jared moore syngas presentation autosaved - read-only · title: microsoft powerpoint - jared moore...

15
Thermal Hydrogen : An Emissions Free Hydrocarbon Economy by: Jared Moore, Ph.D. [email protected] October 17 th , 2017 Peer reviewed and published, please cite as: Moore, J, Thermal Hydrogen: An Emissions Free Hydrocarbon Economy, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.03.182 1

Upload: others

Post on 18-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy

by: Jared Moore, [email protected]

October 17th, 2017

Peer reviewed and published, please cite as:Moore, J, Thermal Hydrogen: An Emissions Free Hydrocarbon Economy, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.03.182

1

Page 2: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

2

Thermal Hydrogen Economy: Modern Economy:

HeatElectricity/Power Chem. Energy Carrier

Oxygen CO2 HydrocarbonsEnergy Service

Energy Conversion

Energy Source

Page 3: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

Thermal Hydrogen:Load Following Supply and Demand

#1 Dispatchable demand at most oversupplied time and place ->

#2 Self-subsidize the arbitrage with oxygen value

#3 Dispatchable supply at most undersupplied time and place ->

Why? To maximize the utilization of: 1) Copper (Transmission and distribution)2) Iron (Power plant capacity) 3) Lithium (Batteries)

Page 4: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

0

5

10

15

20

25

30

35

40

Water Splitting Full Combustion Auto ThermalReforming -> H2

Auto ThermalReforming -> Syngas

kWh

/ kg

O2

kWh Required or Yielded per kg of Oxygen

4

Productivity of Oxygen for Creating Different Energy Carriers

Required: from Electrolysis

Yielded:Heat

Yielded: Syngas

(H2 + CO)

Yielded: Hydrogen

[email protected]

(SOFC/MCFC)

Page 5: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

[email protected]

Oxyfuel for Natural Gas Combined Cycle (NGCC)

HX

H2O/ CO2

Hydrocarbon

Steam Turbine

CO2 TurbineCompressor

Pump

CoolingO2

CO2Oxyfuel NGCC

HX

H2O + N2 + CO2

Air

Steam Turbine

Gas TurbineCompressor

Pump

CoolingCombined Cycle

Hydrocarbon

(Supercritical)

Allam Cycle

CO2

Page 6: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

6

H2O/CO2 Electrolysis

CH4 + O2

Idle

CO2 Turbine

O2

H2/CO

Electricity

Nuclear/CSP Heat

“Universal Energy Plant”: Load Following and Demand Following Power Plant

Chemical Energy <--> Heat / Electricity

CO2 Turbine

Power Plant

Electricity

Idle Max

IdleMax

Electricity Supply Short:

Nuclear/CSP Heat

ElectrolyserIdle

Max

CO2 Sequestration

Long:

ElectrolyserMax

H2O/CO2

Page 7: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

O2

7

Wind/PV

Hydrocarbons (CHx)

Stationary Power

Batteries

Electricity/Power

CO2 Sequestration

Mobile Power

Heat

Oxyfuel Power Plant

Nuclear/CSP

CH3OH

H2O/CO2Recycling SOFC

H2O | CO2Electrolyser

H2 /CO

Coal Gasifier or Gas Reformer

Thermal Hydrogen Economy: (where Methanol replaces Gasoline)

HeatElectricity/Power Chem. Energy Carrier

Oxygen CO2 HydrocarbonsEnergy Service

Energy Conversion

Energy Source

Liquid Storage

EOR

Page 8: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

8

How to Distribute Hydrogen as Methanol and “Recycle” H2O and CO2 from Solid Oxid Fuel Cells

1) Tank filled With Methanol

(CH3OH)

CH3OH(Methanol)

2 H2O + CO2(Exhaust)

2) Methanol converted to Syngas via catalyst and waste heat (2 H2 + CO)

[email protected]

Solid Oxide Fuel Cell

Waste Heat

3) Air enters solid oxide fuel cell. Oxygen crosses electrolyte to meet syngas.

11.3 N2

Electricity

4) Exhaust, carbonated water, can be stored on empty side of tank and

recollected at gas station.

Page 9: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

0

10

20

30

40

50

60

70

80

90

kWh

of B

atte

ry C

apac

ity

0

20

40

60

80

100

120

kWh

/ 100

mile

s

9

2015 Honda Accord Standard

(Gasoline)

2014 Honda Accord Hybrid

(Gasoline)

2014 Honda Accord Plug-in Hybrid

(Electric)

2017 Tesla Model S P90D

(Electric)

2017 Honda Clarity Fuel Cell

(Hydrogen)

Energy Consumption(Left Axis)

Battery Capacity(Right Axis)

Energy Efficiency and Battery Size of Select Mid-Size Automobile Options

[email protected]

Plug-in Fuel Cell Hybrid operating in electric mode

70% of the time. Small fuel cell (~10 kW)

required to extend range.

Pure electric outweighs PHEV by ~700 lbs., has

~20 to 30% lower efficiency.

Page 10: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

10

Wind/PV

Hydrocarbons (CHx)

Stationary Power

Batteries

Electricity/Power

CO2 Sequestration

Mobile Power

Heat

OxyfuelPower Plant

Nuclear/CSP

ASU

CH3OH NH3

N2

H2

Air/Electricity

O2

H2O/CO2Recycling SOFC

H2O | CO2Electrolyser

Engine

HeatElectricity/Power Chem. Energy Carrier

NitrogenOxygen CO2 Hydrocarbons

H2 /CO

Coal Gasifier or Gas Reformer

Thermal Hydrogen Economy: (where Methanol replaces Gasoline and Ammonia replaces Nat. Gas)

Energy Service

Energy Conversion

Energy Source

Liquid Storage

EOR

Page 11: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

Thermal Hydrogen Economy using Methanol (CH3OH) and Ammonia (NH3) as H2Energy Carriers

11

U.S. Energy System in Quads (Services Demanded 2014)

Page 12: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

Electrolysis Auto Thermal Reformer

$/kg

H2

Estimated Cost per kg of Hydrogen

Electricity @ $28/MWh

Electrolyser @ 50% utilization, $400/kWH2($135/kWH2-year)

O&M

O&MReformer

Hydrocarbon @ $4/MMBTU

[email protected] 12

Value of O2

CapacityValue of Net

CONE: @$120/

kW(e)-year*

Cost of O2Value of O2

Page 13: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

meridianenergypolicy.com 13

P

Q

@ ~$22/MWhElectrolysis (No O2 Value)

@ ~$38/MWh Heat-Assisted Electrolysis (Valued O2)

@ ~$20 - 30/MWhCCS / MCFC’s dispatch

@ ~$35/MWhAllam cycle plants dispatch

@ ~$40/MWh, 1) All Nuclear/CSP is dispatched and heat stops assisting electrolysis2) CHP dispatched to replaces direct electric heat

@ ~$55/MWh,PHEV’s begin valuing SOFC waste heat, stop charging in cold weather

@ ~$65/MWh, CHP displaces electric heat with COP 2.5 or less

@ ~$100/MWh,Electric heat w COP 2.5 or less replaced w combustion

@ > $110/MWh,PHEV’s stop charging, begins relying on SOFC range

@ > $110/MWh,SOFC’s supply power

Dispatchable demand and Dispatchable supplyAssumes NH3 @ $1.2/kg H2e (~$0.04/kWhH2), CH3OH @ $1.80/kg H2e

S

D

@ ~$40/MWh, Combustion replaces direct electric heat

@ ~$28/MWh Electrolysis (Valued O2)

Distribution Side

Transmission Side

Page 14: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

Supply and Demand in Thermal Hydrogen:#1 Dispatchable demand at most oversupplied time and place ->

• Heat assisted electrolysis on the transmission (supply) side

#2 Self-subsidize the “storage” (arbitrage) with the value of oxygen• Electricity: Allam Cycle or Oxyfuel NGCC • Syngas/Hydrogen: Auto-thermal Reforming• Use longest hydrocarbon supply while renewing the shortest supply via EOR/EGR.

#3 Dispatchable supply at most undersupplied time and place ->• Fuel cells enable EV’s by providing electric range and direct heat• H2 (or NH3) combustion for timely, distributed heat and/or power

Why? To maximize the utilization of:1) Copper (Transmission and distribution)2) Iron (Low marginal cost power plant capacity) 3) Lithium (Batteries)

Page 15: Jared Moore Syngas Presentation Autosaved - Read-Only · Title: Microsoft PowerPoint - Jared Moore Syngas Presentation Autosaved - Read-Only Author: jared Created Date: 10/23/2017

15

Hydrocarbon (Gas)

EOR

Hydrocarbon (Coal)

H2/COO2

CO2Oil Exports

H2/COO2CO2/H2O

e-

UEP(CSP)

(Wind)

(Nuclear)

NH3 /CH3OH

e-

e-

(PV)

UEPATR+ASU

ATRASU

(PV)

NH3 /CH3OH

O2

CO2

Vision for Interior-to-Coast Distribution

H2/CO

#1 #2 #3