introduction (1) delayed selection welding …...1 delayed coker unit –material selection and...

7
1 Delayed Coker Unit – Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections: Feed + Heavy Cracked Gas Oil Light Cracked Gas Oil Fractionator Overhead Fractionator Bottoms Coke Drums Introduction (1) Coke Drums Materials of Construction Thermal Fatigue Damage found Clad restoring welds Corrective action Typical other failures Questions Introduction (2) Safety Moment Tesoro Anacortes Refinery, April 2, 2010 Catastrophic Rupture exchanger due to HTHA Refinery Explosion 7 Fatalities Tesoro Video (from CSB) Simplified Refinery PFD Source: Materials Selection for Petroleum Refineries and Gathering facilities – R.A. White Delayed Coker Unit Source: API 571

Upload: others

Post on 16-Mar-2020

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Introduction (1) Delayed Selection Welding …...1 Delayed Coker Unit –Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections:

1

Delayed Coker Unit – Material Selection and Welding 

Requirements

ByArjen Reinders

Safety MomentDelayed Coker Unit (API 571) sections:• Feed + Heavy Cracked Gas Oil• Light Cracked Gas Oil• Fractionator Overhead• Fractionator Bottoms• Coke Drums

Introduction (1)

Coke Drums• Materials of Construction• Thermal Fatigue Damage found ‐ Clad 

restoring welds• Corrective action• Typical other failuresQuestions

Introduction (2) Safety Moment

• Tesoro Anacortes Refinery, April 2, 2010

– Catastrophic Rupture exchanger due to HTHA

– Refinery Explosion

• 7 Fatalities

• Tesoro Video (from CSB)

Simplified Refinery PFD

Source:Materials Selection for Petroleum Refineries and Gathering facilities – R.A. White

Delayed Coker Unit

Source: API 571

Page 2: Introduction (1) Delayed Selection Welding …...1 Delayed Coker Unit –Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections:

2

Delayed Coking Process

• Thermal Cracking Process

• Transform reduced crude oil into lighter fractions (gas oil and naphtha)

• Coke formation

DCU – Feed + HCGO section

Source: API 571

Feed + HCGO Section

• Temperatures typical 160 to 360°C

• Potential Degradation Mechanisms

– Sulphidation

– Naphthenic Acid Corrosion (not a major issue)

• Commonly Applied MOC:

– Piping: 5Cr‐½Mo or 9Cr‐1Mo

– Equipment: 1¼Cr‐½Mo + 12%Cr or SS304L clad 

DCU ‐ LCGO

Source: API 571

LCGO Section

• Temperatures typical 80 to 230°C

• Potential Degradation Mechanisms

– Sulphidation

• Commonly Applied MOC:

– CS for piping + equipment

DCU – Fractionator OVHD

Source: API 571

Page 3: Introduction (1) Delayed Selection Welding …...1 Delayed Coker Unit –Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections:

3

Fractionator OVHD Section

• Temperatures typical 30 to 100°C

• Potential Degradation Mechanisms

–Wet H2S

– NH4HS / NH4Cl

• Commonly Applied MOC:

– CS + sour service requirements

Ammonium Bisulphide

Source: API RP 571Second Edition, April 2011

Wet H2S

Wet H2S damage forms

Source: EEMUA Publication 179,1996 

Wet H2S

Source: NACE Corrosion Paper 428, 1999

Wet H2S requirements (1)

Material requirements shall be as per NACE standard MR0103

For carbon and low‐alloyed steels:• No elements to improve machinability shall intentionally be added.• Cold deformation ≤ 5%. When outer fiber deformation is greater 

than 5%, steel must be thermally stress relieved.• CS base metal maximum hardness of 22 HRC (237 HB)• CS PQR maximum hardness of 248 Hv10• CS production welds maximum hardness of 200 HB• For weldability, CS shall have C content ≤ 0.23%, Ceq ≤ 0.43. • Weldments in carbon steels shall be as per NACE SP0472.• V+Nb ≤ 0.03 wt%, Ti ≤ 0.02 wt%, B ≤ 0.0005 wt%

– Preferably 0.01 wt% max for Ti, Nb, V

Wet H2S requirements (2)

For austenitic stainless steels:

• Stainless steel to be in the solution annealed condition.

• Hardness ≤ 22 HRC (≤ 248 HV10).

• Cold deformation to enhance mechanical properties, or above 5% for formed heads and U‐tubes, shall be followed by a re‐solution anneal heat treatment.

• Welds between stainless steel and carbon steel are not permitted, because these always contain local zones of high hardness. Therefore, only flanged connections shall be used.

Page 4: Introduction (1) Delayed Selection Welding …...1 Delayed Coker Unit –Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections:

4

Wet H2S requirements (3)

For CS weldments:

• Weld deposit: Weld process + filler metal combinations allowed – no production hardness testing required (see NACE SP0472 table 2)

• HAZ: Base metal chemistry control + Thermal method (PWHT, Cooling Time Control t8/5, or Temper Bead Welding) + PQR hardness testing

• For more details refer to NACE SP0472

Wet H2S requirements (4) PQR hardness testing example

Source: NACE MR0103 ‐ 2015

Wet H2S requirements (5)Temper Bead Welding

• Sequencing of weld passes such that the heat input from weld beads tempers the HAZ microstructure formed by previous weld passes (NACE SP0472)

Wet H2S requirements (6) Temper Bead Welding

Source: ASME IX QW‐462.12

DCU – Fractionator Bottom

Source: API 571

Fractionator Bottom Section

• Temperatures typical 315 to 525°C

• Potential Degradation Mechanisms Fractionator Bottom outlet:

– Sulfidation

– Naphthenic Acid Corrosion (not a major issue)

Page 5: Introduction (1) Delayed Selection Welding …...1 Delayed Coker Unit –Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections:

5

Fractionator Bottom Section

• Potential Degradation Mechanisms Heater:

– Sulfidation

– Creep

– Oxidation

– Erosion / Erosion‐corrosion

– Carburization

– Short term over heating / stress rupture

– Naphthenic Acid Corrosion (not a major issue)

Fractionator Bottom Section

• Potential Degradation Mechanisms Heater outlet:

– Sulfidation

– Thermal Fatigue

– Erosion / Erosion‐corrosion

• Commonly Applied MOC:

– Piping + heater coils: 5Cr‐½Mo or 9Cr‐1Mo

– Equipment: 1¼Cr‐½Mo + 12%Cr or SS304L clad

Naphthenic Acid Corrosion

Source: API RP 571Second Edition, April 2011

DCU – Coke Drums

Source: API 571

Coke Drums (1)

• Typical operating conditions:

• Intermittent operation

• Inlet temperatures around 490 to 510°C

• Outlet temperatures around 425 to 440°C

• Coke Removal Water Quench at ambient

• Temperature cycle takes around 48 hours, i.e. heating, 24h coking, 24h decoking

Coke Drums (2)

Typical Decoking steps:

1‐ Steam stripping

2‐Water Quench

3‐ Draining

4‐ Opening heads

5‐ Coke Cutting

Thus potentially thermal fatigue

Page 6: Introduction (1) Delayed Selection Welding …...1 Delayed Coker Unit –Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections:

6

Coke Drums (3)

• Typical sizes:

– Length: 20 to 30 meters

– Diameter: 6 to 8 meters

– Thickness: 25 to 30 mm + 3 mm clad

• Excluding: 

– Skirt height

– Decoking structure

Coke Drums (4) ‐ Height

Coke Drums +/‐ 26 m

Total height +/‐ 90 m

Decoking structure+/‐ 57 m

Skirt / structure +/‐ 7 m

Materials of construction

Material of construction shell:

• Low alloy (C‐½Mo) + 12%Cr clad

Clad restoring welds:

• Austenitic stainless steel SS309L 

SS309L = 23%Cr, 14%Ni

Leakage in Coke Drum

Thermal Fatigue Damages

Cracks found in clad restoring welds

Corrective actions (1)

Change materials of construction for clad restoring welds:

Originally:

• Shell C‐½Mo + 12%Cr clad

• Clad restoring welds: austenitic stainless steel SS309L

• Difference in thermal coefficient expansion too large

• Clad restoring welds not flush – potentially stress raiser

Page 7: Introduction (1) Delayed Selection Welding …...1 Delayed Coker Unit –Material Selection and Welding Requirements By Arjen Reinders Safety Moment Delayed Coker Unit (API 571) sections:

7

Corrective actions (2)

New clad restoring welds:• High nickel alloy (65Ni‐15Cr‐Fe)

• Thermal expansion coefficient close to low alloy

• Grind clad restoring welds flush to prevent stress raisers to initiate thermal fatigue

• High temperature sulfidation of Ni alloy not an issue due to cokes formation

Typical other failures (API 934G)

Bulging

Typical other failures (API 934G)

Skirt to bottom head crack

Questions?

For more detailed information:

• API 934‐G (2016)

– Design, Fabrication, Operational Effects, Inspection, Assessment, and Repair of Coke Drums and Peripheral Components in Delayed Coking Units