jörg schumacher

9
Jörg Schumacher Theoretical Fluid Mechanics Department of Mechanical Engineering Technische Universität Ilmenau Germany How can numerical simulations contribute? EuTuCHe Workshop Geneva, 23.– 25.04.2007

Upload: keran

Post on 19-Jan-2016

47 views

Category:

Documents


0 download

DESCRIPTION

How can numerical simulations contribute?. Jörg Schumacher Theoretical Fluid Mechanics Department of Mechanical Engineering Technische Universität Ilmenau Germany. EuTuCHe Workshop Geneva, 23.–25.04.2007. Supercomputing. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jörg Schumacher

Jörg Schumacher Theoretical Fluid Mechanics

Department of Mechanical Engineering

Technische Universität Ilmenau

Germany

How can numerical simulations contribute?

EuTuCHe Workshop Geneva, 23.–25.04.2007

Page 2: Jörg Schumacher

Supercomputing More and more organized on European scale (Petaflop Project Pace)

DEep Computing Initiative within DEISA → 2 turbulence projects (2006/2007)

Resolution of the most intensive gradients in turbulence at R~100 on a 20483

800,000 CPUh on 512 CPUs (1.9Tbyte RAM) 1 velocity snapshot = 68 Gbyte Quasi-Lagrangian analysis in 513 around 100 Lagrangian tracers (700

Gbytes) UNICORE platform for Grid computing Parallel NetCDF for I/O

Page 3: Jörg Schumacher

Case 1: Cartesian Cell

Cartesian geometry (x,y,z) Ra=107–109 Pr=0.7 (later Pr > 1) Aspect ratio: =L/H=2-32

Free-slip boundaries in z Equidistant grid Periodic side walls

Geometry and Parameters

H

L

Page 4: Jörg Schumacher

Temperature Profile

Pr=0.7Ra=1.1×107

=2

R=80Nu=27.85 0.56

32Nu

HδT

ηK

228 TE

129256256NNN zyx

Page 5: Jörg Schumacher

Case 2: Cylindrical Cell

Cylindrical geometry (r,,z) Ra=107–1012 Pr=0.7 (later Pr > 1) Aspect ratio: =L/H=1

No-slip boundaries for flow Non-equidistant grid Temperature fixed at bottom/top Adiabatic side walls

(Verzicco & Orlandi, JCP 1996)

H

L

Geometry and Parameters

Page 6: Jörg Schumacher

Nusselt Number Convergence

03.0Nu2

HδT

128165257NNN zrθ

4

3~K

Pr=0.7Ra=107

=3

R=(Ra/Pr)1/4 ~100Nu=16.06 0.05

3zθr ΔmaxRΔΔmaxΔ

~

151 TE

Page 7: Jörg Schumacher

Towards Large

1ΓR 2ΓR

θ2Γ ΔR θ1Γ ΔR

Example:

Sustain resolution & Double

3z

θ1r2 ΔmaxΔ

RΔmaxΔ~

2R

zrθ12 NΓNΓN~~

2Γθ,Δ

Number of lateral grid points grows with if the strong resolution constraints are sustained!

Page 8: Jörg Schumacher

Contributions (I)

Experiment

Parallel data processing Database for later use

Associated suprcomputing projects on classical/quantum turbulence

Direct participation

Indirect participation

Page 9: Jörg Schumacher

Contributions (II)

Resolution of high-Ra boundary layers Transition from laminar to turbulent boundary layer at Ra>1011

What are the differences to „classical“ boundary layers? Detailed Lagrangian study of breakdown of wind for aspect

ratios >1 Ultimate regime of convection?

M. Emran (Ilmenau) R. Verzicco (Bari)