introduction to solar radiative transfer i · introduction to solar radiative transfer: ......

42
Introduction to Solar Radiative Transfer: I Basic Radiative Transfer Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot NM, USA Summerschool Sunspot, Jun 18 2008

Upload: vulien

Post on 16-Jun-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Introduction to Solar Radiative Transfer:I Basic Radiative Transfer

Han UitenbroekNational Solar Observatory/Sacramento Peak

Sunspot NM, USA

Summerschool Sunspot, Jun 18 2008

Page 2: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Overview

• I Basic Radiative Transfer (Intensity, emission, absorption, sourcefunction, optical depth)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 3: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Overview

• I Basic Radiative Transfer (Intensity, emission, absorption, sourcefunction, optical depth)

• II Detailed Radiative Processes (Spectral lines, radiative transitions,collisions, continuum processes, Saha-Boltzmann, polarization)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 4: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 5: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 6: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 7: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

• Mihalas: Stellar Atmospheres

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 8: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

• Mihalas: Stellar Atmospheres

• Shu: The Physics of Astrophysics. I. Radiation

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 9: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

• Mihalas: Stellar Atmospheres

• Shu: The Physics of Astrophysics. I. Radiation

• Allen: Astrophysical Quantities

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 10: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 11: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 12: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

• 1823 Herschel realized spectra contain information on composition ofsource from flame spectra

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 13: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

• 1823 Herschel realized spectra contain information on composition ofsource from flame spectra

• 1842 Becquerel photographs spectra, discovers UV lines beyond thevisible

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 14: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

• 1823 Herschel realized spectra contain information on composition ofsource from flame spectra

• 1842 Becquerel photographs spectra, discovers UV lines beyond thevisible

• 1858 Bunsen and Kirchhoff discover wavelength correspondencebetween bright flame emission and dark solar absorption lines. Start ofquantitative spectroscopy.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 15: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 16: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 17: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

• To analyze spectroscopic data meaningfully we need to understand howthis physical information is encoded in the radiation RadiativeTransfer.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 18: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

• To analyze spectroscopic data meaningfully we need to understand howthis physical information is encoded in the radiation RadiativeTransfer.

• Observational techniques need to be applied to obtain the relevantproperties of the radiation signal.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 19: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

• To analyze spectroscopic data meaningfully we need to understand howthis physical information is encoded in the radiation RadiativeTransfer.

• Observational techniques need to be applied to obtain the relevantproperties of the radiation signal.

• We need to understand how the radiative signal is modified as it travelsfrom the object to our instruments.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 20: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Solar line spectrum

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 21: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Differences in Spectral Lines

391 392 393 394 395 396 397 398 399Wavelength [nm]

0

5.0•10−9

1.0•10−8

1.5•10−8

2.0•10−8

2.5•10−8

Inte

nsity

[J m

−2 s

−1 H

z−1 s

r−1 ]

588 589 590 591 592 593 594 595 596Wavelength [nm]

0

1•10−8

2•10−8

3•10−8

4•10−8

Inte

nsity

[J m

−2 s

−1 H

z−1 s

r−1 ]

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 22: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Molecular lines in the solar spectrum

429.0 429.5 430.0 430.5 431.0 431.5 432.0wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 23: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

In the UltraViolet the Spectral Lines are in Emission

126 128 130 132 134Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 24: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Spatially Resolved Spectral Lines

Intensity

0.5 0.6 0.7 0.8 0.9 1.0

Spectrum

0.2 0.4 0.6 0.8

Polarization

−1.0 −0.5 0.0 0.5

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 25: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Radiation Field

Specific Intensity:

dEν ≡ Iν(~r,~l, t) dtdA dν dΩ (1)

= Iν(x, y, z, θ, ϕ, t) cos θ dtdA dν dΩ

Units: J s−1 m−2 Hz−1 ster−1

Mean intensity:

Jν(~r, t) ≡1

∫Iν dΩ =

14π

∫ 2π

0

∫ π

0

Iν sin θ dθ dϕ (2)

Units: J s−1 m−2 Hz−1 ster−1

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 26: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Radiation Field

Flux:

Fν(~r, ~n, t) ≡∫Iν cos θ dΩ =

∫ 2π

0

∫ π

0

Iν cos θ sin θ dθ dϕ (3)

Units: J s−1 m−2 Hz−1

Flux in radial direction:

Fν(z) =∫ 2π

0

∫ π2

0

Iν cos θ sin θ dθ dϕ+∫ 2π

0

∫ π

π2

Iν cos θ sin θ dθ dϕ (4)

=∫ 2π

0

∫ π2

0

Iν cos θ sin θ dθ dϕ−∫ 2π

0

∫ π2

0

Iν(π − θ) cos θ sin θ dθ dϕ

≡ F+ν (z)−F−ν (z)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 27: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Local Changes

Emission:

dEν ≡ jν dV dtdν dΩ (5)

dIν = jν(s)ds

Units: J m−3 s−1 Hz−1 ster−1

Extinction:

dIν ≡ −ανIνds (6)

Units: m−1

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 28: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Local Changes

Source function:

Sν = jν/αν (7)

Units: J s−1 m−2 Hz−1 ster−1

Stotν =

∑jν/∑

αν (8)

Stotν =

jcν + jlναcν + αlν

=Scν + ηνS

1 + ην, ην ≡ αlν/αcν (9)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 29: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Transport Equation

Transport along a ray:

dIν(s) = Iν(s+ ds)− Iν(s) = jν(s)ds− αν(s)Iν(s)ds (10)

dIνds

= jν − ανIν

dIνανds

= Sν − Iν

Optical length and thickness:

dτν ≡ αν(s)ds (11)

τν(D) =∫ D

0

αν(s)ds

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 30: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Transport Equation

Transport along a ray:

dIνdτν

= Sν − Iν (12)

Iν(τν) = Iν(0)e−τν +∫ τν

0

Sν(t)e−(τν−t)dt

Homogeneous medium:

Iν(D) = Iν(0)e−τν(D) + Sν

(1− e−τν(D)

)(13)

Optically thick: Iν(D) ≈ SνOptically thin: Iν(D) ≈ Iν(0) + [Sν − Iν(0)] τν(D)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 31: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Homogeneous Medium

ν (D) >> 1

ν0

I ν

S ν

0ν ν

0

I ν

S ν

τν (D) < 1

I (0) = 0ν

ν0

I ν

S ν

I ν(0)0

ν

I (0) < Sν ν

τν (D) < 1

ν0

I ν(0)

S νI ν

τ

τν (D) > 10

τν (D) < 1

I (0) < Sν ν

ν0

S ν

I ν(0)I ν

τν (D) > 10

τν (D) < 1

ν νI (0) > S

ν0

S ν

I ν(0)I ν

τν (D) < 1

I (0) > Sν ν

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 32: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Through an Atmosphere

Optical depth:

dτµν = ανds ≡ −ανdz|µ|

(14)

τν(z1) =∫ z1

zsurf

−ανdz =∫ zsurf

z1

ανdz

Standard plane parallel transport equation:

µdIνdτν

= Iν − Sν (15)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 33: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Through an Atmosphere

Formal solution in upward direction:

I+ν (τν, µ) =

∫ ∞τν

Sν(t)e−(t−τν)/µdt/µ, µ > 0 (16)

Formal solution in downward direction:

I−ν (τν, µ) = −∫ τν

0

Sν(t)e−(t−τν)/µdt/µ, µ < 0 (17)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 34: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Eddington–Barbier

Emergent intensity at the surface:

I+ν (τν = 0, µ) =

∫ ∞0

Sν(t)e−t/µdt/µ (18)

Substitute power series:

Sν(τν) =N∑n=0

anτnν (19)

I+ν (τν = 0, µ) = a0 + a1µ+ 2a2µ

2 + . . .+ n!aNµN

Eddington–Barbier relation:

I+ν (τν = 0, µ) ≈ Sν(τν = µ) (20)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 35: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Eddington–Barbier

Sν 0

1

2

0 1 2 3 40

−τνe

θ I

τ ν

ν

−τνeSν

ντ

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 36: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Eddington–Barbier

T [103 K]

6 8 10

−0.2

0.0

0.2

0.4

y [

Mm

]

0 1 2 3 4 5x [Mm]

µ = 0.93

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 37: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Basic Radiative Transfer: Limb Darkening

Sν a

b

h0

I ν

0

a

b

10 sin θ

θ

a

b

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 38: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

End Part I

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 39: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Molecular Oxygen in the Earth Atmosphere

Intensity

0.4 0.6 0.8

630.0 630.1 630.2 630.3 630.4Wavelength [nm]

Fe IFe I

O2 O2

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 40: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Differences in spectral lines

393.0 393.2 393.4 393.6 393.8 394.0Wavelength [nm]

0

2.0•10−9

4.0•10−9

6.0•10−9

8.0•10−9

1.0•10−8

1.2•10−8

Inte

nsity

[J m

−2 s

−1 H

z−1 s

r−1 ]

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 41: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Invariance of Specific Intensity along Rays

Specific Intensity has been defined in such a way as to be independent ofthe source and the observer.

dEν = Iν cos θ dt dAdν dΩ = I ′ν cos θ′ dtdA′ dν dΩ′

dΩ = dA′ cos θ′/R2

dΩ′ = dA cos θ/R2

Iν = I ′ν

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 42: Introduction to Solar Radiative Transfer I · Introduction to Solar Radiative Transfer: ... Radiative Processes in Astrophysics w Han Uitenbroek, NSO/SP Introduction to Solar Radiative

Spherical Coordinates

θ ∆ϕ

r ∆θ

r sin

ϕ

z

y

x

θ

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7