introductory physics students' conceptions of algebraic signs used in

Download Introductory physics students' conceptions of algebraic signs used in

If you can't read please download the document

Post on 01-Jan-2017

212 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Examensarbete C, 15 hp Juni 2014 Uppsala universitet

    Introductory physics students conceptions of algebraic signs used in kinematics problem solving Moa Eriksson Supervisor: Cedric Linder Subject reader: John Airey Divisions of Physics Education Research, Department of Physics and Astronomy

  • Abstract The ways that physics students conceptualize the way they experience the use of algebraic signs in vector-kinematics has not been extensively studied. The most comprehensive of these few studies was carried out in South Africa 15 years ago. This study found that the variation in the ways that students experience the use of algebraic signs could be characterized by five qualitatively different categories. The consistency of the nature of this experience across either the same or different educational settings has never given further consideration. This project sets out to do this using two educational settings; one similar to the original South African one, and one at the natural science preparatory programme known as basret at Uppsala University in Sweden.

    The study was carried out under the auspices of the Division of Physics Education Research at the Department of Physics and Astronomy at Uppsala University in collaboration with Nadaraj Govender, University of KwaZulu-Natal, who performed the original study while completing his PhD at the University of the Western Cape, South Africa.

    This study is situated in the kinematics section of introductory physics with participants drawn from the natural science preparatory programme at Uppsala University and physical science preservice teachers programme at the University of KwaZulu-Natal, South Africa. The participating students completed a specially designed questionnaire on the use of signs in kinematics problem solving. A sub-group of these students was also purposefully selected to take part in semi-structured interviews that aimed at further exploring their experiences of algebraic signs. The students descriptions and answers were categorized using Nadaraj Govenders set of categories, which had been constructed using the phenomenographic research approach. This approach is designed to enable finding the variation of ways people experience a phenomenon. The process of sorting the data was grounded in this phenomenographic perspective. From this categorization it was possible to identify four of the original five categories amongst the participating students.

    The results suggest that these four categories remain educationally relevant today even if the context is not the same as the one for the original findings. Although one of the original five categories was not found, the analysis cannot be taken to definitely eliminate this from the original outcome space of results. A more extensive study would be needed for this and thus a proposal is made that further studies be undertaken around this issue.

    The study ends by suggesting that physics teachers at the introductory level need to obtain a broader understanding of their students difficulties and develop their teaching to better deal with the challenges that become more visible in this broader understanding.

  • Sammanfattning P vilka stt fysikstudenter frestller sig och frstr anvndandet av algebraiska tecken i vektorkinematik har endast studerats i mindre utstrckning. Den mest omfattande av dessa f studier genomfrdes i Sydafrika fr 15 r sedan. Denna studie upptckte att variationen av de stt studenter upplever anvndandet av algebraiska tecken p kunde karaktriseras genom fem kvalitativt olika kategorier. Hur solida dessa upplevelser r i en liknande eller helt annan utbildningsmilj har dremot inte studerats vidare. Detta projekt mnar till att gra detta genom att anvnda tv olika studentgrupper; en liknande den ursprungliga gruppen i Sydafrika, samt det tekniskt-naturvetenskapliga basret vid Uppsala universitet, Sverige.

    Studien har genomfrts med std frn avdelningen fr fysikens didaktik vid institutionen fr fysik och astronomi vid Uppsala universitet i samarbete med Nadaraj Govender, University of KwaZulu-Natal, Sydafrika, som genomfrde den ursprungliga studien under sin doktorandutbildning vid University of the Westen Cape, Sydafrika.

    Denna studie r begrnsad till den del av den grundlggande fysiken som behandlar kinematik och innefattade deltagare frn det tekniskt-naturvetenskapliga basret vid Uppsala universitet samt tredje rs studenter vid physical science preservice teachers programme, University of KwaZulu-Natal, Sydafrika. De deltagande studenterna genomfrde ett specialdesignat frgeformulr kring anvndandet av algebraiska tecken fr att lsa kinematiska problem. En del av dessa studenter valdes sedan ut fr att delta i semi-strukturerade intervjuer som syftade till att vidare utforska deras upplevelser kring algebraiska tecken. Studenternas beskrivningar och svar kategoriserades med hjlp av Nadaraj Govenders fem kategorier som tagits fram genom ett fenomenografiskt tillvgagngsstt. Detta tillvgagngsstt r framtaget fr att kunna hitta variationen av hur mnniskor upplever ett fenomen. Sorteringsprocessen grundades i detta fenomenografiska perspektiv. Frn denna kategorisering var det mjligt att identifiera fyra av de fem ursprungliga kategorierna bland de deltagande studenterna.

    Fyra av de fem ursprungliga kategorierna som freslagits av Govender terfanns genom denna studie varfr dessa kategorier fresls frbli relevanta idag ven om utbildningsmiljn skiljer sig frn den ursprungliga. Trots att den femte kategorin inte hittades kan denna inte definitivt exkluderas frn det outcome space som beskriver studenters upplevelser fr algebraiska tecken. Det fresls att vidare studier undersker frekomsten av denna kategori.

    Studien avslutas med att fresl att fysik lrare p grundniv behver f en bttre frstelse fr sina studenters svrigheter samt att de behver utveckla sin undervisning fr att bttre kunna hantera dessa svrigheter och p s stt gra undervisningen mer anpassad fr mngfalden av studenterna.

  • Acknowledgements To my mother and father for believing in me and encouraging me to fulfill my studies and doing what I believe in.

    I would like to express my deepest appreciations to my supervising professor, Cedric Linder, for his continuous interest, guidance and engagement in the development of this study. All your encouragement throughout this project has been invaluable and has helped me complete my thesis! I would also like to thank Dr. Nadaraj Govender for his feedback on my study design, his encouragement and for his valuable support as my external collaborator during the project. Special thanks goes to Jonas Forsman for his interest and guidance from the very start of my project, which helped me to quickly progress.

    I would further like to thank all members of the Division of Physics Education Research at the Department of Physics and Astronomy at Uppsala University, especially Anne Linder, for making me feel truly welcome as a part of your group.

  • Table of contents

    1 INTRODUCTION ................................................................................................ 1

    1.1 Problem setting ..................................................................................................................................... 1 1.1.1 Research question ............................................................................................................................................... 2

    1.2 Object ........................................................................................................................................................ 2

    1.3 Goal ........................................................................................................................................................... 2

    2 BACKGROUND .................................................................................................. 3

    3 METHODOLOGY ............................................................................................... 5

    3.1 Theory ...................................................................................................................................................... 5

    3.2 Method ..................................................................................................................................................... 6 3.2.1 Ethics ........................................................................................................................................................................ 6 3.2.2 Validity and reliability ....................................................................................................................................... 7 3.2.3 Questionnaire ........................................................................................................................................................ 7 3.2.3.1 Design ......................................................................................................................................................... 8 3.2.3.2 Pilot studies ............................................................................................................................................. 9 3.2.3.3 Translation ............................................................................................................................................... 9

    3.2.4 Interviews .......................

Recommended

View more >