iprm 2010 ashish baraskar 1 high doping effects on in-situ ohmic contacts to n-inas ashish baraskar,...

28
Ashish Baraskar 1 IPRM 2010 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur Gossard and Mark J. W. Rodwell ECE, University of California, Santa Barbara, CA,USA Mark A. Wistey ECE, University of Notre Dame, IN, USA Yong J. Lee Intel Corporation, Technology Manufacturing Group, Santa Clara, CA, USA

Post on 21-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 1IPRM 2010

High Doping Effects on in-situ Ohmic Contacts to n-InAs

Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur Gossard and Mark J. W. Rodwell

ECE, University of California, Santa Barbara, CA,USA

Mark A. WisteyECE, University of Notre Dame, IN, USA

Yong J. LeeIntel Corporation, Technology Manufacturing Group, Santa Clara, CA, USA

Page 2: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 2IPRM 2010

• Motivation– Low resistance contacts for high speed HBTs

– Approach

• Experimental details– Contact formation

– Fabrication of Transmission Line Model structures

• Results– InAs doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Outline

Page 3: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 3IPRM 2010

effcbbb CR

ff

8maxRC

f in 2

1

To double device bandwidth*:

• Cut transit time 1:2

• Cut RC delay 1:2

Device Bandwidth Scaling Laws for HBT

bcWcTbT

eW

*M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001

Scale contact resistivities by 1:4

Page 4: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 4IPRM 2010

Emitter: 512 256 128 64 32 width (nm) 16 8 4 2 1 access ρ, (m2)

Base: 300 175 120 60 30 contact width (nm) 20 10 5 2.5 1.25 contact ρ (m2)

ft: 370 520 730 1000 1400 GHzfmax: 490 850 1300 2000 2800 GHz

- Contact resistivity serious barrier to THz technology

Less than 2 Ω-µm2 contact resistivity required for simultaneous THz ft and fmax*

*M.J.W. Rodwell, CSICS 2008

InP Bipolar Transistor Scaling Roadmap

Page 5: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 5IPRM 2010

Emitter Ohmics-I

Metal contact to narrow band gap material 1. Fermi level pinned in the band-gap

2. Fermi level pinned in the conduction band

Better ohmic contacts with

narrow band gap materials1,2

Narrow band gap material:

• lower Schottky barrier height

• lower m* easier tunneling across Schottky barrier

InGaAs InP

GaAsInAs

1.Peng et. al., J. Appl. Phys., 64, 1, 429–431, (1988).

2.Shiraishi et. al., J. Appl. Phys., 76, 5099 (1994).

Page 6: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 6IPRM 2010

Choice of material:

• In0.53Ga0.47As: lattice matched to InP

- Ef pinned 0.2 eV below conduction band[1]

• Relaxed InAs on In0.53Ga0.47As

- Ef pinned 0.2 eV above conduction band[2]

1. J. Tersoff, Phys. Rev. B 32, 6968 (1985) 2. S. Bhargava et. al., Appl. Phys. Lett., 70, 759 (1997)

Emitter Ohmics-II

Other considerations:

• Better surface preparation techniques

- For efficient removal of oxides/impurities

• Refractory metal for thermal stability

Page 7: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 7IPRM 2010

Semi-insulating InP Substrate

150 nm In0.52Al0.48As: NID buffer

100 nm InAs: Si (n-type)

Semiconductor layer growth by Solid Source Molecular Beam Epitaxy (SS-MBE): n-InAs/InAlAs

- Semi insulating InP (100) substrate

- Un-doped InAlAs buffer

- Electron concentration determined by Hall measurements

Thin Film Growth

Page 8: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 8IPRM 2010

In-situ molybdenum (Mo) deposition - E-beam chamber connected to MBE chamber- No air exposure after film growth

Why Mo? - Refractory metal (melting point ~ 2620 oC)- Easy to deposit by e-beam technique- Easy to process and integrate in HBT process flow

150 nm In0.52Al0.48As: NID buffer

100 nm InAs: Si (n-type)

20 nm Mo

Semi-insulating InP Substrate

In-situ Metal Contacts

Page 9: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 9IPRM 2010

• E-beam deposition of Ti, Au and Ni layers

• Samples processed into TLM structures by photolithography and liftoff

• Mo was dry etched in SF6/Ar with Ni as etch mask, isolated by wet etch

150 nm In0.52Al0.48As: NID buffer

100 nm InAs: Si (n-type)

20 nm Mo20 nm ex-situ Ti

50 nm ex-situ Ni500 nm ex-situ Au

Semi-insulating InP Substrate

TLM (Transmission Line Model) Fabrication

Page 10: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 10IPRM 2010

• Resistance measured by Agilent 4155C semiconductor parameter analyzer

• TLM pad spacing (Lgap) varied from 0.5-26 µm; verified from scanning electron microscope (SEM)

• TLM Width ~ 25 µm

Resistance Measurement

W

RR ShC

C

22

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

Gap Spacing (m)

Res

ista

nce

()

Page 11: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 11IPRM 2010

• Extrapolation errors:– 4-point probe resistance

measurements on Agilent 4155C

– Resolution error in SEM

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Res

ista

nce

()

Gap Spacing (m)

R

d

Rc

Error Analysis• Processing errors:

Lgap

W

Variable gap along width (W)

1.10 µm 1.04 µm

– Variable gap spacing along width (W)

Overlap Resistance

– Overlap resistance

Page 12: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 12IPRM 2010

1018

1019

1020

0

1000

2000

3000

4000

5000

6000

1018 1019 1020

Active carrierconcentration

Mobility

Mob

ility

(cm

2 /Vs)

Ele

ctro

n co

ncen

trat

ion,

n (

cm-3

)

Si atom concentration (cm-3)

Tsub: 380 oC

Results: Doping Characteristics

n saturates at high dopant concentration

5 1019

1 1020

1.5 1020

380 400 420 440 460

Substrate Temperature (oC)

Ele

ctro

n co

ncen

trat

ion,

n (

cm-3

)- Enhanced n for colder growths- hypothesis: As-rich surface drives Si onto group-III sites

Page 13: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 13IPRM 2010

Metal Contact ρc (Ω-µm2) ρh (Ω-µm)

In-situ Mo 0.6 ± 0.4 2.0 ± 1.5

W

RR ShC

C

22

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

Gap Spacing (m)

Res

ista

nce

()

Lowest ρc reported to date for n-type InAs

• Electron concentration, n = 1×1020 cm-3

• Mobility, µ = 484 cm2/Vs• Sheet resistance, Rsh = 11 ohm/ (100 nm thick film)

Results: Contact Resistivity - I

Page 14: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 14IPRM 2010

Results: Contact Resistivity - II

• ρc measured at various n

- ρc decreases with increase in n

• Shiraishi et. al.[1] reported

ρc = 2 Ω-µm2 for ex-situ Ti/Au/Ni contacts to n-InAs

• Singisetti et. al.[2] reported

ρc = 1.4 Ω-µm2 for in-situ Mo/n-InAs/n-InGaAs 0

1

2

3

4

0 2 4 6 8 10 12

Electron Concentration, n (x 1019cm-3)

Con

tact

Res

isti

vity

, c (

m2 )

Shiraishi et. al.[1] (ρc = 2 Ω-µm2)

Singisetti et. al.[2] (ρc = 1.4 Ω-µm2)

Present work

1Shiraishi et. al., J. Appl. Phys., 76, 5099 (1994). 2Singisetti et. al., Appl. Phys. Lett., 93, 183502 (2008).

Extreme Si doping improves contact resistance

Page 15: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 15IPRM 2010

• Contacts annealed under N2 flow at 250 oC for 60 minutes

(replicating the thermal cycle experienced by a transistor during fabrication)

• Observed variation in ρc less than the margin of error

Thermal Stability

Contacts are thermally stable

Results: Contact Resistivity - III

Page 16: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 16IPRM 2010

• Optimize n-InAs/n-InGaAs interface resistance

• Mo contacts to n-InGaAs*: ρc = 1.1±0.6 Ω-µm2

n-InAs n-InGaAs

Application in transistors !

*Baraskar et. al., J. Vac. Sci. Tech. B, 27, 2036 ( 2009).

Page 17: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 17IPRM 2010

• Extreme Si doping improves contact resistance

• ρc= 0.6±0.4 Ω-µm2 for in-situ Mo contacts to n-InAs with 1×1020 cm-3 electron concentration

• Need to optimize n-InAs/n-InGaAs interface resistance for transistor application

Conclusions:

Page 18: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 18IPRM 2010

Thank You !

Questions?

Acknowledgements

ONR, DARPA-TFAST, DARPA-FLARE

[email protected]

University of California, Santa Barbara, CA, USA

Page 19: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 19IPRM 2010

Extra Slides

Page 20: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 20IPRM 2010

1. Doping Characteristics

Results

6 1019

7 1019

8 1019

9 1019

1020

5 10 15 20 25 30

As flux (x10-7 torr)

Act

ive

carr

ier

conc

entr

atio

n, n

(cm

-3)

Page 21: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 21IPRM 2010

0.1

1

10

0 5 10-10 1 10-9

n-1/2 (cm-3/2)

Con

tact

Res

isti

vity

, c (

m2 )

Page 22: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 22IPRM 2010

n-InAs p-InAs

– : simulation[1]

x : experimental data[2]

Results: Contact Resistivity - III

Possible reasons for decrease in contact resistivity with increase in electron concentration• Band gap narrowing• Strain due to heavy doping• Variation of effective mass with doping

Page 23: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 23IPRM 2010

Accuracy Limits

• Error Calculations– dR = 50 m (Safe estimate)– dW = 0.2 m– dGap = 20 nm

• Error in c ~ 50% at 1 -m2

Page 24: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 24IPRM 2010

Random and Offset Error in 4155C

0.6642

0.6643

0.6644

0.6645

0.6646

0.6647

0 5 10 15 20 25

Res

ista

nce

(

)

Current (mA)

• Random Error in resistance measurement ~ 0.5 m

• Offset Error < 5 m

*4155C datasheet

Page 25: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 25IPRM 2010

Correction for Metal Resistance in 4-Point Test Structure

WLsheet /metalR Wcontactsheet /)( 2/1

Error term (Rmetal/x) from metal resistance

L

W

I

I

V

V

xRWLW metalsheetcontactsheet ///)( 2/1

Page 26: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 26IPRM 2010

Overlap Resistance

Variable gap along width (W)

1.10 µm 1.04 µm

W

Page 27: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 27IPRM 2010

• Variation of effective mass with doping

• Non-parabolicity

• Thickness dependence

• SXPS (x-ray photoemission spectroscopy)

• BEEM (ballistic electron emission microscopy)

• Band gap narrowing

• Strain due to heavy doping

Page 28: IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur

Ashish Baraskar 28IPRM 2010

For the same number of active carriers (in the degenerate regime) Ef - Ec > Ef - Ec (narrow gap, Eg1) (wide gap, Eg2)

m*e(Eg1)< m*e(Eg2)

Metal contact to narrow band gap material

Emitter Ohmics-I