Multistandard Base Station: trạm gốc đa tiêu chuẩn). Tuy nhiên MBS V1 chỉ đơn thuần là nút B, chỉ MBS V2 mới thực sự đa tiêu chuẩn và chứa các chức năng của cả nút B và BTS trong cùng một hộp máy. Tương tự RNC V2 và OMC-R V2 được đưa ra để phục vụ cho cả UMTS và GSM.

Hình 1.13 cho thấy kiến trúc đồng tồn tại GSM và UMTS được phát triển trong giai đoạn triển khai UMTS ban đầu (3GR1.1).

Hình 1.13. Kiến trúc đồng tồn tại GSM và UMTS (phát hành 3GR1.1)

1.9.2. 3GR2 : Tích hợp các mạng UMTS và GSM

12

Page 13: Kiến Trúc 3g Wcdma Umts r3

Trong giai đoạn triền khai UMTS thứ hai sự tích hợp đầu tiên giữa hai mạng sẽ được thực hiện bằng cách đưa ra các thiết bị đa tiêu chuẩn như: Nút B kết hợp BTS (MBS V2) và RNC kết hợp BSC (RNC V2). Các chức năng khai thác và bảo dưỡng mạng vô tuyến cũng có thể được thực hiện chung bởi cùng một OMC-R (V2). Hình 1.14 mô tả kiến trúc mạng RAN tích hợp của giai đoạn hai.

Hình 1.14. Kiến trúc mạng RAN tích hợp phát hành 3GR2 (R2.1).

1.9.3. 3GR3 : Kiến trúc RAN thống nhất

Trong kiến trúc RAN của phát hành này được xây dựng trên cơ sở phát hành R5 vào tháng 9 năm 2000 của 3GPP. Trong phát hành này RAN chung cho cả hệ thống UMTS và GSM. Cả UTRA-FDD và UTRA-TDD đều được hỗ trợ. Giao thức truyền tải được thống nhất cho GSM, E-GPRS và UMTS, ngoài ra có thể ATM kết hợp IP. GERAN (GSM/EDGE RAN) cũng sẽ được hỗ trợ bởi phát hành này của mạng. Kiến trúc RAN của 3GR1.3 được thể hiện trên hình 1.15.

13

Page 14: Kiến Trúc 3g Wcdma Umts r3

Hình 1.15. Kiến trúc RAN thống nhất của 3GR3.1

1.10. CẤU HÌNH ĐỊA LÝ CỦA HỆ THỐNG THÔNG TIN DI ĐỘNG 3G

Do tính chất di động của thuê bao di động nên mạng di động phải được tổ chức theo một cấu trúc địa lý nhất định để mạng có thể theo dõi được vị trí của thuê bao.

1.10.1. Phân chia theo vùng mạngTrong một quốc gia có thể có nhiều vùng mạng viễn thông, việc gọi vào một

vùng mạng nào đó phải được thực hiện thông qua tổng đài cổng. Các vùng mạng di động 3G được đại diện bằng tổng đài cổng GMSC hoặc GGSN. Tất cả các cuộc gọi đến một mạng di động từ một mạng khác đều được định tuyến đến GMSC hoặc GGSN. Tổng đài này làm việc như một tổng đài trung kế vào cho mạng 3G. Đây là nơi thực hiện chức năng hỏi để định tuyến cuộc gọi kết cuối ở trạm di động. GMSC/GGSN cho phép hệ thống định tuyến các cuộc gọi vào từ mạng ngoài đến nơi nhận cuối cùng: các trạm di động bị gọi.

1.10.2. Phân chia theo vùng phục vụ MSC/VLR và SGSNMột mạng thông tin di động được phân chia thành nhiều vùng nhỏ hơn, mỗi

vùng nhỏ này được phục vụ bởi một MSC/VLR (hình 1.16a). hay SGSN (1.16b) Ta gọi đây là vùng phục vụ của MSC/VLR hay SGSN.

14

Page 15: Kiến Trúc 3g Wcdma Umts r3

Hình 1.16. Phân chia mạng thành các vùng phục vụ của MSC/VLR và SGSN Để định tuyến một cuộc gọi đến một thuê bao di động, đường truyền qua mạng

sẽ được nối đến MSC đang phục vụ thuê bao di động cần gọi. Ở mỗi vùng phục vụ MSC/VLR thông tin về thuê bao được ghi lại tạm thời ở VLR. Thông tin này bao gồm hai loại:

Thông tin về đăng ký và các dịch vụ của thuê bao. Thông tin về vị trí của thuê bao (thuê bao đang ở vùng định vị hoặc vùng

định tuyến nào).

1.10.3. Phân chia theo vùng định vị và vùng định tuyến

Mỗi vùng phục vụ MSC/VLR được chia thành một số vùng định vị: LA (Location Area) (hình 1.17a). Mỗi vùng phục vụ của SGSN được chia thành các vùng định tuyến (RA: Routing Area) (1.17b).

Hình 1.17. Phân chia vùng phục vụ của MSC/VLR và SGSN thành các vùng định vị (LA: Location Area) và định tuyến (RA: Routing Area)

Vùng định vị (hay vùng định tuyến là một phần của vùng phục vụ MSC/VLR (hay SGSN) mà ở đó một trạm di động có thể chuyển động tự do và không cần cập nhật thông tin về vị trí cho MSC/VLR (hay SGSN) quản lý vị trí này. Có thể nói vùng định vị (hay vùng định tuyến) là vị trí cụ thể nhất của trạm di động mà mạng cần biết để định tuyến cho một cuộc gọi đến nó. Ở vùng định vị này thông báo tìm sẽ được

15

Page 16: Kiến Trúc 3g Wcdma Umts r3

phát quảng bá để tìm thuê bao di động bị gọi. Hệ thống có thể nhận dạng vùng định vị bằng cách sử dụng nhận dạng vùng định vị (LAI: Location Area Identity) hay nhận dạng vùng định tuyến (RAI Routing Area Identity). Vùng định vị (hay vùng định tuyến) có thể bao gồm một số ô và thuộc một hay nhiều RNC, nhưng chỉ thuộc một MSC (hay một SGSN).

1.10.4. Phân chia theo ô

Vùng định vị hay vùng định tuyến được chia thành một số ô (hình 1.18).

Hình 1.18. Phân chia LA và RAÔ là một vùng phủ vô tuyến được mạng nhận dạng bằng nhận dạng ô toàn cầu (CGI: Cell Global Identity). Trạm di động nhận dạng ô bằng mã nhận dạng trạm gốc (BSIC: Base Station Identity Code). Vùng phủ của các ô thường được mô phỏng bằng hình lục giác để tiện cho việc tính toán thiết kế.

1.10.5. Mẫu ô

Mẫu ô có hai kiểu: vô hướng ngang (omnidirectional) và phân đoạn (sectorized). Các mẫu này được cho trên hình 1.19.

Hình 1.19. Các kiểu mẫu ô

Ô vô hướng ngang (hình 1.19a) nhận được từ phát xạ của một anten có búp sóng tròn trong mặt ngang (mặt phẳng song song với mặt đất) và búp sóng có hướng

16

Page 17: Kiến Trúc 3g Wcdma Umts r3

chúc xuống mặt đất trong mặt đứng (mặt phẳng vuông góc với mặt đất). Ô phân đoạn (hình 1.19b) là ô nhận được từ phát xạ của ba anten với hướng phát xạ cực đại lệch nhau 1200. Các anten này có búp sóng dạng nửa số 8 trong mặt ngang và trong mặt đứng búp sóng của chúng chúc xuống mặt đất. Trong một số trường hợp ô phân đoạn có thể được tạo ra từ phát xạ của nhiều hơn ba anten. Trong thực tế mẫu ô có thể rất đa dạng tùy vào địa hình cần phủ sóng. Tuy nhiên các mẫu ô như trên hình 1.19 thường được sử dụng để thiết kế cho sơ đồ phủ sóng chuẩn.

1.10.6. Tổng kết phân chia vùng địa lý trong các hệ thống thông tin di động 3G

Trong các kiến trúc mạng bao gồm cả miền chuyển mạch kênh và miền chuyển mạch gói, vùng phục mạng không chỉ được phân chia thành các vùng định vị (LA) mà còn được phân chia thành các vùng định tuyến (RA: Routing Area). Các vùng định vị (LA: Location Area) là khái niệm quản lý di động của miền CS kế thừa từ mạng GSM. Các vùng định tuyến (RA: Routing Area) là các thực thể của miền PS. Mạng lõi PS sử dụng RA để tìm gọi. Nhận dạng thuê bao P-TMSI (Packet- Temporary Mobile Subsscriber Identity: nhận dạng thuê bao di động gói tạm thời) là duy nhất trong một RA.

Trong mạng truy nhập vô tuyến, RA lại được chia tiếp thành các vùng đăng ký UTRAN (URA: UTRAN Registration Area). Tìm gọi khởi xướng UTRAN sử dụng URA khi kênh báo hiệu đầu cuối đã được thiết lập. URA không thể nhìn thấy được ở bên ngoài UTRAN.

Quan hệ giữa các vùng được phân cấp như cho ở hình 1.20 (ô không được thể hiện). LA thuộc 3G MSC và RA thuộc 3G SGSN. URA thuộc RNC. Theo dõi vị trí theo URA và ô trong UTRAN được thực hiện khi có kết nối RRC (Radio Resource Control: điều khiển tài nguyên vô tuyến) cho kênh báo hiệu đầu cuối. Nếu không có kết nối RRC, 3G SGSN thực hiện tìm gọi và cập nhật thông tin vị trí được thực hiện theo RA.

Hình 1.20. Các khái niệm phân chia vùng địa lý trong 3G WCDMA UMTS.

17

Page 18: Kiến Trúc 3g Wcdma Umts r3

1.11. TỔNG KẾT

Chương này trước hết xét tổng quan quá trình phát triển thông tin di động lên 4G. Nếu công nghệ đa truy nhập cho 3G là CDMA thì công nghệ đa truy nhập cho 4G là OFDMA. Sau đó kiến trúc mạng 3G được xét. Mạng lõi 3G bao gồm hai vùng chuyển mạch: (1) vùng chuyển mạch các dịch vụ CS và (2) vùng chuyển mạch các dịch vụ PS. Các phát hành đánh dấu các mốc quan trọng phát triển mạng 3G WCDMA UMTS được xét: R3, R4, R5 và R6. R3 bao gồm hai miền chuyển mạch kênh và chuyển mạch gói trong đó kết nối giữa các nút chuyển mạch gọi là TDM (ghép kênh theo thời gian). R4 là sự phát triển của R3 trong đó miền chuyển mạch kênh chuyển thành chuyển mạch mềm và kết nối giữa các nút mạng bằng IP. R5 và R6 hỗ trợ các dịch vụ đa phương tiện IP hoàn toàn dựa trên chuyển mạch gói. Để đáp ứng được nhiệm vụ này ngoài miền chuyển mạch gói, mạng được bổ sung thêm phân hệ đa phương tiên IP (IMS). Cốt lõi của IMS là CSCF thực hiện khởi đầu kết nối đa phương tiện IP dựa trên giao thức khởi đầu phiên (SIP Session Initiation Protocol). Ngoài ra IMS vẫn còn chứa chuyển mạch mềm để hỗ trợ dịch vụ chuyển mạch kênh (MGCF). Hiện nay mạng 3GWCDMA UMTS đang ở giai doạn chuyển dần từ R4 sang R5 (hình 1.12). Cuối chương trình bày cấu trúc địa lý của một mạng thông tin di đông 3G có chứa cả vùng chuyển mạch kênh và vùng chuyển mạch gói.

Chương 2CÔNG NGHỆ ĐA TRUY NHẬP CỦA WCDMA

2.1. GIỚI THIỆU CHUNG

2.1.1. Mục đích chương

Hiểu tổng quan trải phổ và phương pháp đa truy nhập của WCDMA Hiểu điều khiển công suất, chuyển giao mềm và máy thu phân tập đa đường

(RAKE) Hiểu các dạng mã trải phổ và các sơ đồ điều chế của WCDMA

2.1.2. Các chủ đề được trình bầy trong chương

Nguyên lý trải phổ và đa truy nhập phân chia theo mã Điều khiển công suất Chuyển giao Máy thu phân tập đa đường (máy thu RAKE) Các dạng mã trải phổ và các sơ đồ điều chết được sử dụng cho WCDMA

18

Page 19: Kiến Trúc 3g Wcdma Umts r3

2.1.3. Hướng dẫn Học kỹ các tư liệu được trình bầy trong chương Tham khảo thêm các tài liệu tham khảo cuối tài liệu giảng dạy của khóa học

2.2. TRẢI PHỔ VÀ ĐA TRUY NHẬP PHÂN CHIA THEO MÃ

2.2.1. Các hệ thống thông tin trải phổ

Trong các hệ thống thông tin thông thường độ rộng băng tần là vấn đề quan tâm chính và các hệ thống này được thiết kế để sử dụng càng ít độ rộng băng tần càng tốt. Trong các hệ thống điều chế biên độ song biên, độ rộng băng tần cần thiết để phát một nguồn tín hiệu tương tự gấp hai lần độ rộng băng tần của nguồn này. Trong các hệ thống điều tần độ rộng băng tần này có thể bằng vài lần độ rộng băng tần nguồn phụ thuộc vào chỉ số điều chế. Đối với một tín hiệu số, độ rộng băng tần cần thiết có cùng giá trị với tốc độ bit của nguồn. Độ rộng băng tần chính xác cần thiết trong trường hợp này phụ thuộc và kiểu điều chế (BPSK, QPSK v.v...).

Trong các hệ thống thông tin trải phổ (viết tắt là SS: Spread Spectrum) độ rộng băng tần của tín hiệu được mở rộng, thông thường hàng trăm lần trước khi được phát. Khi chỉ có một người sử dụng trong băng tần SS, sử dụng băng tần như vậy không có hiệu quả. Tuy nhiên ở môi trường nhiều người sử dụng, các người sử dụng này có thể dùng chung một băng tần SS (trải phổ) và hệ thống trở nên sử dụng băng tần có hiệu suất mà vẫn duy trì được các ưu điểm của trải phổ.

Một hệ thống thông tin số được coi là SS nếu:* Tín hiệu được phát chiếm độ rộng băng tần lớn hơn độ rộng băng tần tối thiểu cần thiết để phát thông tin.* Trải phổ được thực hiện bằng một mã độc lập với số liệu.

Có ba kiểu hệ thống SS cơ bản: chuỗi trực tiếp (DSSS: Direct-Sequence Spreading Spectrum), nhẩy tần (FHSS: Frequency-Hopping Spreading Spectrum) và nhẩy thời gian (THSS: Time-Hopping Spreading Spectrum). Cũng có thể nhận được các hệ thống lai ghép từ các hệ thống nói trên. WCDMA sử dụng DSSS. DSSS đạt được trải phổ bằng cách nhân luồng số cần truyền với một mã trải phổ có tốc độ chip (Rc=1/Tc, Tc là thời gian một chip) cao hơn nhiều tốc độ bit (Rb=1/Tb, Tb là thời gian một bit) của luồng số cần phát. Hình 2.1 minh họa quá trình trải phổ trong đó Tb=15Tc

hay Rc=15Rb. Hình 2.1a cho thấy sơ đồ đơn giản của bộ trải phổ DSSS trong đó luồng số cần truyền x có tốc độ Rb được nhân với một mã trải phổ c tốc độ Rc để được luồng đầu ra y có tốc độ Rc lớn hơn nhiều so với tốc độ Rb của luồng vào. Các hình 2.1b và 2.1b biểu thị quá trình trải phổ trong miền thời gian và miền tần số.

Tại phía thu luồng y được thực hiện giải trải phổ để khôi phục lại luồng x bằng cách nhân luồng này với mã trải phổ c giống như phía phát: x=yc

19

Page 20: Kiến Trúc 3g Wcdma Umts r3

x, y và c ký hiệu tổng quát cho tín hiệu vào, ra và mã trải phổ; x(t), y(t) và c(t) ký hiệu cho các tín hiệu vào, ra và mã trải phổ trong miền thời gian; X(f), Y(f) và C(f) ký hiệu cho các tín hiệu vào, ra và mã trải phổ trong miền tần số; Tb là thời gian một bit của luồng số cần phát, Rb=1/Tb là tốc độ bit của luồng số cần truyền; Tc là thời gian một chip của mã trải phổ, Rc=1/Tc là tốc độ chip của mã trải phổ. Rc=15Rb và Tb=15Tc.

Hình 2.1. Trải phổ chuỗi trực tiếp (DSSS)

2.2.2. Áp dụng DSSS cho CDMA

Trong công nghệ đa truy nhập phân chia theo mã dựa trên CDMA, một tập mã trực giao được sử dụng và mỗi người sử dụng được gán một mã trải phổ riêng. Các mã trải phổ này phải đảm bảo điều kiện trực giao sau đây:

1. Tích hai mã giống nhau bằng 1: cici=12. Tích hai mã khác nhau sẽ là một mã mới trong tập mã: cicj=ck

3. Có số bit 1 bằng số bit -1 trong một mã , trong đó N là số chip và

Ck là giá trị chip k trong một mã

Bảng 2.1. cho thấy thí dụ sử dụng bộ mã gồm tám mã trực giao: c0, c1, …, c7. Bảng 2.2 và 2.3 cho thấy thí dụ khi nhân hai mã giống nhau trong bảng 1 được 1 và nhân hai mã khác nhau trong bảng 2.1 ta được một mã mới..

Bảng 2.1. Thí dụ bộ tám mã trực giaoc0 +1 +1 +1 +1 +1 +1 +1 +1

20

Page 21: Kiến Trúc 3g Wcdma Umts r3

c1 +1 +1 +1 +1 -1 -1 -1 -1c2 +1 +1 -1 -1 +1 +1 -1 -1c3 +1 +1 -1 -1 -1 -1 +1 +1c4 +1 -1 +1 -1 +1 -1 +1 -1c5 +1 -1 +1 -1 -1 +1 -1 +1c6 +1 -1 -1 +1 +1 -1 -1 +1c7 +1 -1 -1 +1 -1 +1 +1 -1

Bảng 2.2. Thí dụ nhân hai mã giống nhau trong bảng 1 được một

c1 +1 +1 +1 +1 -1 -1 -1 -1 c1 +1 +1 +1 +1 -1 -1 -1 -1c1c1 +1 +1 +1 +1 +1 +1 +1 +1

Bảng 2.3. Thí dụ nhân hai mã khác nhau trong bảng 1 được một mã mới trong tập 8 mã

c1 +1 +1 +1 +1 -1 -1 -1 -1 c3 +1 +1 -1 -1 -1 -1 +1 +1= c2 +1 +1 -1 -1 +1 +1 -1 -1

Nếu ta xét một hệ thống gồm K người sử dụng được xây dựng trên cơ sở CDMA, thì sau trải phổ các người sử dụng này sẽ phát vào không gian tập các tín hiệu y như sau:

(2.1)

Ta xét quá trình xử lý tín hiệu này tại một máy thu k. Nhiệm vụ của máy thu này là phải lấy ra xk và loại bỏ các tín hiệu khác (các tín hiệu này được gọi là nhiễu đồng kênh vì trong hệ thống CDMA chúng được phát trên cùng một tần số với xk). Nhân (2.1) với xk và áp dụng quy tắc trực giao nói trên ta được:

(2.2)

Thành phần thứ nhất trong (2.2) chính là tín hiệu hữu ích còn thành phần thứ hai là nhiễu của các người sử dụng còn là nhiễu của các người sử dụng khác được gọi là MAI (Multiple Access Interferrence: nhiễu đa người sử dụng). Để loại bỏ thành phần thứ hai máy thu sử dụng bộ lọc tương quan trọng miền thời gian kết hợp với bộ lọc tần số trong miền tần số. Hình 2.2 xét quá trình giải trải phổ và lọc ra tín hiệu hữu ích tại máy thu k trong một hệ thống CDMA có K người sử dụng với giả thiết công suất phát

21

Page 22: Kiến Trúc 3g Wcdma Umts r3

từ K máy phát như nhau tại đầu vào máy thu k. Hình 2.2a cho thấy sơ đồ giải trải phổ DSSS. Hình 2.2b cho thấy phổ của tín hiệu tổng được phát đi từ K máy phát sau trải phổ, hình 2.2c cho thấy phổ của tín hiệu này sau giải trải phổ tại máy thu k và hình 2.2d cho thấy phổ của tín hiệu sau bộ lọc thông thấp với băng thông băng Rb.

Hình 2.2. Quá trình giải trải phổ và lọc tín hiệu của người sử dụng k từ K tín hiệu.

Từ hình 2.2 ta thấy tỷ số tín hiệu trên nhiễu (SIR: Signal to Interference Ratio) là tỷ số giữa diện tích hình chữ nhật được tô đậm trên hình 2.2.b và tổng diện tích các hình chữ nhật trắng trên hình 2.2.c: SIR=S1/S2. Tỷ số này tỷ lệ với tỷ số Rc/Rb. vì thế tỷ số Rc/Rb được gọi là độ lợi xử lý (TA: Processing Gain).

2.3. ĐIỀU KHIỂN CÔNG SUẤT

Trong trường hợp một máy phát gây nhiễu đến gần máy thu k (đến gần nút B chẳng hạn), công suất của máy phát này tăng cao dẫn đến MAI tăng cao, tỷ số tín hiệu trên nhiễu giảm mạnh và máy thu k không thể tách ra được tín hiệu của mình. Hiện tượng này được gọi là hiện tượng gần và xa. Để tránh hiện tượng này hệ thống phải điều khiển công suất sao cho công suất thu tại nút B của tất cả các UE đều bằng nhau (lý tưởng). Điều khiển công suất trong WCDMA được chia thành: Điều khiển công suất vòng hở Điều khiển công suất vòng kín

Điều khiển công suất vòng hở được thực hiện tự động tại UE khi nó thực hiện thủ tục xin truy nhập Nút B (dựa trên công suất mà nó thu được từ kênh hoa tiêu phát đi từ B), khi này UE chưa có kết nối với nút này. Còn điều khiển công suất vòng kín

22

Page 23: Kiến Trúc 3g Wcdma Umts r3

được thực hiện khi UE đã kết nối với nút B. Điều khiển công suất vòng hở lại được chia thành: Điều khiển công suất vòng trong được thực hiện tại nút B. Điều khiển công suất

vòng trong được thực hiện nhanh với 1500 lần trong một giây dựa trên so sánh SIR thu với SIR đích

Điều khiển công suất vòng ngoài được thực hiện tại RNC để thiết lập SIR đích cho nút B. Điều khiển công suất này dựa trên so sánh tỷ lệ lỗi khối (BLER) thu được với tỷ lệ đích.

2.4. CHUYỂN GIAO TRONG HỆ THỐNG CDMA

Thông thường chuyển giao (HO: Handover) được hiểu là quá trình trong đó kênh lưu lượng của một UE được chuyển sang một kênh khác để đảm bảo chất lượng truyền dẫn. Tuy nhiên trong CDMA khái niệm này chỉ thích hợp cho chuyển giao cứng còn đối với chuyển giao mềm khái niệm này phức tạp hơn, ta sẽ xét cụ thể trong phần dưới đây.Có thể chia HO thành các kiểu HO sau:

HO nội hệ thống xẩy ra bên trong một hệ thống WCDMA. Có thể chia nhỏ HO này thànho HO nội hệ thống giữa các ô thuộc cùng môt tần số sóng mang WCDMAo HO giữa các tần số (IF-HO) giữa các ô hoạt động trên các tần số WCDMA

khác nhau HO giữa các hệ thống (IS-HO) giữa các ô thuộc hai công nghệ truy nhập vô tuyến

(RAT) khác nhau hay các chế độ truy nhập vô tuyến (RAM) khác nhau. Trường hợp thường xuyên xẩy ra nhất đối với kiểu thứ nhất là HO giữa các hệ thống WCDMA và GSM/EDGE. Tuy nhiên cũng có thể là IS-HO giữa WCDMA và hệ thống các hệ thống CDMA khác (cdma2000 1x chẳng hạn). Thí dụ về HO giữa các RAM là HO giữa các chế độ UTRA FDD và UTRA TDD.

Có thể có các thủ tục HO sau:

Chuyển giao cứng (HHO) là các thủ tục HO trong đó tất cả các đường truyền vô tuyến cũ của một UE được giải phóng trước khi thiết lập các đường truyền vô tuyến mới

Chuyển giao mềm (SHO) và chuyển giao mềm hơn (xem hình 2.3) là các thủ tục trong đó UE luôn duy trì ít nhất một đường vô tuyến nối đến UTRAN. Trong chuyển giao mềm UE đồng thời được nối đến một hay nhiều ô thuộc các nút B khác nhau của cùng một RNC (SHO nội RNC) hay thuộc các RNC khác nhau (SHO giữa các RNC). Trong chuyển giao mềm hơn UE được nối đến ít nhất là hai đoạn ô của cùng một nút B. SHO và HO mềm hơn chỉ có thể xẩy ra trên cùng một tần số sóng mang và trong cùng một hệ thống.

23

Page 24: Kiến Trúc 3g Wcdma Umts r3

Hình 2.3. Chuyển giao mềm (a) và mềm hơn (b)

Phụ thuộc sự tham gia trong SHO, các ô trong một hệ thống WCDMA được chia thành các tập sau đây: Tập tích cực bao gồm các ô (đoạn ô) hiện đang tham gia vào một kết nối SHO của

UE Tập lân cận/ tập được giám sát (cả hai từ được sử dụng như nhau). Tập này bao

gồm tất cả các ô được giám sát/đo liên tục bởi UE và hiện thời không có trong tập tích cực

Tập được phát hiện. Tập này bao gồm các ô được UE phát hiện nhưng không thuộc tập tích cực lẫn tập lân cận.

SHO là một tính năng chung của hệ thống WCDMA trong đó các ô lân cận họat động trên cùng một tần số. Trong chế độ kết nối, UE liên tục đo các ô phục vụ và các ô lân cận (do RNC chỉ dẫn) trên tần số sóng mang hiện thời. UE so sánh các kết quả đo với các ngưỡng HO do RNC cung cấp và gửi báo cáo kết quả đo đến RNC khi thực hiện các tiêu chuẩn báo cáo. Vì thế SHO là kiểu chuyển giao được đánh giá bởi đầu cuối di động (MEHO: Mobile Estimated HO). Tuy nhiên giải thuật quyết định SHO được đặt trong RNC. Dựa trên các báo cáo kết quả đo nhận được từ UE (hoặc định kỳ hoặc được khởi động bởi một số các sự kiện nhất định), RNC lệnh cho UE bổ sung hay loại bỏ một số ô khỏi tập tích cực của mình (ASU: Active Set Apdate: cập nhật tập tích cực).

2.5. MÁY THU PHÂN TẬP ĐA ĐƯỜNG HAY MÁY THU RAKE

Phađinh đa đường trên kênh vô tuyến dẫn đến tán thời và chọn lọc tần số làm hỏng tín hiệu thu. Để đánh giá hiện tượng tán thời trên đường truyền vô tuyến, người ta phát đi một xung hẹp (xung kim) và đo đáp ứng xung này tại phía thu. Đáp ứng này là bức tranh thể hiện sự phụ thuộc công suất của các đường truyền khác nhau đến máy thu vào thời gian trễ của các đường truyền này. Đáp ứng này được gọi là lý lịch trễ công suất. Hình 2.4a cho thấy truyền sóng đa đường và hình 2.4b cho thấy thí dụ về lý lịch trễ công suất.

24

Page 25: Kiến Trúc 3g Wcdma Umts r3

Hình 2.4. Truyền sóng đa đường và lý lịch trễ công suất

Chuỗi tín hiệu giả ngẫu nhiên được phát đi ở CDMA có thuộc tính là các phiên bản dịch thời của nó tại phía thu hầu như không tương quan. Như vậy một tín hiệu được truyền từ máy phát đến máy thu theo nhiều đường khác nhau (thời gian trễ khác nhau) có thể được phân giải vào các tín hiệu phađinh khác nhau bằng cách lấy tương quan tín hiệu thu chứa nhiều phiên bản dịch thời của chuỗi giả ngẫu nhiên. Máy thu sử dụng nguyên lý này được gọi là máy thu phân tập đa đường hay máy thu RAKE (hình 2.5).

Hình 2.5. Máy thu RAKETrong máy thu RAKE để nhận được các phiên bản dịch thời của chuỗi

ngẫu nhiên, tín hiệu thu phải đi qua đường trễ trước khi được lấy tương quan và được kết hợp. Đường trễ bao gồm nhiều mắt trễ có thời gian trễ bằng thời gian một chip T c. Máy thu dịch định thời bản sao mã trải phổ từng chip cho từng ký hiệu thông tin để giải trải phổ ký hiệu trong vùng một ký hiệu và tạo nên lý lịch trễ công suất (xem hình

25

Page 26: Kiến Trúc 3g Wcdma Umts r3

2.5a). Với tham khảo lý lịch trễ công suất (bức tranh thể hiện công suất và trễ của các đường truyền) được tạo ra, máy thu chọn các đường truyền có công suất vượt ngưỡng để kết hợp RAKE trên cơ sở số lượng bộ tương quan, bộ ước tính kênh và bộ bù trừ thay đổi pha (được gọi là các ngón máy thu RAKE). Trong trường hợp áp dụng thu phân tập không gian hay phân tập giữa các đoạn ô, lý lịch trễ công suất được tạo ra cho mỗi nhánh và các đường truyền được chọn từ lý lịch trễ công suất suất tổng hợp của tất cả các nhánh. Trong thực tế, vì các tín hiệu trải phổ gồm nhiễu của các người sử dụng khác và các tín hiệu đa đường của kênh người sử dụng, nên giá trị ngưỡng được lập dưạ trên mức công suất tạp âm nền và các đường truyền có SIR hiệu dụng (có công suất thu vượt ngưỡng) được chọn. Vì MS chuyển động (hoặc môi trường truyền sóng thay đổi khi MS cố định), nên vị trí đường truyền (thời gian trễ) được kết hợp RAKE cũng sẽ thường xuyên thay đổi, máy phải định kỳ cập nhật lý lịch trễ đường truyền và cập nhật các đường truyền được kết hợp RAKE trên cơ sở lý lịch mới (quá trình này được gọi là tìm kiếm đường truyền vì nó liên quan đến tìm kiếm đường truyền để kết hợp RAKE).

2.6. CÁC MÃ TRẢI PHỔ SỬ DỤNG TRONG WCDMA

Khái niệm trải phổ được áp dụng cho các kênh vật lý, khái niệm này bao gồm hai thao tác. Đâu tiên là thao tác định kênh, trong đó mỗi ký hiệu số liệu dược chuyển thành một số chip nhờ vậy tăng độ rộng phổ tín hiệu. Số chip trên một ký hiệu (hay tỷ số giữa tốc độ chip và tốc độ ký hiệu) được gọi là hệ số trải phổ (SF: Spectrum Factor), hay nói một cách khác SF=Rs/Rc trong đó Rs là tốc độ ký hiệu còn Rc là tốc đô chip. Hệ số trải phổ là một giá trị khả biến, ngoại trừ đối với kênh chia sẻ đường xuống vật lý tốc độ cao (HS-PDSCH ) trong HSDPA có SF=16. Thao tác thứ hai là thao tác ngẫu nhiên hóa để tăng tính trực giao trong đó một mã ngẫu nhiên hóa được ‘trộn’ với tín hiệu trải phổ. Mã ngẫu nhiên hoá được xây dựng trên cơ sở mã Gold.

Trong quá trình định kênh, các ký hiệu số liệu được nhân với một mã OVSF (Orthogonal Variable Spread Factor: mã trực giao hệ số khả biến) đồng bộ về thời gian với biên của ký hiệu. Trong 3GPP, OVSF (hình 2.6) được sử dụng cho các tốc độ ký hiệu khác nhau và được ký hiệu là Cch,SF,k trong đó SF là hệ số trải phổ của mã và k là số thứ tự mã (0kSF-1). Các mã định kênh có các tính chất trực giao và được sử dụng để phân biệt các thông tin được phát đi cùng từ một nguồn: (1) các kết nối khác nhau trên đường xuống trong cùng một ô trên đường xuống và giảm nhiễu nội ô, (2) các kênh số liệu vật lý đường lên từ một UE. Trên đường xuống các mã OVSF trong mộ ô bị hạn chế vì thế cần được quản lý bởi RNC, tuy nhiên điều này không xẩy ra đối với đường lên.Cần lưu ý khi chọn mã định kênh để chúng không tương quan với nhau. Chẳng hạn khi đã chọn mã Cch,8,4=+1-1+1-1+1-1+1-1, không được sử dụng mã Cch,16,8=+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1; vì hai mã này hoàn toàn giống nhau (tích của chúng bằng 1) và chúng sẽ gây nhiễu cho nhau.

Các mã OVSF chỉ hiệu quả khi các kênh được đồng bộ hoàn hảo tại mức ký hiệu. Mất tương quan chéo do truyền sóng đa đường được bù trừ bởi thao tác ngẫu nhiên hóa bổ sung. Với thao tác ngẫu nhiên hóa, phần thực (I) và phần ảo (Q) của tín hiệu trải phổ được nhân bổ sung với mã ngẫu nhiên hóa phức. Mã ngẫu nhiên hóa phức được sử dụng để phân biệt các nguồn phát: (1) các ô khác nhau đối với đường

26

Page 27: Kiến Trúc 3g Wcdma Umts r3

xuống và (2) các UE khác nhau đối với đường lên. Các mã này có các tính chất tương quan tốt (trung bình hóa nhiễu) và luôn được sử dụng để ‘trộn’ với các mã trải phổ nhưng không làm ảnh hưởng độ rộng phổ tín hiệu và băng thông truyền dẫn.

Hình 2.6. Cây mã định kênh

Đường truyền giữa nút B và UE trong WCDMA chứa nhiều kênh. Có thể chia các kênh này thành hai loại: (1) kênh riêng để truyền lưu lượng và (2) kênh chung mang các thông tin điều khiển và báo hiệu. Đường truyền từ UE đến nút B được gọi là đường lên, còn đường ngược lại từ nút B đến UE được gọi là đường xuống. Trước hết ta xét trải phổ cho các kênh đường lên.

2.7. TRẢI PHỔ VÀ ĐIỀU CHẾ ĐƯỜNG LÊN

2.7.1. Trải phổ và điều chế các kênh riêng đường lên

Nguyên lý trải phổ cho DPDCH (Dedicated Physical Data Channel: kênh số liệu vật lý riêng, kênh để truyền lưu lượng của người sử dụng) và DPCCH (Dedicated Physical Control Channel: kênh điều khiển vật lý riêng; kênh đi cùng với DPDCH để mang thông tin điều khiển lớp vật lý) được minh họa trên hình 2.7.

Một DPCCH và cực đại sáu DPDCH song song giá trị thực có thể được trải phổ và phát đồng thời. DPCCH luôn được trải phổ bằng mã Cc=Cch,256,0, trong đó k=0. Nếu chỉ một kênh DPDCH được phát trên đường lên, thì DPDCH1 được trải phổ với mã Cd,1=Cch,SF,k, trong đó k=SF/4 là số mã OVSF và k=SF/4. Nghĩa là nếu hệ số trải phổ SF=128 thì k=32. Nếu nhiều DPDCH được phát, thì tất cả DPDCH đều có hệ số trải phổ là 4 (tốc độ bit kênh là 960kbps) và DPDCHn được trải phổ bởi mã Cd,n=Cch,4,k, trong đó k=1 nếu n{1,2}, k=3 nếu n{3,4} và k=2 nếu n{5,6}. Để bù trừ sự khác nhau giữa các hệ số trải phổ của số liệu, tín hiệu trải phổ được đánh trọng số bằng các hệ số khuyếch đại ký hiệu là c cho DPCCH và d cho DPDCH. Các hệ số khuyếch đại này được tính toán bởi SRNC và được gửi đến UE trong giai đoạn thiết lập đường truyền vô tuyến hay đặt lại cấu hình. Các hệ số khuyếch đại nằm trong dải từ 0 đến 1 và ít nhất một trong số các giá trị của c và d luôn luôn bằng 1. Luồng chip của các nhánh I và Q sau đó được cộng phức với nhau và được ngẫu nhiên hóa bởi một mã

27

Page 28: Kiến Trúc 3g Wcdma Umts r3

ngẫu nhiên hóa phức được ký hiệu là Sdpch,n trên hình 2.7. Mã ngẫu nhiên hóa này được đồng bộ với khung vô tuyến, nghĩa là chip thứ nhất tương ứng với đầu khung vô tuyến.

Hình 2.7. Trải phổ và điều chế DPDCH và DPCCH đường lên

Các nghiên cứu cho thấy mọi sự phát không liên tục trên đường lên có thể gây nhiễu âm thanh cho thiết bị âm thanh đặt gần máy đầu cuối di động. Thí dụ điển hình là trường hợp nhiễu tần số khung (217 Hz=1/4,615ms) gây ra do các đầu cuối GSM. Để tránh hiệu ứng này, kênh DPCCH và các kênh DPDCH không được ghép theo thời gian mà được ghép theo mã I/Q (điều chế QPSK hai kênh) với ngẫu nhiên hoá phức. Minh họa trên hình 2.8 cho thấy sơ đồ điều chế này cho phép truyền dẫn liên tục ngay cả trong các chu kỳ im lặng khi chỉ có thông tin điều khiển lớp 1 để duy trì hoạt động đường truyền (DPCCH) là được phát.

Hình 2.8. Truyền dẫn kênh điều khiển vật lý riêng đường lên và kênh số liệu vật lý riêng đường lên khi có/ không có (DTX) số liệu của người sử dụng

Như minh họa trên hình 2.9, các mã ngẫu nhiên hóa phức được tạo ra bằng cách quay pha giữa các chip trong một chu kỳ ký hiệu trong giới hạn 900. Bằng cách này hiệu suất của bộ khuếch đại (liên quan đến tỷ số công suất đỉnh trên công suất trung bình) trong UE hầu như không đổi không phụ thụ thuộc vào tỷ số giữa DPDCH và DPCCH.

28

Page 29: Kiến Trúc 3g Wcdma Umts r3

Hình 2.9. Chùm tín hiệu đối với ghép mã I/Q sử dung ngẫu nhiên hóa phức, biểu diễn cho tỷ số công suất giữa DPDCH và DPCCH.

DPCCH và các DPDCH có thể được ngẫu nhiên hóa bằng các mã ngẫu nhiên dài hoặc ngắn. Có 224 mã ngẫu nhiên hóa dài đường lên và 224 mã ngẫu nhiên ngắn đường lên. Vì có thể sử dụng được hàng triệu mã nên không cần quy hoạch mã đường lên. Số mã ngẫu nhiên cho DPCH (0,…., 16777215), cùng với SF thấp nhất được phép của mã định kênh (4, 8, 16, 32, 128 và 256) cho phần số liệu được ấn định bởi các lớp cao hơn, chẳng hạn khi thiết lập kết nối RRC hoặc khi điều khiển chuyển giao.

2.7.2. Trải phổ và điều chế kênh chung đường lên PRACH

Phần này sẽ trình bầy ấn định mã cho tiền tố và phần bản tin của PRACH là một dạng kênh chung đường lên.

Trải phổ và ngẫu nhiên hóa phần bản tin PRACH được minh họa trên hình 2.10.

Hình 2.10. Trải phổ và điều chế phần bản tin PRACH

Phần điều khiển của bản tin PRACH được trải phổ bằng mã định kênh Cc=Cch,256,m, trong đó m=16.s+15 và s (0 s15) là chữ ký tiền tố và phần số liệu được trải phổ bằng mã định kênh Cd=Cch,SF,m, trong đó SF (có giá trị từ 32 đến 256) là hệ số trải phổ sử dụng cho phần số liệu và m=SF.s/16.

29

Page 30: Kiến Trúc 3g Wcdma Umts r3

Phần bản tin PRACH luôn luôn được trải phổ bằng mã ngẫu nhiên hóa dài. Độ dài của mã ngẫu nhiên hóa được sử dụng cho phần bản tin là 10ms. Có tất cả là 8192 mã ngẫu nhiên hóa.

2.8. TRẢI PHỔ VÀ ĐIỀU CHẾ ĐƯỜNG XUỐNG

2.8.1. Sơ đồ trải phổ và điều chế đường xuống

Khái niệm trải phổ và ngẫu nhiên hóa đường xuống được minh họa trên hình 2.11. Ngoại trừ các SCH (kênh đồng bộ sẽ xét trong chương 3), mỗi cặp hai bit kênh trước hết được biến đổi từ nối tiếp vào song song tương ứng một ký hiệu điều chế, sau đó được đặt lên các nhánh I và Q. Sau đó các nhánh I và Q được trải phổ đến tốc độ 3,84Mcps bằng cùng mỗi mã dịnh kênh Cch,SF,m. Các chuỗi chip giá trị thực trên các nhánh I và Q sau đó được ngẫu nhiên hóa bằng mã ngẫu nhiên hóa phức để nhận dạng nguồn phát nút B, mã này đựợc ký hiệu là Sdl,n trên hình 2.11. Mã ngẫu nhiên hóa này được đồng bộ với mã ngẫu nhiên hóa sử dụng cho P-CCPCH (kênh vật lý điều khiển chung sơ cấp sẽ xét trong cương 3), trong đó chíp phức đầu tiên của khung P-CCPCH được nhân với chip số 0 của mã ngẫu nhiên hóa này.

Sau trải phổ, mỗi kênh vật lý đường xuống (trừ các SCH) được đánh trọng số bằng các hệ số trọng số riêng ký hiệu là Gi như trên hình 2.11. P-SCH và S-SCH giá trị phức được đánh trọng số riêng bằng các hệ số trọng số Gp và Gs. Tất cả các kênh đường xuống được kết hợp với nhau bằng cộng phức. Chuỗi nhận được sau trải phổ và ngẫu nhiên hóa được điều chế QPSK.

Hình 2.11. Sơ đồ trải phổ và điều chế cho tất cả các kênh vật lý đường xuống

2.8.2. Các mã trải phổ đường xuống

Trên đường xuống, cùng các mã định kênh như trên đường lên (mã OVSF) được sử dụng. Thông thường mỗi ô chỉ có một cây mã và mỗi cây mã được đặt dưới một mã ngẫu nhiên hóa để dùng chung cho nhiều người sử dụng. Theo quy đinh, các

30

Page 31: Kiến Trúc 3g Wcdma Umts r3

mã định kênh dùng cho P-CPICH (kênh hoa tiêu chung sơ cấp sẽ xét trong chương 3) và P-CCPCH là Cch,256,0 và Cch,256,1. Bộ quản lý tài nguyên trong RNC ấn định các mã định kênh cho tất cả các kênh khác với giới hạn SF=512 trong trường hợp sử dụng chuyển giao phân tập.

Mã OVSF có thể thay đổi theo từng khung trên kênh PDSCH (kênh chia sẻ đường xuống vật lý sẽ xét trong chương 3). Quy tắc thay đổi như sau, mã (các mã) OVSF được sử dụng cho kết nối phía dưới hệ số trải phổ nhỏ nhất là mã từ nhánh cây, mã nhánh cây mã được chỉ ra bởi hệ số trải phổ thấp nhất này. Nếu DSCH được sắp xếp lên nhiều PDSCH song song, thì quy tắc tương tự được áp dụng, nhưng tất các nhánh mã được sử dụng bởi các mã này tương ứng với hệ số trải phổ nhỏ nhất đều có thể sử dụng cho ấn định hệ số trải phổ cao hơn.

2.8.3. Các mã ngẫu nhiên hóa đường xuống

Trên đường xuống chỉ có các mã ngẫu nhiên hóa dài là được sử dụng. Có cả thẩy 218-1=262143 mã ngẫu nhiên được đánh số từ 0 đến 262142. Các chuỗi mã ngẫu nhiên được ký hiệu là Sdl,n được cấu trúc bằng các đoạn của chuỗi Gold. Để tăng tốc quá trình tìm ô, chỉ 8192 mã trong số 262143 được sử dụng trong thực tế và được cắt ngắn lấy đoạn đầu 38400 chip để phù hợp với chu kỳ khung 10 ms. Như minh họa trên hình 2.12, chỉ có các mã với n=0,1,…, 8191 được sử dụng. Các mã này được chia thành 512 tập. Mỗi tập gồm 16 mã (i=0…15) với một mã sơ cấp và 15 mã thứ cấp. 8 tập (i=0…7) với 8x16 mã hợp thành một nhóm tạo nên 64 nhóm (j=0…63).

Hình 2.12. Các mã ngẫu nhiên hóa sơ cấp và thứ cấpVì thông thường mỗi ô được nhận dạng bằng một mã ngẫu nhiên hoá sơ cấp,

nên quá trình tìm kiếm ô cũng là quá trình tìm kiếm mã này. Quá trình tìm kiếm ô có thể được thực hiện theo ba bước sau:

31

Page 32: Kiến Trúc 3g Wcdma Umts r3

Tìm P-SCH (kênh đồng bộ sơ cấp) để thiết lập đồng bộ khe và đồng bộ ký hiệu Tìm S-SCH (kênh đồng bộ thứ cấp) để thiết lập đồng bộ khung và nhóm mã Tìm mã ngẫu nhiên hóa để nhận dạng ô

2.8.4. Ghép kênh đa mã đường xuống

Để tăng dung lượng kênh đường xuống ta có thể sử dụng sơ đồ ghép kênh đa mã như cho ở hình 2.13.

S/P: biến đổi nối tiếp thành song songHình 2.13. Truyền dẫn đa mã cho đường xuống

2.9. TỔNG KẾT

Các hệ thống CDMA được xây dựng trên cơ sở trải phổ chuỗi trực tiếp (DSSS). Việc sử dụng trải phổ cùng với các mã trực giao cho phép nhiều đầu cuối di động có thể dùng chung một tần số. Khi này tính trực giao của các mã và trải phổ cho phép một máy thu đầu cuối có thể dễ dàng tách ra được tín hiệu của mình. Do sử dụng chung một tần số nên có thể áp dụng chuyển giao mềm cho CDMA. Trong chuyển giao mềm một máy di động có thể kết nối đến nhiều trạm gốc trên cùng một tần số nhưng với mã trải phổ khác nhau. Ưu điểm của chuyển giao mềm là không làm mất cuộc gọi trong quá trình chuyển giao mặc dù nó làm giảm phần nào dụng lượng ô và tăng thêm tính phức tạp hệ thống. Nhưng cũng vì sử dụng chung một tần số nên có thể xẩy ra hiện tượng gần xa, trong đó máy di động gần trạm gốc sẽ gây nhiễu cho các người sử dụng khác. Để khắc phục nhược điểm này phải áp dụng điều khiển công suất nhanh cho CDMA trong đó mày di động gần trạm gốc sẽ được điều chình phát công suất thấp hơn máy di động ở xa trạm gốc. Điều khiển công suất nhanh trong WCDMA được thực hiện 1500 lần trong một giây. Một đặc điểm nữa của CDMA là các mã ngẫu nhiên hóa mang tính trực giao khá cao nên các đường truyền đến máy thu có độ trễ khác nhau thời gian chip hoặc lớn hơn thời gian này đều độc lập với nhau và vì thế có thể sử dụng phân tập đa đường (hay máy thu RAKE) trong CDMA. Nguyên tắc của máy thu RAKE là chọn một số đường (một số ngón) có công suất thu lớn hơn ngưỡng, đồng chỉnh pha các đường này rồi cộng công suất thu của chúng với nhau. WCDMA sử dụng hai tầng trải phổ: (1) trải phổ bằng mã định kênh, (2) trải phổ bằng mã nhận dạng nguồn phát. Mã định kênh được xây dựng trên cơ sở mã hệ số trải phổ trực giao

32

Page 33: Kiến Trúc 3g Wcdma Umts r3

khả biến (OVSF), trong đó hệ số trải phổ SF=Rs/Rc với Rs là tốc độ ký hiệu và Rc là tốc độ chip. Mã ngẫu nhiên hóa được cấu trúc từ mã Gold. WCDMA sử dụng điều chế QPSK cho đường xuống và BPSK cho đường lên. Để giảm tỷ số công suất đỉnh trên công suất trung bình của tín hiệu điều chế, ngẫu nhiên hóa phức được sử dụng.

Chương 3GIAO DIỆN VÔ TUYẾN CỦA WCDMA UMTS

3.1. GIỚI THIỆU CHUNG

3.1.1. Mục đích chương

Hiểu tổng quan về WCDMA/FDD Hiểu kiến trúc WCDMA và các kênh của nó Hiểu được các kỹ thuật phân tập phát trong WCDMA

3.1.2. Các chủ đề được trình bầy trong chương

Kiến trúc giao diện vô tuyến của 3G WCDMA/FDD Các thông số lớp vật lý và quy hoạch tần số của WCDMA/FDD Các kiểu kênh của WCDMA/FDD Sơ đồ tổng quát của một thiết bị thu phát WCDMA Các sơ đồ phân tập phát được sử dụng cho WCDMA Các sơ đồ điều chế và chuyển giao trong WCDMA Các thông số quan trọng máy thu và máy phát vô tuyên của UE Mã hóa tiếng AMR

33

Page 34: Kiến Trúc 3g Wcdma Umts r3

3.1.3. Hướng dẫn Học kỹ các tư liệu được trình bầy trong chương Tham khảo thêm các tài liệu tham khảo cuối tài liệu giảng dạy của khóa học

3.2. MỞ ĐẦU

WCDMA UMTS là một trong các tiêu chuẩn của IMT-2000 nhằm phát triển của GSM để cung cấp các khả năng cho thế hệ ba. WCDMA UMTS sử dụng mạng đa truy nhập vô tuyến trên cơ sở W-CDMA và mạng lõi được phát triển từ GSM/GPRS. W-CDMA có thể có hai giải pháp cho giao diện vô tuyến: ghép song công phân chia theo tần số (FDD: Frequency Division Duplex) và ghép song công phân chia theo thời gian (TDD: Time Division Duplex). Cả hai giao diện này đều sử dụng trải phổ chuỗi trực tiếp (DS-CDMA). Giải pháp thứ nhất sẽ được triển khai rộng rãi còn giải pháp thứ hai chủ yếu sẽ được triển khai cho các ô nhỏ (Micro và Pico). Hiện nay mới chỉ có WCDMA/FDD được triển khai vì thế trong khóa học này ta sẽ chỉ xét WCDMA/FDD

Giải pháp FDD sử dụng hai băng tần 5 MHz với hai sóng mang phân cách nhau 190 MHz: đường lên có băng tần nằm trong dải phổ từ 1920 MHz đến 1980 MHz, đường xuống có băng tần nằm trong dải phổ từ 2110 MHz đến 2170 Mhz. Mặc dù 5 MHz là độ rộng băng danh định, ta cũng có thể chọn độ rộng băng từ 4,4 MHz đến 5 MHz với nấc tăng là 200 KHz. Việc chọn độ rộng băng đúng đắn cho phép ta tránh được nhiễu giao thoa nhất là khi khối 5 MHz tiếp theo thuộc nhà khai thác khác.

Giải pháp TDD sử dụng các tần số nằm trong dải 1900 đến 1920 MHz và từ 2010 MHz đến 2025 MHz; ở đây đường lên và đường xuống sử dụng chung một băng tần.

Giao diện vô tuyến của W-CDMA/FDD (để đơn giản ta sẽ bỏ qua ký hiệu FDD nếu không xét đến TDD) hoàn toàn khác với GSM và GPRS, W-CDMA sử dung phương thức trải phổ chuỗi trực tiếp với tốc độ chip là 3,84 Mcps. Trong WCDMA mạng truy nhập vô tuyến được gọi là UTRAN (UMTS Terrestrial Radio Access Network). Các phần tử của UTRAN rất khác với các phần tử ở mạng truy nhập vô tuyến của GSM. Vì thế khả năng sử dụng lại các BTS và BSC của GSM là rất hạn chế. Một số nhà sản xuất cũng đã có kế hoạch nâng cấp các GSM BTS cho WCDMA. Đối với các nhà sản suất này có thể chỉ tháo ra một số bộ thu phát GSM từ BTS và thay vào đó các bộ thu phát mới cho WCDMA. Một số rất ít nhà sản suất còn lập kế hoạch xa hơn. Họ chế tạo các BSC đồng thời cho cả GSM và WCDMA. Tuy nhiên đa phần các nhà sản suất phải thay thế GSM BSC bằng RNC mới cho WCDMA.

W-CDMA sử dụng rất nhiều kiến trúc của mạng GSM, GPRS hiện có cho mạng của mình. Các phần tử như MSC, HLR, SGSN, GGSN có thể được nâng cấp từ mạng hiện có để hỗ trợ đồng thời WCDMA và GSM.

Giao diện vô tuyến của WCDMA/FDD được xây dựng trên ba kiểu kênh: kênh logic, kênh truyền tải và kênh vật lý. Kênh logic được hình thành trên cơ sở đóng gói các thông tin từ lớp cao trước khi sắp xếp vào kênh truyền tải. Nhiều kênh truyền tải được ghép chúng vào kênh vật lý. Kênh vật lý được xây dựng trên công nghệ đa truy nhập CDMA kết hợp với FDMA/FDD. Mỗi kênh vật lý được đặc trưng bởi một cặp tần số và một mã trải phổ. Ngoài ra kênh vật lý đường lên còn được đặc trưng bởi góc

34

Page 35: Kiến Trúc 3g Wcdma Umts r3

pha. Trong phần dưới đây ta trước hết ta xét kiến trúc giao thức của giao diện vô tuyến sau đó ta sẽ xét giao diện vô tuyến của WCDMA/FDD, sau đó sẽ xét các kênh này.

3.3. KIẾN TRÚC NGĂN XẾP GIAO THỨC CỦA GIAO DIỆN VÔ TUYẾN WCDMA/FDD

Kiến trúc giao diện vô tuyến của WCDMA được cho trên hình 3.1.

UP: Mặt phẳng người sử dụngCP: Mặt phẳng điều khiển

Hình 3.1. Kiến trúc giao thức vô tuyến cho UTRA FDD.

Ngăn xếp giao thức của giao diện vô tuyến bao gồm 3 lớp giao thức: Lớp vật lý (L1). Đặc tả các vấn đề liên quan đến giao diện vô tuyến như điều chế

và mã hóa, trải phổ v.v.. Lớp liên kết nối số liệu (L2). Lập khuôn số liệu vào các khối số liệu và đảm bảo

truyền dẫn tin cậy giữa các nút lân cận hay các thực thể đồng cấp Lớp mạng (L3). Đặc tả đánh địa chỉ và định tuyến

Mỗi khối thể hiện một trường hợp của giao thức tương ứng. Đường không liền nét thể hiện các giao diện điều khiển, qua đó giao thức RRC điều khiển và lập cấu hình các lớp dưới.

Lớp 2 được chia thành các lớp con: MAC (Medium Access Control: Điều khiển truy nhập môi trường) và RLC (Radio link Control: điều khiển liên kết), PDCP (Packet Data Convergence Protocol: Giao thức hội tụ số liệu gói) và BMC (Broadcast/Multicast Control: Điều khiển quảng bá/đa phương ).

Lớp 3 và RLC được chia thành hai mặt phẳng: mặt phẳng điều khiển (C-Plane) và mặt phẳng người sử dụng (U-Plane). PDCP và BMC chỉ có ở mặt phẳng U.

Trong mặt phẳng C lớp 3 bao gồm RRC (Radio Resource Control: điều khiển tài nguyên vô tuyến) kết cuối tại RAN và các lớp con cao hơn: MM (Mobility

35

Page 36: Kiến Trúc 3g Wcdma Umts r3

Management) và CC (Connection Management), GMM (GPRS Mobility Management), SM (Session Management) kết cuối tại mạng lõi (CN).

Lớp vật lý là lớp thấp nhất ở giao diện vô tuyến. Lớp vật lý được sử dụng để truyền dẫn ở giao diện vô tuyến. Mỗi kênh vật lý ở lớp này được xác định bằng một tổ hợp tần số, mã ngẫu nhiên hoá (mã định kênh) và pha (chỉ cho đường lên). Các kênh được sử dụng vật lý để truyền thông tin của các lớp cao trên giao diện vô tuyến, tuy nhiên cũng có một số kênh vật lý chỉ được dành cho hoạt động của lớp vật lý.

Để truyền thông tin ở giao diện vô tuyến, các lớp cao phải chuyển các thông tin này qua lớp MAC đến lớp vật lý bằng cách sử dụng các kênh logic. MAC sắp xếp các kênh này lên các kênh truyền tải trước khi đưa đến lớp vật lý để lớp này sắp xếp chúng lên các kênh vật lý.

3.4. CÁC THÔNG SỐ LỚP VẬT LÝ VÀ QUY HOẠCH TẦN SỐ

3.4.1. Các thông số lớp vật lýCác thông số lớp vật lý của WCDMA được cho trong bảng 3.1.

Bảng 3.1. Các thông số lớp vật lý W-CDMAW-CDMA

Sơ đồ đa truy nhập DS-CDMA băng rộngĐộ rộng băng tần (MHz) 5/10/15/20Mành phổ 200 kHzTốc độ chip (Mcps) (1,28)/3,84/7,68/11,52/15,36Độ dài khung 10 msĐồng bộ giữa các nút B Dị bộ/đồng bộMã hóa sửa lỗi Mã turbo, mã xoắnĐiều chế DL/UL QPSK/BPSKTrải phổ DL/UL QPSK/OCQPSK (HPSK)Bộ mã hóa thoại CS-ACELP/(AMR)Tổ chức tiêu chuẩn 3GPP/ETSI/ARIBDL: Downlink: đường xuống; UL: Uplink: đường lênOCQPSK (HPSK): Orthogonal Complex Quadrature Phase Shift Keying (Hybrid PSK) = khóa chuyển pha vuông góc trực giaoCS-ACELP: Conjugate Structure-Algebraic Code Excited Linear Prediction = Dự báo tuyến tính kích thích theo mã lđại số cấu trúc phức hợp3GPP: Third Generation Parnership Project: Đề án của các đối tác thế hệ baETSI: European Telecommunications Standards Institute: Viện tiêu chuẩn viễn thông Châu ÂuARIB: Association of Radio Industries and Business: Liên hiệp công nghiệp và kinh doanh vô tuyến

3.4.2. Quy hoạch tần số

36

Page 37: Kiến Trúc 3g Wcdma Umts r3

Các băng tần sử dụng cho WCDMA FDD trên toàn cầu được cho trên hình 3.2a. WCDMA sử dụng phân bố tần số quy định cho IMT-2000 (International Mobile Telecommunications-2000) (hình 3.2b) như sau. Ở châu Âu và hầu hết các nước châu Á băng tần IMT-2000 là 260 MHz (1920-1980 MHz cộng với 2110-2170 MHz) có thể sử dụng cho WCDMA/ FDD. Băng tần sử dụng cho TDD ở châu Âu thay đổi, băng tần được cấp theo giấy phép có thể là 25 MHz cho sử dụng TDD ở 1900-1920 (TDD1) và 2020-2025 MHz (TDD2). Băng tần cho các ứng dụng TDD không cần xin phép (SPA= Self Provided Application: ứng dụng tự cấp) có thể là 2010-2020 MHz. Các hệ thống FDD sử dụng các băng tần khác nhau cho đường lên và đường xuống với phân cách là khoảng cách song công, còn các hệ thống TDD sử dụng cùng tần số cho cả đường lên và đường xuống.

UMTS quy định khai thác song công phân chia theo tần số là chế độ tiêu chuẩn cho thông tin thoại và số liệu. Hoạt động đồng thời và liên tục của các mạch điện phát và thu là các thay đổi đáng kể nhất so với họat động của GSM.

Hình 3.2. Phân bố tần số cho WCDMA/FDD. a) Các băng có thể dùng cho WCDMA FDD toàn cầu; b) Băng tần IMT-2000.

Băng tần cho họat động FDD cho các băng I, II và III được cho trên hình 3.3. Băng I (B1) là ấn định băng chính ở Châu Âu. Quy định dành hai cấp phát 60MHz với khoảng cách song công chuẩn 190MHz, tuy nhiên quy định cũng cho phép song công khả biến, trong đó khoảng cách phát thu nằm trong khoảng 130 đến 250MHz. Hệ thống song công khả biến đặt ra các yêu cầu bổ sung đối với thiết kế máy phát thu vì các bộ tổ tần số máy phát và máy thu phải hoạt động độc lập với nhau. Băng II (B2) tái sử dụng băng hiện có của hệ thống thông tin di động cá nhân và dự định để sử dụng ở Mỹ để đảm bảo đồng tồn tại UMTS và GSM. Khoảng cách song công chỉ bằng

37

Page 38: Kiến Trúc 3g Wcdma Umts r3

80MHz đối với băng II vì thế đặt ra các yêu cầu khó khăn hơn đối với phần cứng của máy thu phát.

Hình 3.3 Cấp phát băng tần WCDMA/FDD

Hình 3.4 cho thấy cấp phát băng thông theo đầu thầu tại Vương Quốc Anh. Phổ tần được chia cho năm nhà khai thác như sau: Cấp phép A (Hutchison) nhận cấp phát băng kép 14,6 MHz (tương đương

35MHz với băng bảo vệ nhỏ hơn) Cấp phép B Vodafon) nhận cấp phát băng kép 14,8MHz (tương đương 35MHz

với băng bảo vệ nhỏ hơn) Cấp phép C (BT3G) nhận cấp phát băng kép 10MHz (25MHz) và băng đơn

5MHz tại 1910 MHz Cấp phép D (One2One) nhận cấp phát băng kép 10MHz (25MHz) và băng dơn

5MHz tại 1900MHz Cấp phép E (Orange) nhận cấp phát băng kép (25MHz) và băng đơn 5MHz tại

1905MHz.

Hình 3.4. Thí dụ cấp phát băng tần cho năm nhà khai thác tại Vương Quốc Anh

38

Page 39: Kiến Trúc 3g Wcdma Umts r3

Cấp phát tần số của Đức khác với cấp phát tần số ở Anh ở chỗ, các 10MHz băng kép được cấp phát cho sáu nhà khai thác (610MHz), tất cả bốn kênh TDD1 được cấp phát (1900 đến 1920 MHz) cùng với một trong số các kênh TDD2 (hình 3.5).

Hình 3.5. Cấp phát tần số cho sáu nhà khai thác tại Đức

Tại Việt Nam băng tần 3G được cấp phát tần số theo tám khe tần số như cho trong bảng 3.2, trong đó hai hoặc nhiều nhà khai thác có thể cùng tham gia xin cấp phát chung một khe.

Bảng 3.2. Cấp phát tần số 3G tại Việt Nam

Khe tần số FDD TDDBSTx* BSRx** BSTx/BSRx

A 2110-2125 MHz 1920-1935 MHz 1915-1920 MHzB 2125-2140 MHz 1935-1950 MHz 1910-1915 MHzC 2140-2155 MHz 1950-1965 MHz 1905-1910 MHzD 2155-2170 MHz 1965-1980 MHz 1900-1905 MHz* BSTx: máy phát trạm gốc** BSRx: máy thu trạm gốc

Lý do cấp phát các kênh 5MHz khác nhau tại các nước khác nhau là ở chỗ các nhà khai thác phải quy hoạch mã và phải tránh việc sử dụng các mã gây ra nhiễu kênh lân cận trong cùng một nước hoặc các nhà khai thác khác trong nước liền kề. Vì thế cần phải nghiên cứu quan hệ giữa các tổ hợp mã trải phổ và hoạt động của các kênh lân cận.

39

Page 40: Kiến Trúc 3g Wcdma Umts r3

3.5. CÁC KÊNH CỦA WCDMA

Các kênh của WCDMA được chia thành các loại kênh sau đây: Kênh vật lý (PhCH). Kênh mang số liệu trên giao diện vô tuyến. Mỗi PhCH có

một trải phổ mã định kênh duy nhất để phân biệt với kênh khác. Một người sử dụng tích cực có thể sử dụng các PhCH riêng, chung hoặc cả hai. Kênh riêng là kênh PhCH dành riêng cho một UE còn kênh chung được chia sẻ giữa các UE trong một ô.

Kênh truyền tải (TrCH). Kênh do lớp vật lý cung cấp cho lớp 2 để truyền số liệu. Các kênh TrCH được sắp xếp lên các PhCH

Kênh Logic (LoCH). Kênh được lớp con MAC của lớp 2 cung cấp cho lớp cao hơn. Kênh LoCH được xác định bởi kiểu thông tin mà nó truyền.

3.5.1. Các kênh logic, LoCH

Nói chung các kênh logic (LoCH: Logical Channel) được chia thành hai nhóm: các kênh điều khiển (CCH: Control Channel) để truyền thông tin điều khiển và các kênh lưu lượng (TCH: Traffic Channel) để truyền thông tin của người sử dụng. Các kênh logic và ứng dụng của chúng được tổng kết trong bảng 3.2.

Bảng 3.2. Danh sách các kênh logicNhóm kênh Kênh logic Ứng dụng

CCH (Control Channel: Kênh điều khiển)

BCCH (Broadcast Control Channel: Kênh điều khiển quảng bá)

Kênh đường xuống để phát quảng bá thông tin hệ thống

PCCH (Paging Control Channel: Kênh điều khiển tìm gọi)

Kênh đường xuống để phát quảng bá thông tin tìm gọi

CCCH (Common Control Channel: Kênh điều khiển chung)

Kênh hai chiều để phát thông tin điều khiển giữa mạng và các UE. Được sử dụng khi không có kết nối RRC hoặc khi truy nhập một ô mới

DCCH (Dedicated Control Channel: Kênh điều khiển riêng).

Kênh hai chiều điểm đến điểm để phát thông tin điều khiển riêng giữa UE và mạng. Được thiết lập bởi thiết lập kết nối của RRC

TCH (Traffic Channel: Kênh lưu lượng)

DTCH (Dedicated Traffic Channel: Kênh lưu lượng riêng)

Kênh hai chiều điểm đến điểm riêng cho một UE để truyền thông tin của người sử dụng. DTCH có thể tồn tại cả ở đường lên lẫn đường xuống

CTCH (Common Traffic Channel: Kênh lưu lượng chung)

Kênh một chiều điểm đa điểm để truyền thông tin của một người sử dụng cho tất cả hay một nhóm người

40

Page 41: Kiến Trúc 3g Wcdma Umts r3

sử dụng quy định hoặc chỉ cho một người sử dụng. Kênh này chỉ có ở đường xuống.

3.5.2. Các kênh truyền tải, TrCH

Các kênh lôgic được lớp MAC chuyển đổi thành các kênh truyền tải. Tồn tại hai kiểu kênh truyền tải: các kênh riêng và các kênh chung. Điểm khác nhau giữa chúng là: kênh chung là tài nguyên được chia sẻ cho tất cả hoặc một nhóm các người sử dụng trong ô, còn kênh kênh riêng được ấn định riêng cho một người sử dụng duy nhất. Các kênh truyền tải chung bao gồm: BCH (Broadcast channel: Kênh quảng bá), FACH (Fast Access Channel: Kênh truy nhập nhanh), PCH (Paging Channel: Kênh tìm gọi), DSCH (Down Link Shared Channel: Kênh chia sẻ đường xuống), CPCH (Common Packet Channel: Kênh gói chung). Kênh riêng chỉ có một kênh duy nhất là DCH (Dedicated Channel: Kênh riêng). Kênh truyền tải chung có thể được áp dụng cho tất cả các người sử dụng trong ô hoặc cho một người hoặc nhiều người đặc thù. Khi kênh truyền tải chung được sử dụng để phát thông tin cho tất cả các ngừơi sử dụng thì kênh này không cần có địa chỉ. Chẳng hạn kênh BCH để phát thông tin quảng bá cho tất cả các người sử dụng trong ô. Khi kênh truyền tải chung áp dụng cho một người sử dụng đặc thù, thì cần phát nhận dạng người sử dụng trong băng (trong bản tin sẽ được phát). Kênh PCH là kênh truyền tải chung được sử dụng để tìm gọi một UE đặc thù sẽ chứa thông tin nhận dạng người sử dụng bên trong bản tin phát.

Danh sách các kênh truyền tải và ứng dụng của chúng dược cho ở bảng 3.3.

Bảng 3.3. Danh sách các kênh truyền tải

Kênh truyền tải ứng dụngDCH (Dedicated Channel: Kênh riêng)

Kênh hai chiều được sử dụng để phát số liệu của người sử dụng. Được ấn định riêng cho người sử dụng. Có khả năng thay đổi tốc độ và điều khiển công suất nhanh

BCH (Broadcast Channel: Kênh quảng bá)

Kênh chung đường xuống để phát thông tin quảng bá (chẳng hạn thông tin hệ thống, thông tin ô)

FACH (Forward Access Channel: Kênh truy nhập đường xuống)

Kênh chung đường xuống để phát thông tin điều khiển và số liệu của người sử dụng. Kênh chia sẻ chung cho nhiều UE. Được sử dụng để truyền số liệu tốc độ thấp cho lớp cao hơn

PCH (Paging Channel: Kênh tìm gọi)

Kênh chung dường xuống để phát các tín hiệu tìm gọi

RACH (Random Access Channel)

Kênh chung đường lên để phát thông tin điều khiển và số liệu người sử dụng. áp dụng trong truy nhập ngẫu nhiên và được sử dụng để truyền số liệu thấp của người sử dụng

CPCH (Common Packet Channel: Kênh gói chung)

Kênh chung đường lên để phát số liệu người sử dụng. áp dụng trong truy nhập ngẫu nhiên và được sử dụng trước hết để truyền số liệu cụm.

DSCH (Dowlink Kênh chung đường xuống để phát số liệu gói. Chia sẻ cho

41

Page 42: Kiến Trúc 3g Wcdma Umts r3

Shared Channel: Kênh chia sẻ đường xuống)

nhiều UE. Sử dụng trước hết cho truyền dẫn số liệu tốc độ cao.

Các kênh logic được chuyển thành các kênh truyền tải như cho trên hình 3.6.

Hình 3.6. Chuyển đổi giữa các LoCH và TrCH trên đường lên và đường xuống

3.5.3. Các kênh vật lý

Một kênh vật lý được coi là tổ hợp của tần số, mã ngẫu nhiên, mã định kênh và cả pha tương đối (đối với đường lên). Kênh vật lý (Physical Channel) bao gồm các kênh vật lý riêng (DPCH: Dedicated Physical channel) và kênh vật lý chung (CPCH: Common Physical Channel). Các kênh vật lý được tổng kết ở hình 3.7 và bảng 3.4.

42

Page 43: Kiến Trúc 3g Wcdma Umts r3

Hình 3.7. Tổng kết các kiểu kênh vật lý

Bảng 3.4. Danh sách các kênh vật lýTên kênh ứng dụng

DPCH (Dedicated Physical Channel: Kênh vật lý riêng)

Kênh hai chiều đường xuống/đường lên được ấn định riêng cho UE. Gồm DPDCH (Dedicated Physical Control Channel: Kênh vật lý điều khiển riêng) và DPCCH (Dedicated Physical Control Channel: Kênh vật lý điều khiển riêng). Trên đường xuống DPDCH và DPCCH được ghép theo thời gian với ngẫu nhiên hóa phức còn trên đường lên được ghép mã I/Q với ngẫu nhiên hóa phức

DPDCH (Dedicated Physical Data Channel: Kênh vật lý số liệu riêng

Khi sử dụng DPCH, mỗi UE được ấn định ít nhất một DPDCH. Kênh được sử dụng để phát số liệu người sử dụng từ lớp cao hơn

DPCCH (Dedicated Physical Control Channel: Kênh vật lý điều khiển riêng)

Khi sử dụng DPCH, mỗi UE chỉ được ấn định một DPCCH. Kênh được sử dụng để điều khiển lớp vật lý của DPCH. DPCCH là kênh đi kèm với DPDCH chứa: các ký hiệu hoa tiêu, các ký hiệu điều khiển công suất (TPC: Transmission Power Control), chỉ thị kết hợp khuôn dạng truyền tải. Các ký hiệu hoa tiêu cho phép máy thu đánh giá hưởng ứng xung kim của kênh vô tuyến và thực hiện tách sóng nhất quán. Các ký hiệu này cũng cần cho hoạt động của anten thích ứng (hay anten thông minh) có búp sóng hẹp. TPC để điều khiển công suất vòng kín nhanh cho cả đường lên và đường xuống. TFCI thông tin cho máy thu về các thông số tức thời của các kênh truyền tải: các tốc độ số liệu hiện thời trên các kênh số liệu khi nhiều dịch vụ được sử dụng đồng thời. Ngoài ra TFCI có thể bị bỏ qua nếu tốc độ số

43

Page 44: Kiến Trúc 3g Wcdma Umts r3

liệu cố định. Kênh cũng chứa thông tin hồi tiếp hồi tiếp (FBI: Feeback Information) ở đường lên để đảm bảo vòng hồi tiếp cho phân tập phát và phân tập chọn lựa.

PRACH (Physical Random Access Channel: Kênh vật lý truy nhập ngẫu nhiên)

Kênh chung đường lên. Được sử dụng để mang kênh truyền tải RACH

PCPCH (Physical Common Packet Channel: Kênh vật lý gói chung)

Kênh chung đường lên. Được sử dụng để mang kênh truyền tải CPCH

CPICH (Common Pilot Channel: Kênh hoa tiêu chung)

Kênh chung đường xuống. Có hai kiểu kênh CPICH: P-CPICH (Primary CPICH: CPICH sơ cấp) và S-CPICH (Secondary CPICH: CPICH thứ cấp). P-CPICH đảm bảo tham chuẩn nhất quán cho toàn bộ ô để UE thu được SCH, P-CCPCH, AICH và PICH vì các kênh nay không có hoa tiêu riêng như ở các trường hợp kênh DPCH. Kênh S-CPICH đảm bảo tham khảo nhất quán chung trong một phần ô hoặc đoạn ô cho trường hợp sử dụng anten thông minh có búp sóng hẹp. Chẳng hạn có thể sử dụng S-CPICH làm tham chuẩn cho S-CCPCH (kênh mang các bản tin tìm gọi) và các kênh DPCH đường xuống.

P-CCPCH (Primary Common Control Physical Channel: Kênh vật lý điều khiển chung sơ cấp)

Kênh chung đường xuống. Mỗi ô có một kênh để truyền BCH

S-CCPCH (Secondary Common Control Physical Channel: Kênh vật lý điều khiển chung thứ cấp)

Kênh chung đường xuống. Một ô có thể có một hay nhiều S-CCPCH. Được sử dụng để truyền PCH và FACH

SCH (Synchrronization Channel: Kênh đồng bộ)

Kênh chung đường xuống. Có hai kiểu kênh SCH: SCH sơ cấp và SCH thứ cấp. Mỗi ô chỉ có một SCH sơ cấp và thứ cấp. Được sử dụng để tìm ô

PDSCH (Physical Downlink Shared Channel: Kênh vật lý chia sẻ đường xuống)

Kênh chung đường xuống. Mỗi ô có nhiều PDSCH (hoặc không có). Được sử dụng để mang kênh truyền tải DSCH

AICH (Acquisition Indication Channel: Kênh chỉ thị bắt)

Kênh chung đường xuống đi cặp với PRACH. Được sử dụng để điều khiển truy nhập ngẫu nhiên của PRACH.

PICH (Page Indication Channel: Kênh chỉ thị tìm gọi)

Kênh chung đường xuống đi cặp với S-CCPCH (khi kênh này mang PCH) để phát thông tin kết cuối cuộc gọi cho từng nhóm cuộc gọi kết cuối. Khi nhận được

44

Page 45: Kiến Trúc 3g Wcdma Umts r3

thông báo này, UE thuộc nhóm kết cuối cuộc gọi thứ n sẽ thu khung vô tuyến trên S-CCPCH

AP-AICH (Access Preamble Acquisition Indicator Channel: Kênh chỉ thị bắt tiền tố truy nhập)

Kênh chung đường xuống đi cặp với PCPCH để điều khiển truy nhập ngẫu nhiên cho PCPCH

CD/CA-ICH (CPCH Collision Detection/ Channel Assignment Indicator Channel: Kênh chỉ thị phát hiện va chạm CPCH/ấn định kênh)

Kênh chung đường xuống đi cặp với PCPCH. Được sử dụng để điều khiển va chạm PCPCH

CSICH (CPCH Status Indicator Channel: Kênh chỉ thị trạng thái CPCH)

Kênh chung đường xuống liên kết với AP-AICH để phát thông tin về trạng thái kết nối của PCPCH

Các các kênh truyền tải được chuyển thành các kênh vật lý như trên hình 3.8.

Hình 3.8. Chuyển đổi giữa các kênh truyền tải và các kênh vật lý

Hình 3.9 cho thấy việc ghép hai kênh truyền tải lên một kênh vật lý và cung cấp chỉ thị lỗi cho từng khối truyền tải tại phía thu.

45

Page 46: Kiến Trúc 3g Wcdma Umts r3

TFI= Transport Format Indicator: Chỉ thị khuôn dạng truyền tảiTFCI= Transport Format Combination Indicator: Chỉ thị kết hợp khuôn dạng truyền tải

Hình 3.9. Ghép các kênh truyền tải lên kênh vật lý

3.5.4. Quá trình truy nhập ngẫu nhiên RACH và truy nhập gói CPCH

Quá trình truy nhập ngẫu nhiên RACH và truy nhập gói CPCH được cho trên hình 3.10a và 3.10b.

Hình 3.10. Các thủ tục truy nhập ngẫu nhiên RACH và truy nhập gói

Các trủ tục truy nhập ngẫu nhiên trên hình 3.10a như sau. UE khởi xướng thủ tục truy nhập ngẫu nhiên RACH bằng cách phát đi một AP (tiền tố truy nhập). Nếu chấp nhận (OK), nút B phát AICH (chỉ thị phát hiện bắt) đến UE. Sau đó UE có thể phát bản tin trên kênh RACH (kênh truy nhập ngẫu nhiên).

Các thủ tục truy nhập ngẫu nhiên CPCH như sau. Dựa trên thông tin khả dụng của từng kênh PCPCH do CSICH thông báo, UE khởi xướng thủ tục truy nhập CPCH trên kênh chưa sử dụng bằng cách phát đi một AP (tiền tố truy nhập). Nếu được nút B chấp nhận (OK) UE phát đi một CP (tiền tố phát hiện va chạm) để thông báo rằng nó đã chiếm kênh này. Cuối cùng nút B phát đi CD/CA-ICH (chỉ thị phát hiện va chạm và ấn định kênh) đến UE. Sau đó UE có thể phát gói trên kênh CPCH (kênh gói chung)

46

Page 47: Kiến Trúc 3g Wcdma Umts r3

3.5.5. Thí dụ về báo hiệu thiết lập cuộc gọi sử dụng các kênh logic và truyền tải

Hình 3.11 cho thấy báo hiệu thiết lập lập cuộc gọi sử dụng kênh logic và kênh truyền tải. Đầu tiên UE sử dụng kênh logic CCCH truyền trên kênh truyền tải RACH để yêu cầu đường truyền báo hiệu (RRC). RNC trả lời bằng kênh logic CCCH trên kênh truyền tải FACH. Sau khi có kết nối RRC, UE sẽ trao đổi báo hiệu với RNC qua kênh logic DCCH trên kênh truyền tải DCH. Sau khi nhận được lệnh "truyền trực tiếp" từ UE, RNC phát lệnh yêu cầu dịch vụ CM (Connection Management: quản lý kết nối) trên giao thức RANAP (Radio Access Application Part: phần ứng dụng truy nhập mạng vô tuyến) để khởi đầu báo hiệu thiết lập kênh mang lưu lượng Tùy thuộc vào yêu cầu của UE lệnh báo hiệu này có thể được chuyển đến MSC hoặc SGSN (trong trường hợp xét là MSC). Sau khi thực hiện các thủ tục an ninh, các thủ tục thiết lập kênh mang được thực hiện.

47

Page 48: Kiến Trúc 3g Wcdma Umts r3

Hình 3.11. Báo hiệu thiết lập cuộc gọi.

3.6. CẤU TRÚC KÊNH VẬT LÝ RIÊNG

Cấu trúc kênh vật lý riêng được trình bày trên hình 3.12. Trong mô hình này mỗi cặp hai bit thể hiện một cặp I/Q (một ký hiệu) của điều chế QPSK. Từ hình vẽ ta thấy, cấu trúc khung bao gồm một chuỗi các khung vô tuyến, mỗi khung bao gồm 15 khe (dài 10 ms, chứa 38400 chip) và mỗi khe chứa 2560 chip (dài 0,667 ms) bằng một chu kỳ điều khiển công suất (tần số điều khiển công suất là 1500 lần trong một giây).

48

Page 49: Kiến Trúc 3g Wcdma Umts r3

Hình 3.12. Cấu trúc kênh vật lý riêng cho đường lên và đường xuống

Cấu trúc kênh vật lý riêng đường lên cho một khe (một chu kỳ điều khiển công suất) được cho trên hình 3.12. Thông tin riêng lớp cao hơn bao gồm số liệu người sử dụng và báo hiệu được mang bởi DPDCH đường lên và thông tin điều khiển tạo ra bởi lớp 1 được mang bởi DPCCH. DPCCH bao gồm các ký hiệu hoa tiêu quy định trước (được sử dụng để ước tính kênh và tách sóng nhất quán), các lệnh điều khiển công suất (TPC: Transmit Power Control), thông tin phản hồi (FBI: Feedback Information) cho phân tập phát vòng kín và kỹ thuật phân tập chọn trạm (SSDT: Site Selection Diversity Technique), TFCI (tùy chọn). Có thể không có, một hay một số (nhiều nhất là 6) kênh DPDCH trên một liên kết vô tuyến, nhưng chỉ có một DPCCH cho liên kết này. DPDCH (hoặc các DPDCH) và DPCCH được ghép chung theo mã I/Q với ngẫu nhiên hóa phức.

Cấu trúc kênh vật lý riêng đường xuống được mô tả trên hình 3.12.Trên đường xuống kênh riêng (DPCH) đường xuống bao gồm DPDCH đường xuống và DPCCH đường xuống ghép theo thời gian với ngẫu nhiên hóa phức. Số liệu riêng được tạo ra tại các mức cao hơn trên DPDCH được ghép theo thời gian với các bit hoa tiêu, các lệnh TPC và các bit TFCI (tùy chọn) được tạo ra tại lớp vật lý.

TFCI có thể có hoặc không có, nếu không có các bit TFCI, DTX (phát không liên tục) được sử dụng trong trường tương ứng. 3.7. SƠ ĐỒ TỔNG QUÁT MÁY PHÁT VÀ MÁY THU WCDMA

Hình 3.13 cho thấy sơ đồ khối của máy phát vô tuyến (hình 3.13a) và máy thu vô tuyến (3.13b) trong W-CDMA. Lớp 1 (lớp vật lý) bổ sung CRC cho từng khối truyền tải (TB: Transport Block) là đơn vị số liệu gốc cần xử lý nhận được từ lớp MAC để phát hiện lỗi ở phía thu. Sau đó số liệu được mã hoá kênh và đan xen. Số liệu sau đan xen được bổ sung thêm các bit hoa tiêu và các bit điều khiển công suất phát (TPC: Transmit Power Control)), được sắp xếp lên các nhánh I và Q của QPSK và được trải phổ hai lớp (trải phổ và ngẫu nhiên hoá). Chuỗi chip sau ngẫu nhiên hoá được giới hạn trong băng tần 5 MHz bằng bộ lọc Niquist cosin tăng căn hai (hệ số dốc bằng 0,22) và được biến đổi vào tương tự bằng bộ biến đổi số vào tương tự (D/A) để đưa lên điều chế vuông góc cho sóng mang. Tín hiệu trung tần (IF) sau điều chế được

49

Page 50: Kiến Trúc 3g Wcdma Umts r3

biến đổi nâng tần vào sóng vô tuyến (RF) trong băng tần 2 GHz, sau đó được đưa lên khuyếch đại trước khi chuyển đến anten để phát vào không gian.

Tại phía thu, tín hiệu thu được bộ khuyếch đại đại tạp âm thấp (LNA) khuyếch đại, được biến đổi vào trung tần (IF) thu rồi được khuyếch đại tuyến tính bởi bộ khuyếch đại AGC (tự điều khuyếch). Sau khuyếch dại AGC tín hiệu được giải điều chế để được các thành phần I và Q. Các tín hiệu tương tự của các thành phần này được biến đổi vào số tại bộ biến đổi A/D, được lọc bởi bộ lọc Nyquist cosine tăng căn hai và được phân chia theo thời gian vào một số thành phần đường truyền có các thời gian trễ truyền sóng khác nhau. Máy thu RAKE chọn các thành phần lớn hơn một ngưỡng cho trước). Sau giải trải phổ cho các thành phần này, chúng được kết hợp bởi bộ kết hợp máy thu RAKE, tín hiệu tổng được giải đan xen, giải mã kênh (giải mã sửa lỗi), được phân kênh thành các khối truyền tải TB và được phát hiện lỗi. Cuối cùng chúng được đưa đến lớp cao hơn.

Hình 3.13. Sơ đồ khối máy phát tuyến (a) và máy thu vô tuyến (b)

3.8. PHÂN TẬP PHÁT

Khi nhiều anten thu được sử dụng, ta nói máy thu sử dụng phân tập anten thu (Rx). Phân tập Rx có thể được sử dụng tại nút B để tăng dung lượng đường lên và vùng phủ sóng. Do giá thành và không gian chiếm lớn, phân tập anten thu không phổ biến tại máy đầu cuối. Để khắc phục nhược điểm này WCDMA sử dụng phân tập phát cho máy đầu cuối. Tồn tại hai kỹ thuật phân tập phát ở WCDMA: Phân tập vòng hở và phân tập vòng kín.

50

Page 51: Kiến Trúc 3g Wcdma Umts r3

3.8.1. Phân tập vòng hở

Phân tập phát vòng hở sử dụng bộ mã hóa được gọi là STTD (Space time Transmit Diversity: phân tập phát không gian thời gian). Sơ đồ máy phát và máy thu sử dụng STTD được cho trên hình 3.14a và 3.14b.

MF: Matched Filter: Bộ lọc phối hợp

Hình 3.14. Phân tập phát vòng hở của WCDMA

STTD được xây dựng trên cơ sở mã Alamouti như sau :

(3.1)

trong đó cột 1 chứa các ký hiệu được phát đi từ anten 1 còn cột 2 chứa các ký hiệu được phát đi từ anten 2. Các ký hiệu này là các ký hiệu điều chế QPSK (xem hình 3.15).

Hình 3.15. Bộ điều chế STTD sử dụng mã khối không gian thời gian trực giao (O-STBC) 2x2.

51

Page 52: Kiến Trúc 3g Wcdma Umts r3

3.8.2. Chế độ vòng kín

R3 và R4 sử dụng hai khái niệm phân tập phát vòng kín. Trong cả hai chế độ này, thông tin đồng chỉnh pha được phát trên một kênh hồi tiếp nhanh (tốc độ 1500 bps) cho phép chọn 4 hoặc 16 khả năng trọng số búp sóng. Cả hai khái niệm này đều có thể coi là truyền dẫn nhất quán (tạo búp thích ứng kênh) với sử dụng cân bằng kênh và các chiến lược báo hiệu hồi tiếp khác nhau. Kiến trúc máy phát và máy thu nút B được cho trên hình 3.16a và 3.16b.

Hình 3.16. Phân tập phát vòng kín của WCDMA

Trong cả hai chế độ trọng số phát được lựa chọn theo thủ tục dưới đây: Đầu cuối đo các kênh hoa tiêu chung CPICH1 và CPICH2 được phát trên anten

1 và anten 2. Đầu cuối nhận được ước tính kênh cho đường truyền h1 và h2 Vectơ trọng số phát cần thiết W(w1, w2) được xác định, được lượng tử và được

gửi đến BTS trong trường FBI của kênh DCCH.

3.9. ĐIỀU KHIỂN CÔNG SUẤT TRONG WCDMA

CDMA rất nhạy cảm với điều khiển công suất: để hệ thống WCDMA hoạt động bình thường, cần có một cơ chế điều khiển công suất tốt để duy trì tỉ số tín hiệu trên nhiễu (SIR) tại mức cho phép. Vì nhiều người sử dụng cùng truyền đồng thời trên cùng một tần số, nên mức nhiễu phụ thuộc vào số lượng người sử dụng.

52

Page 53: Kiến Trúc 3g Wcdma Umts r3

Tồn tại hai kiểu điều khiển công suất:1. Điều khiển công suất vòng hở: cho các kênh chung2. Điều khiển công suất vòng kín: cho các kênh riêng DPDCH/DPCCH và chia sẻ

DSCHĐiều khiển công suất vòng hở thường được UE trước khi truy nhập mạng và nút

B trong quá trình thiết lập đường truyền vô tuyến sử dụng để ước lượng công suất cần phát trên đường lên dựa trên các tính toán tổn hao đường truyền trên đường xuống và tỷ số tín hiệu trên nhiễu yêu cầu.

Điều khiển công suất vòng kín có nhiêm vụ giảm nhiễu trong hệ thống bằng cách duy trì chất lượng thông tin giữa UE và UTRAN (đường truyền vô tuyến) gần nhất với mức chất lượng tối thiểu yêu cầu đối kiểu dịch vụ mà người sử dụng đòi hỏi.

Điều khiển công suất vòng kín bao gồm hai phần: điều khiển công suất nhanh vòng trong tốc độ 1500 Hz và điều khiển công suất chậm vòng ngoài tốc độ 10-100Hz.

3.9.1. Thí dụ về điều khiển công suất vòng hở cho PRACH

Dựa trên tính toán của PC vòng hở, UE thiết lập các công suất ban đầu cho tiền tố kênh truy nhập ngẫu nhiên vật lý (PRACH). Trong thủ tục truy nhập ngẫu nhiên (xem phần 3.5.4), UE thiết lập công suất phát tiền tố đầu tiên như sau:

Preamble_Initial_power = CPICH_Tx_power – CPICH _RSCP + UL_interference + UL_required_CI (3.2)trong đó CPICH_Tx-power là công suất phát của P-CPICH, CPICH _RSCP là công suất P-CPICH thu tại UE, CPICH_Tx_power – CPICH _RSCP là ước tính suy hao đường truyền từ nút B đến UE. UL_interferrence (được gọi là ‘tổng công suất thu băng rộng’) được đo tại nút B và được phát quảng bá trên BCH, UL_required_CI là hằng số tương ứng với tỷ số tín hiệu trên nhiễu được thiết lập trong quá trình quy hoạch mạng vô tuyến.

3.9.2. Điều khiển công suất vòng kín đường lên

Sơ đồ điều khiển công suất vòng kín đường lên đựcc cho trên hình 3.17.

Hình 3.17. Nguyên lý điều khiển công suất vòng kín đường lên

53

Page 54: Kiến Trúc 3g Wcdma Umts r3

3.9.2.1. Điều khiển công suất vòng trong đường lên

Phương pháp điều khiển công suất nhanh vòng kín lên như sau (xem hình 3.17). Nút B thường xuyên ước tính tỷ số tín hiệu trên nhiễu thu được (SIR= Signal to Interference Ratio) trên hoa tiêu đường lên trong UL DPCCH và so sánh nó với tỷ số SIR đích (SIRđích). Nếu SIRướctính cao hơn SIRđích thì nút B thiết lập bit điều khiển công suất trong DPCCH TPC=0 để lệnh UE hạ thấp công suất (Tùy vào thiết lập cấu hình: 1dB chẳng hạn) , trái lại nó thiết lập bit điều khiển công suất trong DPCCH TPC=1 để ra lệnh UE tăng công suất (1dB chẳng hạn). Chu kỳ đo-lệnh-phản ứng này được thực hiện 1500 lần trong một giây (1,5 KHz) ở W-CDMA. Tốc độ này sẽ cao hơn mọi sự thay đổi tổn hao đường truyền và thậm chí có thể nhanh hơn phađinh nhanh khi MS chuyển động tốc độ thấp.

3.9.2.2. Điều khiển công suất vòng ngoài đường lên

Điều khiển công suất vòng ngoài thực hiện điều chỉnh giá trị SIRđích ở nút B cho phù hợp với yêu cầu của từng đường truyền vô tuyến để đạt được chất lượng các đường truyền vô tuyến như nhau. Chất lượng của các đường truyền vô tuyến thường được đánh giá bằng tỷ số bit lỗi (BER: Bit Error Rate) hay tỷ số khung lỗi (FER= Frame Error Rate). Lý do cần đặt lại SIRđích như sau. SIR yêu cầu (tỷ lệ với Ec/N0) chẳng hạn là FER=1% phụ thuộc vào tốc độ của MS và đặc điểm truyền nhiều đường. Nếu ta đặt SIRđích đích cho trường hợp xấu nhất (cho tốc cao độ nhất) thì sẽ lãng phí dung lượng cho các kết nối ở tốc độ thấp. Như vậy tốt nhất là để SIRđích thả nổi xung quanh giá trị tối thiểu đáp ứng được yêu cầu chất lượng. Để thực hiện điều khiển công suất vòng ngoài, mỗi khung số liệu của người sử dụng được gắn chỉ thị chất lượng khung là CRC. Nếu kiểm tra CRC cho thấy BLERướctính> BLERđích thì SIRđích sẽ bị giảm đi một nấc bằng SIR, trái lại nó sẽ được tăng lên một nấc bằng SIR. Lý do đặt điều khiển vòng ngoài ở RNC vì chức năng này thực hiện sau khi thực hiện kết hợp các tín hiệu ở chuyển giao mềm.

3.9.3. Điều khiển công suất vòng kín đường xuống

Điều khiển công suất vòng kín được minh họa trên hình 3.18. UE nhận được BLER đích từ lớp cao hơn do RNC thiết lập cùng với các thông số điều khiển khác. Dựa trên BLER đích nhận được từ RNC, nó thực hiện điều khiển công suất vòng ngoài bằng cách tính toán SIR đích cho điều kiển công suất vòng kín nhanh đường xuống. UE ước tính SIR đường xuống từ các ký hiệu hoa tiêu của DL DPCCH . Ước tính SIR này được so sánh với SIR đích. Nếu ước tính này lớn hơn SIR đích, thì UE thiết lập TPC=0 trong UL DPCCH và gửi nó đến nút B, trái lại nó thiết lập TPC=1. Tốc độ diều khiển công suất vòng trong là 1500Hz

54

Page 55: Kiến Trúc 3g Wcdma Umts r3

Hình 3.18. Nguyên lý điều khiển công suất vòng kín đường xuống

3.10. CÁC KIỂU CHUYỂN GIAO VÀ CÁC SỰ KIỆN BÁO CÁO TRONG WCDMA

Chuyển giao là quá trình được thực hiện khi UE đã có kết nối vô tuyến để duy trì chất lượng truyền dẫn. Trong WCDMA có thể có chuyển giao cừng hoặc chuyển giao mềm.

3.10.1. Chuyển giao cứng

Chuyển giao cứng (HHO: Hard Handover) của WCDMA cũng giống như của GSM. UE chỉ nối đén một nút B. Khi thực hiện HO đến một nút B khác, kết nối đến nút B cũ được giải phóng.

Tất cả các kết nối sử dụng kênh FACH (kênh không sử dụng điều khiển công suất và dành cho các gói ngắn) hay DSCH (kênh phù hợp nhất cho các dịch vụ chuyển mạch gói) đều sử dụng HHO.

Ngoài ra HHO sử dụng cho: HO giữa các hệ thống (giữa UTRAN và GSM) HO giữa các tần số sóng mang khác nhau của UTRAN

3.10.2. Chuyển giao mềm/ mềm hơn

Chuyển giao mềm (hoặc mềm hơn) sử dụng nhiều kết nối từ một UE đến nhiều nút B. Danh sách các nút B tham gia vào kết nối với UE trong chuyển giao mềm/mềm hơn được gọi là “tập tích cực”. Có thể quy định được kích thước cực đại của tập tích cực. Thực chất chuyển giao là quá trình trong đó một ô (đoạn ô) hoặc được kết nạp vào tập tích cực hoặc bị loại ra khỏi tập tích cực. Định kỳ hoặc tại các sự kiện báo cáo (sự kiện 1A, 1B và 1C chẳng hạn), SRNC nhận được kết quả đo từ UE để đưa ra quyết định chuyển giao. Sau khi quyết định chuyển giao, SRNC giửi bản tin lập lại cấu hình liên kết vô tuyến đã được đồng bộ đến các nút B liên quan và đồng thời gửi bản tin

55

Page 56: Kiến Trúc 3g Wcdma Umts r3

RRC về lập lại cấu hình kênh vật lý đến UE để các nút B này và UE thực hiện chuyển giao. Chuyển giao mềm cho phép tăng số đường truyền thu được trên đường xuống và đường lên nhờ vậy tăng tỷ số tín hiệu trên nhiễu (SIR: Signal to Interference Ratio): Ec/I0 (Ec là năng lượng chip còn I0 là mật độ phổ công suất nhiễu) và lượng tăng này được gọi là độ lợi chuyển giao. Sơ đồ tổng quát SHO được cho trên hình 3.19.

R1a, R1b là dải báo cáo cho các sự kiện 1a và 1b được thiết lập bởi RNC; H1a, H1b là hằng số trễ được quy định cho các sự kiện 1a và 1b

Hình 3.19. Thí dụ về giải thuật SHO

Trong thí dụ trong trên hình 3.19 ta sử dụng các sự kiện báo cáo 1A, 1B và 1C. Từ hình 3.19 ta thấy:

Lúc đầu. Chỉ có ô 1 và ô 2 nằm trong tập tích cực Tại sự kiện A. (Ec/I0)P-CPICH1 > (Ec/I0)P-CPICH3- (R1a-H1a/2) trong đó (Ec/I0)P-

CPICH1 là tỷ số tín hiệu trên nhiễu kênh hoa tiêu của ô 1 mạnh nhất, (Ec/I0)P-

CPICH3 là tỷ số tín hiệu trên nhiễu kênh hoa tiêu của ô 3 nằm ngoài tập tích cực, R1a là hằng số dải báo cáo (do RNC thiết lập), H1a là thông số trễ sự kiện và (R1b-H1a/2) 1à cửa sổ kết nạp cho sự kiện 1A. Nếu bất đẳng thức này tồn tại trong khoảng thời gian T thì ô 3 được kết nạp vào tập tích cực

Tại sự kiện C. (Ec/I0)P-CPICH4 > (Ec/I0)P-CPICH2 +H1c, trong đó (Ec/I0)P-CPICH4 là tỷ số tín hiệu trên nhiễu của ô 4 nằm ngoài tập tích cực và (Ec/I0)P-CPICH2 là tỷ số tín hiệu trên nhiễu của ô 2 tồi nhất trong tập tích cực, H1c là thông số trễ sự kiện 1C. Nếu quan hệ này tồn tại trong thời gian T và tập tích cực đã đầy thì ô 2 bị loại ra khỏi tập tich cực và ô 4 sẽ thế chỗ của nó trong tập tích cực

Tại sự kiện B. (Ec/I0)P-CPICH1 < (Ec/I0)P-CPICH3- (R1b+H1b) trong đó (Ec/I0)P-

CPICH1 là tỷ số tín hiệu trên nhiễu kênh hoa tiêu của ô 1 yếu nhất trong tập tích cực, (Ec/I0)P-CPICH3 là tỷ số tín hiệu trên nhiễu của ô 3 mạnh nhất trong tập tích cực và R1b là hằng số dải báo cáo (do RNC thiết lập), H1b là thông

56

Page 57: Kiến Trúc 3g Wcdma Umts r3

số số trễ và (R1b+H1b) là cửa sổ loại cho sự kiện 1C. Nếu quan hệ này tồn tại trong khoảng thời gian T thì ô 3 bị loại ra khỏi tập tích cực

3.11. CÁC THÔNG SỐ MÁY THU VÀ MÁY PHÁT VÔ TUYẾN CỦA UE

Các thông số máy thu và máy phát quan trọng trong phần vô tuyến của UE được cho trong bảng bảng 3.2.Bảng 3.2. Các thông số máy thu và máy phát vô tuyến quan trọng cho phần vô tuyến của UE Các thông số chung

Tần số công tácBăng tần I: 2110-2170 MHzBăng tần II: 1930-1990 MHzBăng tần III: 1805-1880 MHz

Phân cách song công chuẩnBăng tần I: 190 MHzBăng tần II: 80 MHzBăng tần III: 95 MHz

Các thông số máy thu

Độ nhạyBăng tần 1: -117dBmBăng tần II: -115dBmBăng tần III: - 114dBm

Các thông số máy phát

Công suất phát cực đai và độ chính xác

Loại 1: +33dBm +1/-3dBLoại 2: +27dBm +1/-3dBLoại 3: +24dBm +1/-3dBLoại 4: +21dBm 2dB

Điều khiển công suất phát vòng hở

Bình thường: 9dBCực đai: 12dB

3.12. AMR CODEC CHO W-CDMA

Bộ mã hoá tiếng đa tốc độ thích ứng (AMR CODEC: Adaptive Multirate Codec) được coi là công nghệ vượt trội các công nghệ mã hoá tiếng khác. Vì thế nó được chọn là sơ đồ mã hoá tiếng cho 3GW-CDMA UMTS. Nó cung cấp 8 chế độ mã hoá từ 12,2 bps đến 4,75kbps. Trong số các chế độ này, 12,2kbps, 7,4 kbps và 6,7 kbps có chung một giải thuật với các sơ đồ mã hoá tiếng được tiêu chuẩn hoá ở các tiêu chuẩn của các vùng khác trên thế giới. AMC CODEC cho phép lựa chọn tốc độ tùy theo chất lượng kênh truyền sóng. Nếu chất lượng tốt, tốc độ cao nhất (12,2kbps) được chọn. Nếu đường truyền xấu, một trong số các tốc độ thấp hơn được lựa tùy thuộc vào chất lượng đường truyền.

AMR cũng quy định các công nghệ ngoại vi cần thiết cho thông tin di động. Hai tuỳ chọn được cung cấp là giải thuật VAD (phát hiện tích cực tiếng) và DTX (phát

57

Page 58: Kiến Trúc 3g Wcdma Umts r3

không liên tục. Ngoài ra cũng định nghĩa các yêu cầu cho che dấu lỗi khi xẩy ra lỗi. Chẳng hạn nội suy các thông số mã hoá như khuếch đại bảng mã, hệ số dự đoán ngắn hạn cũng được định nghĩa theo sự chuyển đổi trạng thái do lỗi gây ra.

3.13. TỔNG KẾT

Trước hết chương này trình bày ngăn xếp giao thức của giao diện vô tuyến và các kênh logic, kênh truyền tải, kênh vật lý được tạo nên ở giao diện này. Sau đó chương trình bày các thông số lớp vật lý và quy hoạch tần số của WCDMA. Tại Việt- Nam băng I được chia làm bốn khe và được phân cho 4 nhà khai thác. Ngăn xếp giao thức được chia thành hai loại: một trong mặt phẳng C-Plane để truyền báo hiệu và một trong mặt phẳng U-Plane để truyền lưu lượng. Tiếp theo cấu trúc của các kênh này được trình bày cụ thể. Các kênh được chia thành hai loại: kênh điều khiển, báo hiệu và kênh để truyền lưu lượng. WCDMA là giai đoạn phát triển đầu của 3G WCDMA UMTS vì thế việc thiết kế các kênh để truyền lưu lượng vẫn tập trung lên dịch vụ chuyển mạch kênh với kênh được sử dụng cho dịch vụ này là DPCH. Tuy nhiên các kênh dung có chuyển mạch gói cũng đã bắt đầu được chú trọng. DSCH (Kênh chia sẻ đường xuống), RACH, FACH và CPCH được sử dụng cho mục đích này. Các kênh RACH, FACH và CPCH được sử dụng để truyền nhanh các gói nhỏ, còn kênh DSCH được sử cùng với kênh DPCH trong thời điểm gói lớn hơn khả năng truyền của kênh DPCH. Đường xuống sử dụng sơ đồ điều chế QPSK kết hợp với mã hóa kênh kiểm soát lỗi. Mã hóa kiểm soát lỗi được thực hiện ở hai lớp: (1) mã hóa phát hiện lỗi CRC, (2) mã hóa sửa lỗi. Các mã sửa lỗi có thể là mã xoắn hoặc mã turbo. WCDMA sử dụng phương pháp trải phổ chuỗi trực tiếp với tốc độ chip Rc=3,84Mcps. Trải phổ được thực hiện tại hai thao tác với hai mã: mã định kênh và mã nhận dạng nguồn phát. Khác với GSM, 3G WCDMA sử dụng cả phân tập phát lẫn phân tập thu tại nút B. Các sơ đồ này có thể nằm trong chế độ vòng hở hoặc vòng kín. Để đảm bảo tỷ số tín hiệu trên nhiễu yêu cầu, hai sơ đồ điều khiển công suất được sử dụng cho WCDMA: điều khiển công suất vòng hở và vòng kín. Điều khiển công suất vòng hở được áp dụng khi khi UE bắt đầu truy nhập mạng. Điều khiển vòng kín được sử dụng khi UE đã kết nối với nút B. Điều khiển công suất vòng kín bao gồm điều khiển công suất vòng trong nhanh với tốc độ 1500 lần trong một giây và điều khiển công suất vòng ngoài chậm với tốc độ 10-100 lần trong một giây. WCDMA có thể sử dụng chuyển giao cứng hoặc mềm. Chuyển giao mềm chỉ được thực hiện trên cùng một tần số và trong cùng một hệ thống Cuối chương một số thông số và thông tin quan trọng liên quan đến máy thu và máy phát vô tuyến của UE cũng như CODEC thoại cho WCDMA cũng được trình bày.

58

Page 59: Kiến Trúc 3g Wcdma Umts r3

Chương 4TRUY NHẬP GÓI TỐC ĐỘ CAO (HSPA)

4.1. GIỚI THIỆU CHUNG

4.1.1. Mục đích chương

Hiểu kiến trúc ngăn xếp giao thức giao diện vô tuyến HSDPA Hiểu được các sơ đồ lập biểu (Scheduler) và HARQ áp dụng cho HSPA Hiểu được kiến trúc HSDPA và các kênh của nó Hiểu được kiến trúc HSUPA và các kênh của nó Hiểu được chuyển giao trong HSDPA

4.1.2. Các chủ đề được trình bầy trong chương Tổng quan HSPA Kiến trúc giao diện vô tuyến của HSPA HSDPA HSUPA Chuyển giao HSDPA

4.1.3. Hướng dẫn Học kỹ các tư liệu được trình bầy trong chương Tham khảo các tài liệu tham khảo nếu cần

4.2. TỔNG QUAN TRUY NHẬP GÓI TỐC ĐỘ CAO (HSPA)

4.2.1. Mở đầu

Truy nhập gói tốc độ cao đường xuống (HSDPA: High Speed Down Link Packet Access) được 3GPP chuẩn hóa ra trong R5 với phiên bản tiêu chuẩn đầu tiên vào năm 2002. Truy nhập gói đường lên tốc độ cao (HSUPA) được 3GPP chuẩn hóa trong R6 và tháng 12 năm 2004. Cả hai HSDPA và HSUPA được gọi chung là HSPA. Các mạng HSDPA đầu tiên được đưa vào thương mại vào năm 2005 và HSUPA được đưa vào thương mại vào năm 2007. Các thông số tốc độ đỉnh của R6 HSPA được cho trong bảng 4.1.

Bảng 4.1. Các thông số tốc độ đỉnh R6 HSPAHSDPA (R6) HSUPA (R6)

Tốc độ đỉnh (Mbps) 14,4 5,7Tốc độ số liệu đỉnh của HSDPA lúc đầu là 1,8Mbps và tăng đến 3,6 Mbps và

7,2Mbps vào năm 2006 và 2007, tiềm năng có thể đạt đến trên 14,4Mbps năm 2008.

59

Page 60: Kiến Trúc 3g Wcdma Umts r3

Trong giai đoạn đầu tốc độ đỉnh HSUPA là 1-2Mbps trong giai đoạn hai tốc độ này có thể đạt đến 4-5,7 Mbps vào năm 2008.

HSPA được triển khai trên WCDMA hoặc trên cùng một sóng mang hoặc sử dụng một sóng mang khác để đạt được dung lượng cao (xem hình 4.1).

Hình 4.1. Triển khai HSPA với sóng mang riêng (f2) hoặc chung sóng mang với WCDMA (f1).

HSPA chia sẻ chung hạ tầng mạng với WCDMA. Để nâng cấp WCDMA lên HSPA chỉ cần bổ sung phần mềm và một vài phần cứng nút B và RNC.

Lúc đầu HSPA được thiết kế cho các dịch vụ tốc độ cao phi thời gian thực, tuy nhiên R6 và R7 cải thiện hiệu suất của HSPA cho VoIP và các ứng dụng tương tự khác.

Khác với WCDMA trong đó tốc độ số liệu trên các giao diện như nhau (384 kbps cho tốc độ cực đại chẳng hạn), tốc độ số liệu HSPA trên các giao diện khác nhau. Hình 4.2 minh họa điều này cho HSDPA. Tốc độ đỉnh (14,4Mbps trên 2 ms) tại đầu cuối chỉ xẩy ra trong thời điểm điều kiện kênh truyền tốt vì thế tốc độ trung bình có thể không quá 3Mbps. Để đảm bảo truyền lưu lượng mang tính cụm này, nút cần có bộ đệm để lưu lại lưu lượng và bộ lập biểu để truyền lưu lượng này trên hạ tầng mạng.

Hình 4.2. Tốc độ số liệu khác nhau trên các giao diện (trường hợp HSDPA)

4.3. KIẾN TRÚC NGĂN XẾP GIAO THỨC GIAO DIỆN VÔ TUYẾN HSPA CHO SỐ LIỆU NGƯỜI SỬ DỤNG

Hình 4.3 cho thấy kiến trúc giao diện vô tuyến HSDPA và HSUPA cho số liệu người sử dụng. Mặt phẳng báo hiệu không được thể hiện trên hình 4.3 (trong mặt phẳng này báo hiệu được nối đến RLC sau đó được đưa lên DCH hay HSDPA hoặc HSUPA). Số liệu từ các dịch vụ khác nhau được nén tiêu đề IP tại PDCP (Packet Data Convergence Protocol). MAC-hs (High Speed: tốc độ cao) thực hiện chức năng lập biểu nhanh dựa trên nút B.

60

Page 61: Kiến Trúc 3g Wcdma Umts r3

Đối với HSDPA chức năng MAC mới (MAC-hs) được đặt trong nút B để xử lý phát lại nhanh dựa trên HARQ (Hybrid Automatic Repeat Request: yêu cầu phát lại tự động lai ghép), lập biểu và ưu tiên.

Đối với HSUPA chức năng MAC mới (MAC-e) được đặt trong nút B để xử lý phát lại nhanh dựa trên HARQ, lập biểu và ưu tiên. Tại UE chức năng MAC-e mới được sử dụng để xử lý lập biểu và HARQ dưới sự điều khiển của MAC-e trong nút B. Chức năng MAC mới (MAC-es) được đặt trong RNC để sắp xếp lại thứ tự gói trước khi chuyển lên các lớp trên. Sự sắp xếp lại này là cần thiết, vì của chuyển giao mềm có thể dẫn đến các gói từ các nút B khác nhau đến RNC không theo thứ tự.

MAC-hs: High Speed MAC: MAC tốc độ caoMAC-e: E-DCH MAC: MAC kênh E-DCH, MAC-es: thực thể MAC kênh E-DCH để sắp đặt lại thứ tự

Hình 4.3. Kiến trúc giao diện vô tuyến HSDPA và HSUPA cho số liệu người sử dụng

Hình 4.4 cho thấy các chức năng mới trong các phần tử của WCDMA khi đưa vào HSPA.

61

Page 62: Kiến Trúc 3g Wcdma Umts r3

Hình 4.4. Các chức năng mới trong các phần tử của WCDMA khi đưa vào HSPA.

4.4. TRUY NHẬP GÓI TỐC ĐỘ CAO ĐƯỜNG XUỐNG (HSDPA)

HSDPA được thiết kế để tăng thông lượng số liệu gói đường xuống bằng cách kết hợp các công nghệ lớp vật lý: truyền dẫn kết hợp phát lại nhanh và thích ứng nhanh được truyền theo sự điều khiển của nút B.

4.4.1 Truyền dẫn kênh chia sẻ

Đặc điểm chủ yếu của HSDPA là truyền dẫn kênh chia sẻ. Trong truyền dẫn kênh chia sẻ, một bộ phận của tổng tài nguyên vô tuyến đường xuống khả dụng trong ô (công suất phát và mã định kênh trong WCDMA) được coi là tài nguyên chung được chia sẻ động theo thời gian giữa các người sử dụng. Truyền dẫn kênh chia sẻ được thực hiện thông qua kênh chia sẻ đường xuống tốc độ cao (HS-DSCH: High-Speed Dowlink Shared Channel). HS-DSCH cho phép cấp phát nhanh một bộ phận tài nguyên đường xuống để truyền số liệu cho một người sử dụng đặc thù. Phương pháp này phù hợp cho các ứng dụng số liệu gói thường được truyền theo dạng cụm và vì thể có các yêu cầu về tài nguyên thay đổi nhanh.

Cấu trúc cơ sở thời gian và mã của HS-DSCH được cho trên hình 4.5. Tài nguyên mã cho HS-DSCH bao gồm một tập mã định kênh có hệ số trải phổ 16 (xem phần trên của hình 4.5), trong đó số mã có thể sử dụng để lập cấu hình cho HS-DSCH nằm trong khoảng từ 1 đến 15. Các mã không dành cho HS-DSCH được sử dụng cho

62

Page 63: Kiến Trúc 3g Wcdma Umts r3

mục đích khác, chẳng hạn cho báo hiệu điều khiển, các dịch vụ MBMS hay các dịch vụ chuyển mạch kênh.

Hình 4.5. Cấu trúc thời gian-mã của HS-DSCH

Phần dưới của hình 4.5 mô tả ấn định tài nguyên mã HS-DSCH cho từng người sử dụng trên cở sở TTI=2ms (TTI: Transmit Time Interval: Khoảng thời gian truyền dẫn). HSPDA sử dụng TTI ngắn để giảm trễ và cải thiện quá trình bám theo các thay đổi của kênh cho mục đích điều khiển tốc độ và lập biểu phụ thuộc kênh (sẽ xét trong phần dưới).

Ngoài việc được ấn định một bộ phận của tổng tài nguyên mã khả dụng, một phần tổng công suất khả dụng của ô phải được ấn định cho truyền dẫn HS-DSCH. Lưu ý rằng HS-DSCH không được điều khiển công suất mà được điều khiển tốc độ. Trong trường hợp sử dụng chung tần số với WCDMA, sau khi phục vụ các kênh WCDMA, phần công suất còn lại có thể được sử dụng cho HS-DSCH, điều này cho phép khai thác hiệu quả tổng tài nguyên công suất khả dụng.

4.4.2. Lập biểu phụ thuộc kênh

Lập biểu (Scheduler) điều khiển việc dành kênh chia sẻ cho người sử dụng nào tại một thời điểm cho trước. Bộ lập biểu này là một phần tử then chốt và quyết định rất lớn đến tổng hiệu năng của hệ thống, đặc biệt khi mạng có tải cao. Trong mỗi TTI, Bộ lập biểu quyết định HS-DSCH sẽ được phát đến người (hoặc các người) sử dụng nào kết hợp chặt chẽ với cơ chế điều khiển tốc độ (tại tốc độ số liệu nào).

Dung lượng hệ thống có thể được tăng đáng kể khi có xét đến các điều kiện kênh trong quyết định lập biểu: lập biểu phụ thuộc kênh. Vì trong một ô, các điều kiện của các đường truyền vô tuyến đối với các UE khác nhau thay đổi độc lập, nên tại từng thời điểm luôn luôn tồn tại một đường truyền vô tuyến có chất lượng kênh gần với đỉnh của nó (hình 4.6). Vì thế có thể truyền tốc độ số liệu cao đối với đường truyền vô tuyến này. Giải pháp này cho phép hệ thống đạt được dung lượng cao. Độ lợi nhận được khi truyền dẫn dành cho các người sử dụng có các điều kiện đường truyền vô

63

Page 64: Kiến Trúc 3g Wcdma Umts r3

tuyến thuận lợi thường được gọi là phân tập đa người sử dụng và độ lợi này càng lớn khi thay đổi kênh càng lớn và số người sử dụng trong một ô càng lớn. Vì thế trái với quan điểm truyền thống rằng phađinh nhanh là hiệu ứng không mong muốn và rằng cần chống lại nó, bằng cách lập biểu phụ thuộc kênh phađinh có lợi và cần khai thác nó.

Chiến lược của bộ lập biểu thực tế là khai thác các thay đổi ngắn hạn (do phađinh đa đường) và các thay đổi nhiễu nhanh nhưng vẫn duy trì được tính công bằng dài hạn giữa các người sử dụng. Về nguyên tắc, sự mất công bằng dài hạn càng lớn thì dung lượng càng cao. Vì thế cần cân đối giữa tính công bằng và dung lượng.

Hình 4.6. Lập biểu phụ thuộc kênh cho HSDPA

Ngoài các điều kiện kênh, bộ lập biểu cũng cần xét đến các điều kiện lưu lượng. Chẳng hạn, sẽ vô nghĩa nếu lập biểu cho một người sử dụng không có số liệu đợi truyền dẫn cho dù điều kiện kênh của người sử dụng này tốt. Ngoài ra một số dịch vụ cần được cho mức ưu tiên cao hơn. Chẳng hạn các dịch vụ luồng đòi hỏi được đảm bảo tốc độ số liệu tương đối không đổi dài hạn, trong khi các dịch vụ nền như tải xuống không có yêu cầu gắt gao về tốc độ số liệu không đổi dài hạn.

Nguyên lý lập biểu của HSDPA được cho trên hình 4.7. Nút B đánh giá chất lượng kênh của từng người sử dụng HSDPA tích cực dựa trên thông tin phản hồi nhận được từ đường lên. Sau đó lập biểu và thích ứng đường truyền được tiến hành theo giải thuật lập biểu và sơ đồ ưu tiên người sử dụng.

64

Page 65: Kiến Trúc 3g Wcdma Umts r3

Hình 4.7. Nguyên lý lập biểu HSDPA của nút B

4.4.3. Điều khiển tốc độ và điều chế bậc cao

Điều khiển tốc độ đã được coi là phương tiện thích ứng đường truyền cho các dịch vụ truyền số liệu hiệu quả hơn so với điều khiển công suất thường được sử dụng trong CDMA, đặc biệt là khi nó được sử dụng cùng với lập biểu phụ thuộc kênh.

Đối với HSDPA, điều khiển tốc độ được thực hiện bằng cách điều chỉnh động tỷ lệ mã hóa kênh và chọn lựa động giữa điều chế QPSK và 16QAM. Điều chế bậc cao như 16QAM cho phép đạt được mức độ sử dụng băng thông cao hơn QPSK nhưng đòi hỏi tỷ số tín hiệu trên tạp âm (Eb/N0) cao hơn. Vì thế 16 QAM chủ yếu chỉ hữu ích trong các điều kiện kênh thuận lơi. Nút B lựa chọn tốc độ số liệu độc lập cho từng TTI 2ms và cơ chế điều điều khiển tốc độ có thể bám các thay đổi kênh nhanh.

4.4.3.1. Mã hóa kênh HS-DSCH

Do mã hóa turbo có hiệu năng vượt trội mã hóa xơắn nên HS-DSCH chỉ sử dụng mã hóa turbo. Nguyên lý tổng quát của bộ mã hóa turbo như sau (hình 4.8a). Luồng số đưa vào bộ mã hóa turbo được chia thành ba nhánh, nhánh thứ nhất không được mã hóa và các bit ra của nhánh này được gọi là các bit hệ thống, nhánh thứ hai và thứ ba được mã hóa và các bit ra của chúng được gọi là các bit chẵn lẻ 1 và 2. Như vậy cứ một bit vào thì có ba bit ra, nên bộ mã hóa turbo này có tỷ lệ mã là r=1/3. Tỷ lệ này có thể giảm nếu ta bỏ bớt một số bit chẵn lẻ và quá trình này được gọi là đục lỗ (hình 4.8b).

65

Page 66: Kiến Trúc 3g Wcdma Umts r3

Hình 4.8. Mã hóa turbo và đục lỗ

4.4.3.2. Điều chế HS-DSCH

HS-DSCH có thể sử dụng điều chế QPSK và 16-QAM. Chùm tín hiệu QPSK và 16QAM được cho trên hình 4.9.

Điều chế QPSK chỉ cho phép mỗi ký hiệu điều chế truyền được hai bit, trong khi đó điều chế 16QAM cho phép mỗi ký hiệu điều chế truyền được bốn bit vì thế 16QAM cho phép truyền tốc độ số liệu cao hơn. Tuy nhiên từ hình 4.9 ta thấy khoảng cách giữa hai điểm tín hiệu trong chùm tín hiệu 16QAM lại ngắn hơn khoảng cách này trong chùm tín hiệu QPSK và vì thế khả năng chịu nhiễu và tạp âm của 16QAM kém hơn QPSK.

Hình 4.9. Chùm tín hiệu đièu chế QPSK, 16-QAM và khoảng cách cực tiểu giữa hai điểm tín hiệu

66

Page 67: Kiến Trúc 3g Wcdma Umts r3

4.4.3.3. Truyền dẫn thích ứng trên cơ sở điều chế và mã hóa kênh thích ứng

Truyền dẫn thích ứng là quá trình truyền dẫn trong đó tốc độ số liệu được thay đổi tùy thuộc vào chất lượng đường truyền: tốc độ đường truyền được tăng khi chất lượng đường truyền tốt hơn, ngược lại tốc độ đường truyền bị giảm. Để thay đổi tốc độ truyền phù hợp với chất lượng kênh, hệ thống thực hiện thay đổi sơ đồ điều chế và tỷ lệ mã nên phương pháp này được gọi là điều chế và mã hóa thích ứng (AMC: Adaptive Modulation and Coding). Chẳng hạn khi chất lượng đường truyền tốt hơn, hệ thống có thể tăng tốc độ truyền dẫn số liệu bằng cách chọn sơ đồ điều chế 16QAM và tăng tỷ lệ mã bằng 3/4 bằng cách đục lỗ, trái lại khi chất lượng truyền dẫn tồi hơn hệ thống có thể giảm tốc độ truyền dẫn bằng cách sử dụng sơ đồ điều chế QPSK và không đục lỗ để giảm tỷ lệ bằng 1/3.

4.4.4. HARQ với kết hợp mềm

HARQ với kết hợp mềm cho phép đầu cuối yêu cầu phát lại các khối thu mắc lỗi, đồng thời điều chỉnh mịn tỷ lệ mã hiệu dụng và bù trừ các lỗi gây ra do cơ chế thích ứng đường truyền. Đầu cuối giải mã từng khối truyền tải mã nó nhận được rồi báo cáo về nút B về việc giải mã thành công hay thất bại cứ 5ms một lần sau khi thu được khối này. Cách làm này cho phép phát lại nhanh chóng các khối số liệu thu không thành công và giảm đáng kể trễ liên quan đế phát lại so với phát hành R3.

Nguyên lý xử lý phát lại HSDPA được minh họa trên hình 4.10. Đầu tiên gói được nhận vào bộ nhớ đệm của nút B. Ngay cả khi gói đã được gửi đi nút B vẫn giữ gói này. Nếu UE giải mã thất bại nó lưu gói nhận được vào bộ nhớ đệm và gửi lệnh không công nhận (NAK) đến nút B. Nút B phát lại cả gói hoặc chỉ phần sửa lỗi của gói tùy thuộc vào gải thuâth kết hợp gói tại UE. UE kết hợp gói phát trước với gói được phát lại và giải mã. Trong trường hợp giải mã phía thu thất bại, nút B thực hiện phát lại mà không cần RNC tham gia. Máy di động thực hiện kết hợp các phát lại. Phát theo RNC chỉ thực hiện khi xẩy ra sự cố hoạt động lớp vật lý (lỗi báo hiệu chẳng hạn). Phát lại theo RNC sử dụng chế độ công nhận RLC, phát lại RLC không thường xuyên xẩy ra.

67

Page 68: Kiến Trúc 3g Wcdma Umts r3

Hình 4.10. Nguyên lý xử lý phát lại của nút B

Không như HARQ truyền thống, trong kết hợp mềm, đầu cuối không loại bỏ thông tin mềm trong trường hợp nó không thể giải mã được khối truyền tải mà kết hợp thông tin mềm từ các lần phát trước đó với phát lại hiện thời để tăng xác suất giải mã thành công. Tăng phần dư (IR) được sử dụng làm cơ sở cho kết hợp mềm trong HSDPA, nghĩa là các lần phát lại có thể chứa các bit chẵn lẻ không có trong các lần phát trước. IR có thể cung cấp độ lợi đáng kể khi tỷ lệ mã đối với lần phát đầu cao vì các bit chẵn lẻ bổ sung làm giảm tổng tỷ lệ mã. Vì thế IR chủ yếu hữu ích trong tình trạng giới hạn băng thông khi đầu cuối ở gần trạm gốc và số lượng các mã định kênh chứ không phải công suất hạn chế tốc độ số liệu khả dụng. Nút B điều khiển tập các bit được mã hóa sẽ sử dụng để phát lại có xét đến dung lượng nhớ khả dụng của UE.

Các hình 4.11 cho thấy thí dụ về sử dụng HARQ sử dụng mã turbo cơ sở tỷ lệ mã r=1/3 cho kết hợp phần dư tăng. Trong lần phát đầu gói bao gồm tất cả các bit thông tin cùng với một số bit chẵn lẻ được phát. Đến lần phát lại chỉ các bit chẵn lẻ khác với các bit chẵn lẻ được phát trong gói trước là được phát. Kết hợp gói phát trước và gói phát sau cho ra một gói có nhiều bit dư để sửa lỗi hơn và vì thế đây là sơ đồ kết hợp phần dư tăng.

68

Page 69: Kiến Trúc 3g Wcdma Umts r3

Hình 4.11. HARQ kết hợp phần dư tăng sử dụng mã turbo

4.4.4. Kiến trúc

Từ các phần trên ta thấy rằng các kỹ thuật HSDPA dựa trên thích ứng nhanh đối với các thay đổi nhanh trong các điều kiện kênh. Vì thế các kỹ thuật này phải được đặt gần với giao diện vô tuyến tại phía mạng, nghĩa là tại nút B. Ngoài ra một mục tiêu quan trọng của HSDPA là duy trì tối đa sự phân chia chức năng giữa các lớp và các nút của R3. Cần giảm thiểu sự thay đổi kiến trúc, vì điều này sẽ đơn giản hóa việc đưa HSDPA vào các mạng đã triển khai cũng như đảm bảo hoạt động trong các môi trường mà ở đó không phải tất cả các ô đều được nâng cấp bằng chức năng HSDPA. Vì thế HSDPA đưa vào nút B một lớp con MAC mới, MA-hs, chịu trách nhiệm cho lập biểu, điều khiển tốc độ và khai thác giao thức HARQ. Do vậy ngoại trừ các tăng cường cho RNC như điều khiển cho phép HSDPA đối với các người sử dụng, HSDPA chủ yếu tác động lên nút B (hình 4.12).

69

Page 70: Kiến Trúc 3g Wcdma Umts r3

Hình 4.12. Kiến trúc HSDPAMỗi UE sử dụng HSDPA sẽ thu truyền dẫn HS-DSCH từ một ô (ô phục vụ). Ô

phục vụ chịu trách nhiệm lập biểu, điều khiển tốc độ, HARQ và các chức năng MAC-hs khác cho HSDPA. Chuyển giao mềm đường lên được hỗ trợ trong đó truyền dẫn số liệu đường lên sẽ thu được từ nhiều ô và UE sẽ nhận được các lệnh điều khiển công suất từ nhiều ô.

Di động từ một ô hỗ trợ HSDPA đến một ô không hỗ trợ HSDPA được xử lý dễ ràng. Có thể đảm bảo dịch vụ không bị gián đoạn cho người sử dụng (mặc dù tại tốc độ số liệu thấp hơn) bằng chuyển mạch kênh trong RNC trong đó người sử dụng được chuyển mạch đến kênh dành riêng (DCH) trong ô không có HSDPA. Tương tự, một người sử dụng được trang bị đầu cuối có HSDPA có thể chuyển mạch từ kênh riêng sang HSDPA khi người này chuyển vào ô có hỗ trợ HSDPA.

Cấu trúc kênh tổng thể của HSDPA kết hợp WCDMA được cho trên hình 4.13.

Hình 4.13. Cấu trúc kênh HSDPA kết hợp WCDMADưới đây ta tổng kết chức năng của các kênh trong HSDPA:

1. HS-DSCH (High Speed- Downlink Shared Channel) là kênh truyền tải được sắp xếp lên nhiều kênh vật lý HS-PDSCH để truyền tải lưu lượng gói chia sẻ cho nhiều người sử dụng, trong đó mỗi HS-PDSCH có hệ số trải phổ không đổi và bằng 16. Cấu hình cực đại của HS-DSCH là 15SF16 (tương ứng với tốc độ đỉnh khi điều chế

70

Page 71: Kiến Trúc 3g Wcdma Umts r3

16QAM và tỷ lệ mã 1/1 là 14,4Mbps). Các người sử dụng chia sẻ HS-DSCH theo số kênh vật lý HS-PDSCH (số mã với SF=16) và khoảng thời gian truyền dẫn TTI=2ms.

2. HS-SCCH (High Speed-Shared Control Channel) sử dụng hệ số trải phổ 128 và có cấu trúc thời gian dựa trên một khung con có độ dài 2ms bằng độ dài của HS-DSCH. Các thông tin sau đây được mang trên HS-SCCH: Số mã định kênh Sơ đồ điều chế Kích thước khối truyền tải Gói được phát là gói mới hay phát lại (HARQ) hoặc HARQ theo RNC RLC Phiên bản dư Phiên bản chùm tín hiệuKhi HSDPA hoạt động trong chế độ ghép theo thời gian, chỉ cần lập cấu hình một HS-SCCH, nhưng kho HSDPA hoạt động trong chế độ ghép theo mã thì cần có nhiều HS-SCCH hơn. Một UE có thể xem xét được nhiều nhất là 4 HS-SCCH tùy vào cấu hình được lập bởi hệ thống.

3. HS-DPCCH (High Speed- Dedicated Physical Control Channel) đường lên có hệ số trải phổ 256 và cấu trúc từ 3 khe 2ms chứa các thông tin sau đây: Thông tin phản hồi (CQI: Channel Quality Indicator: chỉ thị chất lượng kênh)

để báo cho bộ lập biểu nút B về tôc độ số liệu mà UE mong muốn ACK/NAK (công nhận và phủ nhận) cho HARQ

4. DPCCH (Dedicated Physical Control Channel) đi cùng với HS-DPCCH đường lên chứa các thông tin giống như ở R3.

5. F-DPCH (Fractional- Dedicated Physical Channel) đường xuống có hệ số trải phổ 256 chứa thông tin điều khiển công suất cho 10 người sử dụng để tiết kiệm tài nguyên mã trong truyền dẫn gói

4.4.5. HSDPA MIMO

MIMO là một trong tính năng mới được đưa vào R7 để tăng các tốc độ số liệu đỉnh thông qua truyền dẫn luồng. Nói một cách chặt chẽ, MIMO (Multiple Input Multiple Output) là một cách thể hiện tổng quát sự sử dụng nhiều anten ở cả phía phát và phía thu. Nhiều anten có thể được sử dụng để tăng độ lợi phân tập và vì thế tăng tỷ số sóng mang trên nhiễu tại máy thu. Tuy nhiên thuật ngữ này thường được sử dụng để biểu thị truyền dẫn nhiều lớp hay nhiều luồng như là một phương tiện để tăng tốc độ số liệu đến mức cực đại có thể trong một kênh cho trước. Vì thế MIMO hay ghép kênh không gian có thể nhìn nhận như là một công cụ để cải thiện thông lượng của người sử dụng đầu cuối giống như một ‘bộ khuếch đại tốc độ số liệu’. Về bản chất, cải thiện thông lượng của người sử dụng đầu cuối ở một mức độ nhất định sẽ dẫn đến tăng thông lượng hệ thống.

Các sơ đồ MIMO được thiết kế để khai thác một số thuộc tính của môi trường truyền sóng vô tuyến nhằm đạt được các tốc độ số liệu cao bằng cách phát đi nhiều luồng số liệu song song. Tuy nhiên để đạt được các tốc độ số liệu cao như vậy, cần đảm bảo tỷ số tín hiệu trên nhiễu cao tương ứng tại máy thu. Vì thế ghép kênh không gian chủ yếu được áp dụng cho các ô nhỏ hơn hay vùng gần với nút B, nơi mà thông

71

Page 72: Kiến Trúc 3g Wcdma Umts r3

thường tỷ số tín hiệu trên nhiễu cao. Trong trường hợp không thể đảm bảo tỷ số tín hiệu trên nhiễu đủ cao, nhiều anten thu mà UE có năng lực MIMO được trang bị có thể được sử dụng cho phân tập thu cho một luồng phát đơn. Vì thế một UE có năng lực MIMO sẽ đảm bảo tốc độ số liệu cao hơn tại biên ô trong các ô lớn so với một UE tương ứng chỉ có một anten.

HSDPA MIMO hỗ trợ truyền dẫn hai luồng. Mỗi luồng được xử lý lớp vật lý như nhau (mã hóa, trải phổ và điều chế giống như trường hợp HSDPA một lớp). Sau mã hóa, trải phổ và điều chế, tiền mã hóa tuyến tính dựa trên các trọng số phản hồi từ UE được sử dụng trước khi luồng số được sắp xếp lên hai anten (hình 4.14).

Hình 4.14. Sơ đồ MIMO 2x2

Sơ đồ trên cũng có thể hoạt động trong chế độ truyền dẫn một luồng. Trong trường hợp này chỉ có một luồng số liệu là được mã hóa và được truyền đồng thời trên cả hai anten giống như trường hợp phân tập phát vòng kín của WCDMA. Sơ đồ MIMO với hai chế độ này được gọi là D-TxAA (Dual Transmit Adaptive Array: dàn thích ứng phát kép). Trong môi trường di động thực tế chế độ hai luồng được sử dụng khi UE gần trạm gốc (đường truyền có chất lượng tốt) và một luồng được sử dụng khi UE xa trạm gốc (đường truyền có chất lượng xấu).

Việc đưa vào MIMO sẽ ảnh hưởng chủ yếu lên quá trình xử lý lớp vật lý; ảnh hưởng lên lớp giao thức là nhỏ và các lớp trên chủ yếu nhìn MIMO như là một tốc độ số liệu cao hơn.4.4.6. Tăng tốc độ đỉnh bằng việc sử dụng MIMO và điều chế bậc cao 16QAM/64QAM

Bảng 4.2 cho thấy quá trình tăng tốc độ đỉnh HSDPA bằng việc sử dụng MIMO kết hợp với điều chế bậc cao 16QAM/64QAM đối với các loại đầu cuối UE khác nhau.

Bảng 4.2. Các loại đầu cuối HSDPA khác nhauThể loại Số mã Điều chê MIMO Tỷ lệ mã

hóaTốc độ bit đỉnh (Mbps)

Phát hành của 3GPP

12 5 QPSK - 3/4 1,8 R55/6 5 16QAM - 3/4 3,6 R57/8 10 16QAM - 3/4 7,2 R5

72

Page 73: Kiến Trúc 3g Wcdma Umts r3

9 15 16QAM - 3/4 10,1 R510 15 16QAM - Gần 1/1 14,0 R513 15 64QAM - 5/6 17,4 R714 15 64QAM - Gần 1/1 21,1 R715 15 16QAM 2x2 5/6 23,4 R716 15 16QAM 2x2 Gần 1/1 28 R7 4.5. TRUY NHẬP GÓI TỐC ĐỘ CAO ĐƯỜNG LÊN (HSUPA)

Cốt lõi của HSUPA cũng sử dụng hai công nghệ cơ sở như HSDPA: lập biểu nhanh và HARQ nhanh với kết hợp mềm. Cũng giống như HSDPA, HSUPA sử dụng khoảng thời gian ngắn 2ms cho TTI đường lên. Các tăng cường này được thực hiện trong WCDMA thông qua một kênh truyền tải mới, E-DCH (Enhanced Dedicated Channel: kênh riêng tăng cường).

Mặc dù sử dụng các công nghệ giống HSDPA, HSUPA cũng có một số khác biệt căn bản so với HSDPA và các khác biệt này ảnh hưởng lên việc thực hiện chi tiết các tính năng:

Trên đường xuống, các tài nguyên chia sẻ là công suất và mã đều được đặt trong một nút trung tâm (nút B). Trên đường lên, tài nguyên chia sẻ là đại lượng nhiễu đường lên cho phép, đại lượng này phụ thuộc vào công suất của nhiều nút nằm phân tán (các nút UE)

Trên đường xuống bộ lập biểu và các bộ đệm phát được đặt trong cùng một nút, còn trên đường lên bộ lập biểu được đặt trong nút B trong khi đó các bộ đệm số liệu được phân tán trong các UE. Vì thế các UE phải thông báo thông tin về tình trạng bộ đệm cho bộ lập biểu

Đường lên WCDMA và HSUPA không trực giao và vì thế xẩy ra nhiễu giữa các truyền dẫn trong cùng một ô. Trái lại trên đường xuống các kênh được phát trực giao. Vì thế điều khiển công suất quan trọng đối với đường lên để xử lý vấn đề gần xa. E-DCH được phát với khoảng dịch công suất tương đối so với kênh điều khiển đường lên được điều khiển công suất và bằng cách điều chỉnh dịch công suất cho phép cực đại, bộ lập biểu có thể điều khiển tốc độ số liệu E-DCH. Trái lại đối với HSDPA, công suất phát không đổi (ở mức độ nhất định) cùng với sử dụng thích ứng tốc độ số liệu.

Chuyển giao được E-DCH hỗ trợ. Việc thu số liệu từ đầu cuối tại nhiều ô là có lợi vì nó đảm bảo tính phân tập, trong khi đó phát số liệu từ nhiều ô trong HSDPA là phức tạp và chưa chắc có lợi lắm. Chuyển giao mềm còn có nghĩa là điều khiển công suất bởi nhiều ô để giảm nhiễu gây ra trong các ô lân cận và duy trì tương tích ngược với UE không sử dụng E-DCH

Trên đường xuống, điều chế bậc cao hơn (có xét đến hiệu quả công suất đối với hiệu quả băng thông) được sử dụng để cung cấp các tốc độ số liệu cao trong một số trường hợp, chẳng hạn khi bộ lập biểu ấn định số lượng mã định kênh ít cho truyền dẫn nhưng đại lượng công suất truyền dẫn khả dụng lại khá cao. Đối với đường lên tình hình lại khác; không cần thiết phải chia sẻ các mã

73

Page 74: Kiến Trúc 3g Wcdma Umts r3

định kênh đối với các người sử dụng khác và vì thể thông thường tỷ lệ mã hóa kênh thấp hơn đối với đường lên. Như vậy khác với đường lên điều chế bậc cao ít hữu ích hơn trên đường lên trong các ô vĩ mô và vì thế không được xem xét trong phát hành đầu của HSUPA.

4.5.1. Lập biểu

Đối với HSUPA, bộ lập biểu là phần tử then chốt để điều khiển khi nào và tại tốc độ số liệu nào một UE được phép phát. Đầu cuối sử dụng tốc độ càng cao, thì công suất thu từ đầu cuối tại nút B cũng phải càng cao để đảm bảo tỷ số E b/N0 (Eb=Pr/Rb, Pr

là công suất thu tại nút B còn Rb là tốc độ bit được phát đi từ UE) cần thiết cho giải điều chế. Bằng cách tăng công suất phát, UE có thể phát tốc độ số liệu cao hơn. Tuy nhiên do đường lên không trực giao, nên công suất thu từ một UE sẽ gây nhiễu đối với các đầu cuối khác. Vì thế tài nguyên chia sẻ đối với HSUPA là đại lượng công suất nhiễu cho phép trong ô. Nếu nhiễu quá cao, một số truyền dẫn trong ô, các kênh điều khiển và các truyền dẫn đường lên không được lập biểu có thể bị thu sai. Trái lại mức nhiễu quá thấp cho thấy rằng các UE đã bị điều chỉnh thái quá và không khai thác hết toàn bộ dung lượng hệ thống. Vì thế HSUPA sử dụng bộ lập biểu để cho phép các người sử dụng có số liệu cần phát được phép sử dụng tốc độ số liệu cao đến mức có thể nhưng vẫn đảm bảo không vượt quá mức nhiễu cực đại cho phép trong ô.

Nguyên lý lập biểu HSUPA được cho trên hình 4.15.

Hình 4.15. Nguyên lý lập biểu HSUPA của nút B

Khác với HSDPA, bộ lập biểu và các bộ đệm phát đều được đặt tại nút B, số liệu cần phát được đặt tại các UE đối với đường lên. Tại cùng một thời điểm bộ lập biểu đặt tại nút B điều phối các tích cực phát của các UE trong ô. Vì thế cần có một cơ chế để thông báo các quyết định lập biểu cho các UE và cung cấp thông tin về bộ đệm từ các UE đến bộ lập biểu. Chương trình khung HSUPA sử dụng các cho phép lập biểu phát đi từ bộ lập biểu của nút B để điều khiển tích cực phát của UE và các yêu cầu lập biểu phát đi từ UE để yêu cầu tài nguyên. Các cho phép lập biểu điều khiển tỷ số công suất giữa E-DCH và hoa tiêu được phép mà đầu cuối có thể sử dụng; cho phép lớn hơn có nghĩa là đầu cuối có thể sử dụng tốc độ số liệu cao hơn nhưng cũng gây nhiễu nhiều

74

Page 75: Kiến Trúc 3g Wcdma Umts r3

hơn trong ô. Dựa trên các kết quả đo đạc mức nhiễu tức thời, bộ lập biểu điều khiển cho phép lập biểu trong từng đầu cuối để duy trì mức nhiễu trong ô tại mức quy định (hình 4.16).

Trong HSDPA, thông thường một người sử dụng được xử lý trong một TTI. Đối với HSUPA, trong hầu hết các trường hợp chiến lược lập biểu đường lên đặc thù thực hiên lập biểu đồng thời cho nhiều người sử dụng. Lý do vì một đầu cuối có công suất nhỏ hơn nhiều so với công suất nút B: một đầu cuối không thể sử dụng toàn bộ dung lượng ô một mình.

Hình 4.16. Chương trình khung lập biểu của HSUPA

Nhiễu giữa các ô cũng cần được điều khiển. Thậm chí nếu bộ lập biểu đã cho phép một UE phát tại tốc độ số liệu cao trên cơ sở mức nhiễu nội ô chấp thuận được, nhưng vẫn có thể gây nhiễu không chấp nhận được đối với các ô lân cận. Vì thế trong chuyển giao mềm, ô phục vụ chịu trách nhiệm chính cho họat động lập biểu, nhưng UE giám sát thông tin lập biểu từ tất cả các ô mà UE nằm trong chuyển giao mềm. Các ô không phục vụ yêu cầu tất cả các người sử dụng mà nó không phục vụ hạ tốc độ số liệu E-DCH bằng cách phát đi chỉ thị quá tải trên đường xuống. Cơ chế này đảm bảo hoạt động ổn định cho mạng.

Lập biểu nhanh cung cấp một chiến lược cho phép kết nối mềm dẻo hơn. Vì cơ chế lập biểu cho phép xử lý tình trạng trong đó nhiều người sử dụng cần phát đồng thời, nên số người sử dụng số liệu gói tốc độ cao mang tính cụm được cho phép lớn hơn. Nếu điều này gây ra mức nhiễu cao không thể chấp nhận được trong hệ thống, thì bộ lập biểu có thể phản ứng nhanh chóng để hạn chế các tốc độ số liệu mà các UE có thể sử dụng. Không có lập biểu nhanh, điều khiển cho phép có thể chậm trễ hơn và phải dành một dự trữ nhiễu trong hệ thống trong trường hợp nhiều người sử dụng hoạt động đồng thời.

4.5.2. HARQ với kết hợp mềm

HARQ nhanh với kết hợp mềm được HSUPA sử dụng với mục đích cơ bản giống như HSDPA: để đảm bảo tính bền vững chống lại các sai lỗi truyền dẫn ngẫu nhiên. Sơ đồ được sử dụng giống như đối với HSDPA. Đối với từng khối truyền tải được phát trên đường lên, một bit được phát từ nút B đến UE để thông báo giải mã thành công (ACK) hay yêu cầu phát lại khối truyền tải thu bị mắc lỗi (NAK).

75

Page 76: Kiến Trúc 3g Wcdma Umts r3

Điểm khác biệt chính so với HSDPA bắt nguồn từ việc sử dụng chuyển giao mềm trên đường lên. Khi UE nằm trong chuyển giao mềm, nghĩa là giao thức HARQ kết cuối tại nhiều ô. Vì thế trong nhiều trường hợp số liệu truyền dẫn có thể được thu thành công tại một số nút B nhưng lại thất bại tại các nút B khác. Nhìn từ phía UE, điều này là đủ, vì ít nhất một nút B thu thành công số liệu. Vì thế trong chuyển giao mềm tất cả các nút B liên quan đều giải mã số liệu và phát ACK hoặc NAK. Nếu UE nhận được ACK ít nhất từ một nút B, UE coi rằng số liệu đã được thu thành công.

HARQ với kết hợp mềm có thể được khai thác không chỉ để đàm bảo tính bền vững chống lại nhiễu không dự báo được mà còn cải thiện hiệu suất đường truyền để tăng dung lượng và (hoặc) vùng phủ. Các bit được mã hóa bổ sung chỉ được phát khi cần thiết. Vì thế tỷ lệ mã sau các lần phát lại được xác định theo tỷ lệ mã cần thiết cho điều kiện kênh tức thời. Đây cũng chính là mục tiêu mà thích ứng tốc độ cố gắng đạt được, điểm khác chính là thích ứng tốc độ cố gắng tìm ra tỷ lệ mã phù hợp trứơc khi phát.

4.5.3. Kiến trúc

Để hoạt động hiệu quả, bộ lập biểu phải có khả năng khai thác các thay đổi nhanh theo mức nhiễu và các điều kiện đường truyền. HARQ với kết hợp mềm cũng cho lợi từ các phát lại nhanh và điều này giảm chi phí cho các phát lại. Vì thế hai chức năng này phải được đặt gần giao diện vô tuyến. Vì thế cũng giống như HSDPA, các chức năng lập biểu và HARQ của HSUPA được đặt tại nút B. Ngoài ra cũng giống như đối với HSDPA, cũng cần đảm bảo giữ nguyên các lớp cao hơn lớp MAC. Vì thế mật mã, điều khiển cho phép … vẫn đặt dưới quyền điều khiển của RNC. Điều này cho phép đưa HSUPA êm ả vào các vùng được chọn lựa; trong các ô không hỗ trợ truyền dẫn E-DCH, có thể sử dụng chuyển mạch kênh để sắp xếp luồng số của người sử dụng lên DCH.

Giống như triết lý thiết kế HSDPA, một thực thể MAC mới (MAC-e) được đưa vào UE và nút B. Trong nút B, MAC-e chịu trách nhiệm truyền tải các phát lại HARQ và lập biểu, còn trong UE, chiu trách nhiệm chọn lựa tốc độ số liệu trong các giới hạn do bộ lập biểu trong MAC-e của nút B đặt ra.

Khi UE nằm trong chuyển giao mềm với nhiều nút B, các khối truyền tải khác nhau có thể được giải mã đúng tại các nút B khác nhau. Kết quả là một khối truyền tải có thể được thu đúng tại một nút B, trong khi đó một nút B khác vẫn tham gia và các phát lại của một khối truyền tải được phát sớm hơn. Vì thế để đảm bảo chuyển các khối truyền tải đúng trình tự đến giao thức RLC, cần có chức năng sắp xếp lại thứ tự trong RNC ở dạng một thực thể mới: MAC-es. Trong chuyển giao mềm, nhiều thực thể MAC-e được sử dụng cho một UE vì số liệu được thu từ nhiều ô. Tuy nhiên MAC-e trong ô phục vụ chịu trách nhiệm chính cho lập biểu; MAC-e trong ô không phục vụ chủ yếu xử lý giao thức HARQ (hình 4.17).

76

Page 77: Kiến Trúc 3g Wcdma Umts r3

Hình 4.17. Kiến trúc mạng được lập cấu hình E-DCH (và HS-DSCH).

Hình 4.18. cho thấy các kênh cần thiết cho HSUPA. E-DCH được sắp xếp lên một tập các mã định kênh đường lên được gọi là các kênh số liệu vật lý riêng của E-DCH (E-DPDCH). Phụ thuộc vào tốc độ số liệu tức thời, số các E-DPDCH và các hệ số trải phổ có thể thay đổi. Ngoài kênh số liệu E-DCH còn có các kênh báo hiệu cho nó như sau. Các kênh E-AGCH (E-DCH Absolute Grant Channel: kênh cho phép tuyệt đối của E-DCH) và E-RGCH (E-DCH Relative Grant Channel: kênh cho phép tương đối của E-DCH) là các kênh hỗ trợ cho điều khiển lập biểu. Kênh E-HICH (E-DCH HARQ Indicator Channel: kênh chỉ thị HARQ của E-DCH) là kênh hỗ trợ cho phát lại sử dụng cơ chế HARQ.

Hình 4.18. Các kênh cần thiết cho một UE có khả năng HSUPA

Không như HSDPA, HSUPA không hỗ trợ điều chế thích ứng vì nó không hỗ trợ các sơ đồ điều chế bậc cao. Lý do là các sơ đồ điều chế bậc cao phức tạp hơn và đòi hỏi phát nhiều năng lượng trên một bit hơn, vì thể để đơn giản đường lên sử dụng sơ đồ điều chế BPSK kết hợp với truyền dẫn nhiều mã định kênh song song.

Tổng kết các kênh đường lên cần thiết cho hoạt động của E-DCH được minh họa trên hình 4.19 cùng với các kênh sử dụng cho HSDPA.

77

Page 78: Kiến Trúc 3g Wcdma Umts r3

Các kênh mới được đưa vào cho HSUPA được thể hiện bằng các đường đứt nétHình 4.19. Cấu trúc kênh tổng thể với HSDPA và HSUPA.

Vì đường lên không trực giao theo thiết kế, nên cần thiết điều khiển công suất nhanh để xử lý vấn đề gần xa. E-DCH không khác với mọi kênh đường lên khác và vì thế công suất được điều khiển theo cách giống như các kênh đường lên khác. Nút B đo tỷ số tín hiệu trên nhiễu và phát đi các lệnh điều khiển công suất trên đường xuống đến UE để điều chỉnh công suất phát của UE. Các lệnh điều khiển công suất có thể được phát bằng cách sử dụng DPCH hay để tiết kiệm các mã định kênh bằng F-DPCH.

Dưới đây ta tổng kết các kênh của HSUPA:1. E-DPCH bao gồm hai kênh truyền đồng thời: E-DPDCH và DPCCH. EDPDCH có

hệ số trải phổ khả biến từ 2 đến 256 với cấu hình cực đại 2xSF2+2SF4 (tốc độ số liệu đỉnh bằng 5,76 Mbps với tỷ lệ mã hóa 1/1). Khoảng thời gian truyền dẫn (TTI) của E-DPDCH có thể là 2ms (tốc độ số liệu lớn hơn 2Mbps) hoặc 10ms (tốc độ số liệu bằng hoặc dưới 2Mbps). DPCCH truyền đồng thời với E-DPDCH chứa các thông tin hoa tiêu và điều khiển công suất (TPC).

2. E-DPCCH là kênh vật lý mới đường lên tồn tại song song với E-DPDCH để truyền thông tin ngoài băng liên quan đến truyền dẫn E-DPDCH. E-DPCCH có hệ số trải phổ 256 chứa các thông tin sau: E-TFCI (Enhanced-Transport Format Combination Indicator: chỉ thị kết hợp

khuôn dạng truyền tải) để thông báo cho máy thu nút B về kích thước khối truyền tải được mang trên các E-DPDCH. Từ thông tin này máy thu rút ra số kênh E-DPDCH và hệ số trải phổ được sử dụng

Số thứ tự phát lại (RSN: Retransmission Sequence Number) để thông báo về số thứ tự của khối truyền tải hiện thời được phát trong chuỗi HARQ.

Bit hạnh phúc để thông báo rằng UE có hài lòng với tốc độ hiện thời (công suất tương đối ấn định cho nó) hay không và nó có thể sử dụng được ấn định công suất cao hơn hay không.

3. HICH (HARQ Indicator Channel: kênh chỉ thị HARQ) là kênh vật lý đường xuống để truyền ACK hoặc NAK cho HARQ.

4. E-RGCH (E-DCH Relative Grant Channel: kênh cho phép tương đối E-DCH) là kênh vật lý đường xuống mới để phát lệnh tăng/giảm một nấc công suất của lập biểu (thường chỉ 1dB) so với giá trị tuyệt đối được ấn định bởi kênh E-AGCH. E-RGCH được sử dụng cho các điều chỉnh nhỏ trong khi đang xẩy ra truyền số liệu. 20E-RGCH được ghép chung với 20HICH trên cơ sở 40 chữ ký vào một DPDCH có mã định kênh với hệ số trải phổ 128

78

Page 79: Kiến Trúc 3g Wcdma Umts r3

5. E-AGCH (E-DCH Absolute Grant Channel: kênh cho phép tuyệt đối) là kênh vật lý đường xuống mới có mã định kênh với hệ số trải phổ 128 để chỉ thị mức công suất chính xác của E-DPDCH so với DPCCH. E-AGCH chứa: Giá trị cho phép tuyệt đối chỉ thị tỷ số công suất E-DPDCH/DPCCH mà UE có

thể sử dụng Phạm vi cho phép tuyệt đối để cho phép hoặc cấm UE phát theo HARQ Số nhận dạng UE sơ/thứ cấp cho phép UE xác định kênh E-AGCH này có dành

cho nó hay không

4.5.4. Các loại đầu cuối HSUPA

Có sáu loại đầu cuối HSUPA trong R6 với tốc độ đỉnh từ 0,72Mbps đến 5.76Mbps. Bảng liệt kê các khả năng của các loại đầu cuối HSUPA trong R6.

Bảng 4.3. Các loại đầu cuối R6 HSUPAThể loại

Số mã cực đại sử dụng đồng thơi cho E-DPCH

TTI được hỗ trợ

Hệ số trải phổ E-DPCH thấp nhất

Tốc độ số liệu đỉnh lớp 1 với TTI=10ms

Tốc độ số liệu đỉnh lớp 1 với TTI=2ms

1 1 10 4 0,72 N/A*2 2 2,10 4 1,45 1,453 2 10 4 1,45 N/A4 2 2, 10 2 2 2,915 2 10 2 2 N/A6 4 (2SF4+2SF2) 2,10 2 2 5,76* N/A: không áp dụng

Như vậy R6 có thể có ba loại thiết bị: Thiết bị chỉ cho DCH Thiết bị có khả năng cả DCH và HSDPA Thiết bị có khả năng cả DCH, HSDPA và HSUPA

4.6. CHUYỂN GIAO TRONG HSDPA

Trong HSDPA chỉ có chuyển giao cứng. Tồn tại các kiểu chuyển giao sau đây trong HSDPA:

Chuyển giao trong cùng một RNC Chuyển giao giữa các RNC Chuyển giao từ kênh HS-DSCH sang DCH

Để thực hiện chuyển giao UE phải báo cho SRNC về ô tốt nhất. Trông phần dưới đây ta sẽ xét quá trình xác định ô tốt nhất.

79

Page 80: Kiến Trúc 3g Wcdma Umts r3

4.6.1. Xác định ô tốt nhất và chuyển giao

Quá trình xác định ô (đoạn ô) tốt nhất và chuyển giao được mô tả trên hình 4.20.

Hình 4.20. Sự kiện đo và báo cáo ô (đoạn ô) phục vụ HS-DSCH tốt nhất

Dựa trên kết quả đo Ec/I0 trên kênh P-CPICH của các ô nằm trong tập tích cực của chuyển giao mềm đường lên (thậm chí có thể cả các ô hay đoạn ô nằm trong tập ứng cử), UE báo cáo ô phục vụ HS-DSCH tốt nhất cho SRNC để nó quyết định chuyển giao cứng cho HS-DSCH. Hình 4.20 cho thấy ô 2 (đoạn ô) là ô được chọn và sau khoảng thời gian T+D thì HS-DSCH ô 1 được chuyển sang ô 2.

4.6.2. Chuyển giao HS-DSCH giữa các ô (hay đoạn ô) trong cùng một RNC

Quá trình chuyển giao HS-DSCH giữa hai đoạn ô của cùng một nút B được minh họa trên hình 4.21. Sau khi quyết định chuyển giao, SRNC gửi bản tin đặt lại cấu hình liên kết vô tuyến đã được đồng bộ đến các nút liên quan B và đồng thời gửi bản tin RRC về đặt lại cấu hình kênh vật lý đến UE để chúng thực hiện chuyển giao. Quá trình chuyển giao từ nút B này sang nút B khác thuộc cùng một RNC cũng xẩy ra tương tự.

80

Page 81: Kiến Trúc 3g Wcdma Umts r3

Hình 4.21. Chuyển giao HS-DSCH giữa hai đoạn ô thuộc cùng một nút B

4.6.3. Chuyển giao HS-DSCH giữa hai các ô (đoạn ô) thuộc hai RNC khác nhau

Quá trình chuyển giao HS-DSCH giữa hai ô (đoạn ô) thuộc hai RNC khác nhau được minh họa trên hình 4.22. Sau khi SRNC đã quyết định chuyển giao, nó gửi bản tin đặt lại cấu hình liên kết vô tuyến đã được đồng bộ đến các nút B liên quan và đồng thời gửi bản tin RRC đặt lại cấu hình kênh vật lý đến UE để thực hiện chuyển giao. Trong trường hợp này bản tin đặt lại cấu hình liên kết vô tuyến được SRNC gửi đến nút B đích thông qua DRNC.

Hình 4.22. Chuyển giao HS-DSCH giữa các đoạn ô thuộc hai RNC khác nhau

81

Page 82: Kiến Trúc 3g Wcdma Umts r3

4.6.4. Chuyển giao HS-DSCH sang ô chỉ có DCH

Hình 4.23 minh họa quá trình chuyển giao HS-DSCH từ ô (đoạn ô) có HS-DSCH sang một nút B chỉ có DCH. Sau khi SRNC đã quyết định chuyển giao, nó gửi bản tin đặt lại cấu hình liên kết vô tuyến đã được đồng bộ đến các nút B liên quan và đồng thời gửi bản tin RRC về đặt lại cấu hình kênh vật lý đến người sử dụng để chúng thực hiện chuyển giao. Trong trường hợp này bản tin đặt lại cấu hình liên kết vô tuyến được SRNC gửi đến nút B đích thông qua DRNC

Hình 4.23. Chuyển giao HS-DSCH từ nút B có HS-DSCH sang một nút B chỉ có DCH.

4.7. TỔNG KẾT

HSPA là công nghệ tăng cường cho 3G WCDMA còn được gọi là 3G+. HSPA là công nghệ truyền dẫn gói phù hợp cho truyền thông đa phương tiện IP băng rộng. HSDPA sử dụng kênh chia sẻ đường xuống trên cơ sở ghép nhiều kênh mã với hệ số trải phổ SF=16, trong đó tối đa số kênh mã dành cho lưu lượng lên đến 15 và một kênh mã được dành cho báo hiệu và điều khiển. HSUPA sử dụng kênh tăng cường E-DCH để truyền lưu lượng. Cả HSDPA và HSUPA đều sử dụng truyền dẫn thích ứng trên cở sở lập biểu và HARQ. Truyền dẫn thích ứng là công nghệ trong đó tài nguyên vô tuyến dược phân bổ cho người sử dụng dựa trên tình trạng của kênh truyền sóng tức thời đến người sử dụng này: (1) nếu điều kiện truyền sóng tốt người sử dụng được phân phối nhiều tài nguyên hơn, ngược lại người này được phân phối ít tài nguyên. HSDPA sử dụng phân phối tài nguyên theo mã hoặc thời gian trong đó công suất truyền dẫn không đổi và tốc độ truyền dẫn có thể thay đổi số lượng mã, số khe được cấp phát hoặc bằng cách thay đổi sơ đồ truyền dẫn (AMC: Adaptive Modulation and

82

Page 83: Kiến Trúc 3g Wcdma Umts r3

Coding: mã hóa và điều chế thích ứng), còn HSUPA sử dụng phân phối tài nguyên theo công suất với điều kiện công suất được cấp phát cho mỗi máy di động không gây nhiễu cho các máy khác. Khi được cấp phát công suất cao hơn máy di động có thể truyền dẫn tốc độ cao hơn bằng cách sử dụng nhiều mã hơn cho kênh E-DCH hay giảm hệ số trải phổ SF nhưng không thay đổi sơ đồ truyền dẫn (điều chế luôn là BPSK). Cả hai HSDPA và HSUPA đều sử dụng HARQ, trong đó bản tin được yêu cầu phát lại được lưu trong bộ nhớ đệm để sau đó kết hợp với bản tin được phát lại tạo thành một bản tin tốt hơn trước khi xử lý lỗi. Cơ chế phát lại với phần dư tăng cho phép mỗi lần phát lại chỉ cần phát lại một bộ phần của phần dư chưa được phát vì thế tiết kiệm được dung lượng đường truyền. Điểm khác biệt giữa HSDPA và HSUPA là HSDPA không sử dụng điều khiển công suất và chuyển giao mềm trái lại HSUPA sử dụng cả hai kỹ thuật này, ngoài ra HSUPA chỉ sử dụng một kiểu điều chế BPSK vì thế nó không áp dụng kỹ thuật điều chế mà mã hóa thích ứng (AMC: Adaptive Modulation and Coding). Cuối chương chuyển giao cứng cho HSDPA được trình bày cho. Trong HSDPA chỉ có chuyển giao cứng. Để thực hiện chuyển giao, UE phải đo tỷ số tín hiệu trên nhiễu kênh P-CPICH của tất cả các ô hoặc các đoạn ô nằm trong tập tích cực (thậm chí có thể cả trong tập ứng cử). Từ kết quả đo nó gửi báo cáo về ô tốt nhất đến SRNC. SRNC sẽ quyết định chuyển giao.

83

Page 84: Kiến Trúc 3g Wcdma Umts r3

Thuật ngữ và viết tắt2G Second Generation Thế hệ thứ 23G Third Generation Thế hệ thứ ba3GPP 3ird Genaration Partnership Project Đề án các đối tác thế hệ thứ ba3GPP2 3ird Generation Patnership Project 2 Đề án đối tác thế hệ thứ ba 2AICH Acquisition Indication Channel Kênh chỉ thị bắtAMC Adaptive Modulation and Coding Mã hóa và điều chế thích ứngAMR Adaptive MultiRate Đa tốc độ thích ứngARQ Automatic Repeat-reQuest Yêu cầu phát lại tự độngAP-AICH

Access Preamble Acquisition Indicator Channel

Kênh chỉ thị bắt tiền tố truy nhập

ATM Asynchronous Transfer Mode Chế độ truyền dị bộBCCH Broadcast Control Channel Kênh điều khiển quảng báBCH Broadcast Channel Kênh quảng báBER Bit Error Rate Tỷ số lỗi bitBLER Block Error Rate Tỷ số lỗi khốiBPSK Binary Phase Shift Keying Khóa chuyển pha hai trạng tháiBS Base Station Trạm gốcBTS Base Tranceiver Station Trạm thu phát gốcCC Convolutional Code Mã xoắnCDMA Code Division Multiple Access Đa truy nhập phân chia theo mãCD/CA-ICH:

CPCH Collision Detection/ Channel Assignment Indicator Channel

Kênh chỉ thị phát hiện va chạm CPCH/ấn định kênh

CN Core Network Mạng lõiCPCH Common Packet Channel Kênh gói chungCPICH Common Pilot Channel Kênh hoa tiêu chungCQI Channel Quality Indicator Chỉ thị chất lượng kênhCRC Cyclic Redundancy Check Kiểm tra vòng dưCS Circuit Switch Chuyển mạch kênhCSICH CPCH Status Indicator Channel Kênh chỉ thị trạng thái CPCHDCCH Dedicated Control Channel Kênh điều khiển riêngDCH Dedicated Channel Kênh điều khiển DL Downlink Đường xuốngDPCCH Dedicated Physycal Control Channel Kênh điều khiển vật lý riêngDPCH Dedicated Physical Channel Kênh vật lý riêngDPDCH Dedicated Physical Data Channel Kênh số liệu vật lý riêng

84

Page 85: Kiến Trúc 3g Wcdma Umts r3

DRX Discontinuous Reception Thu không liên tụcDSCH Downlink Shared Channel Kênh chia sẻ đường xuốngDSSS Direct-Sequence Spread Spectrum Trải phổ chuỗi trực tiếpE-AGCH Enhanced Absolute Grant Channel Kênh cho phép tuyệt đối tăng cườngE-DCH Enhanced Dedicated Channel Kênh riêng tăng cườngEDGE Enhanced Data rates for GPRS

EvolutionTốc độ số liệu tăng cường để phát triển GPRS

EIR Equipment Identity Register Bộ ghi nhận dạng thiết bịE-DPCCH

Enhanced Dedicated Control Channel Kênh điều khiển riêng tăng cường

E-DPDCH

Enhanced Dedicated Data Channel Kênh số liệu riêng tăng cường

E-RGCHEnhanced Relative Grant Channel

Kênh cho phép tương đối tăng cường

FACH Forward Access Channel Kênh truy nhập đường xuốngFDD Frequency Division Duplex Ghép song công phân chia theo thời

gian

F-DPCH Fractional DPCH DPCH một phần (phân đoạn)GERAN GSM EDGE Radio Access Network Mạng truy nhập vô tuyến GSM

EDGE

GGSN Gateway GPRS Support Node Nút hỗ trợ GPRS cổngGPRS General Packet Radio Service Dịch vụ vô tuyến gói chungGSM Global System For Mobile

CommunicationsHệ thống thông tin di động tòan cấu

HARQ Hybrid Automatic Repeat reQuest Yêu cầu phát lại tự động linh hoạtHHO Hard Handover Chuyên giao cứngHLR Home Location Register Bộ ghi định vị thường trúHSDPA High Speed Downlink Packet Access Truy nhập hói đường xuống tốc độ

cao

HS-DPCCH

High-Speed Dedicated Physical Control Channel

Kênh điều khiển vật lý riêng tốc độ cao

HS-DSCH

High-Speed Dedicated Shared Channel Kênh chia sẻ riêng tốc độ cao

HSPA High Speed Packet Access Truy nhập gói tốc độ caoHS-PDSCH

High-Speed Physical Dedicated Shared Channel

Kênh chia sẻ riêng vật lý tốc độ cao

HSS Home Subsscriber Server Server thuê bao nhàHS- High-Speed Shared Control Channel Kênh điều khiển chia sẻ tốc độ cao

85

Page 86: Kiến Trúc 3g Wcdma Umts r3

SCCHHSUPA High-Speed Uplink Packet Access Truy nhập gói đường lên tốc độ caoIMS IP Multimedia Subsystem Phân hệ đa phương tiện IPIMT-2000

International Mobile Telecommunications 2000

Thông tin di động quốc tế 2000

IP Internet Protocol Giao thức InternetIPv4 IP version 4 Phiên bản IP bốnIPv6 IP version 6 Phiên bản IP sáuIR Incremental Redundancy Phần dư tăngIu Giao diện được sử dụng để thông tin giữa RNC và mạng lõiIub Giao diện được sử dụng để thông tin giữa nút B và RNCIur Giao diện được sử dụng để thông tin giữa các RNCLTE Long Term Evolution Phát triển dài hạnMAC Medium Access Control Điều khiển truy nhập môi trườngMIMO Multi-Input Multi-Output Nhiều đầu vào nhiều đầu raMMS Multimedia Messaging Service Dịch vụ nhắn tin đa phương tiệnMSC Mobile Services Switching Center Trung tâm chuyển mạch các dịch vụ

di động

NodeB Nút BOVSF Orthogonal Variable Spreading Factor Hệ số trải phổ khả biến trực giaoPAPR

Peak to Average Power RatioTỷ số công suất đỉnh trên công suất trung bình

P-CCPCH

Primary Common Control Physical Channel

Kênh vật lý điều khiển chung sơ cấp

PCH Paging Channel Kênh tìm gọiPCPCH Physical Common Packet Channel Kênh vật lý gói chungPDCP Packet-Data Convergence Protocol Giao thức hội tụ số liệu góiPDSCH Physical Downlink Shared Channel Kênh chia sẻ đường xuống vật lýPHY Physical Layer Lớp vật lýPICH Page Indication Channel Kênh chỉ thị tìm gọiPRACH Physical Random Access Channel Kênh vật lý truy nhập ngẫu nhiên)PS Packet Switch Chuyển mạch góiPSTN Public Switched Telephone Network Mạng điện thoại chuyển mạch công

cộng

QAM Quadrature Amplitude Modulation Điều chế biên độ vuông gócQoS Quality of Service Chất lượng dịch vụQPSK Quatrature Phase Shift Keying Khóa chuyển pha vuông góc

86

Page 87: Kiến Trúc 3g Wcdma Umts r3

RACH Random Access Channel Kênh truy nhập ngẫu nhiênRAN Radio Access Network Mạng truy nhập vô tuyếnRAT Radio Access Technology Công nghệ truy nhập vô tuyếnRF Radio Frequency Tần số vô tuyếnRLC Radio Link Control Điều khiển liên kết vô tuyếnRNC Radio Network Controller Bộ điều khiển mạng vô tuyếnRRC Radio Resource Control Điều khiển tài nguyên vô tuyếnRTP Real Time Protocol Giao thức thời gian thựcS-CCPCH

Secondary Common Control Physical Channel

Kênh vật lý điều khiển chung sơ cấp

SCH Synchronization channel Kênh đồng bộSF Spreading Factor Hệ số trải phổSGSN Serving GPRS Support Node Nút hỗ trợ GPRS phục vụSIM Subscriber Identity Module Mođun nhận dạng thuê baoSMS Short Message Service Dịch vụ nhắn tinSNR Signal to Noise Ratio Tỷ số tín hiệu trên tạp âmSHO Soft Handover Chuyển giao mềmTDD Time Division Duplex Ghép song công phân chia theo thời

gian

TDM Time Division Multiplex Ghép kênh phân chia theo thời gianTDMA

Time Division Mulptiple AccessĐa truy nhập phân chia theo thời gian

TFC Transport Format Combination Kết hợp khuôn dạng truyền tảiTFCI Transport Format Combination

IndicatorChỉ thị kết hợp khuôn dạng truyền tải

TrCH Transport Channel Kênh truyền tảiTTI Transmission Time Interval Khỏang thời gian phátUE User Equipment Thiết bị người sử dụng UL Uplink Đường lênUMB Ultra Mobile Broadband Băng thông di động siêu rộngUMTS Universal Mobile Telecommunications

SystemHệ thống thông tin di động toàn cấu

USIM UMTS SIMUTRA UMTS Terrestrial Radio Access Truy nhập vô tuyến mặt đất UMTSUTRAN UMTS Terrestrial Radio Access

NetworkMnạg truy nhập vô tuyến mặt đất UMTS

Uu Giao diện được sử dụng để thông tin giữa nút B và UE

87

Page 88: Kiến Trúc 3g Wcdma Umts r3

WCDMAWideband Code Division Multiple Access

Đa truy nhập phân chia theo mã băng rộng

WiFi Wireless Fidelitity Chất lượng không dây caoWiMAX Worldwide Interoperability for

Microwave AccessTương hợp truy nhập vi ba toàn cầu

VoIP Voice over IP Thoại trên IP

88

Page 89: Kiến Trúc 3g Wcdma Umts r3

TÀI LIỆU THAM KHẢO

1. TS. Nguyễn Phạm Anh Dũng, Sách “Thông tin di động thế hệ ba”, Nhà xuất bản Bưu Điện, 2001

2. TS. Nguyễn Phạm Anh Dũng, Sách “cdmaOne và cdma2000”, Nhà xuất bản Bưu Điện, 2003

3. TS. Nguyễn Phạm Anh Dũng, Giáo trình “Thông tin di động thế hệ ba”, Học Viện Công nghệ Bưu chính Viễn thông , Nhà xuất bản Bưu Điện, 2004

4. TS. Nguyễn Phạm Anh Dũng, Sách ‘Mạng riêng ảo MNPN”, Nhà xuất bản Bưu-Điện, 12/2005

5. TS. Nguyễn Phạm Anh Dũng, Sách ‘An ninh trong thông tin di động”, Nhà xuất bản Bưu-Điện, 9/2006

6. TS. Nguyễn Phạm Anh Dũng, Bài giảng “Thông tin di động” cho đào tạo từ xa, Học Viện Công nghệ Bưu chính Viễn thông 2007

7. TS. Nguyễn Phạm Anh Dũng, Giáo trình “Lộ trình phát triển thông tin di động 3G lên 4G”, Học viện Công nghệ Bưu chính Viễn thông, 12/2008

8. TS. Nguyễn Phạm Anh Dũng. Tài liệu “WiMAX”, Học Viện Công Nghệ Bưu Chính Viễn Thông. 12/2008

89