intro to geosynthetics

36
11/13/2014 1 Studies on Geosynthetics Reinforced Materials Prepared and Presented by Mike Baylon Introduction to Geosynthetics: Type and Applications Session I

Upload: micah

Post on 11-Nov-2015

264 views

Category:

Documents


1 download

DESCRIPTION

:) michael b

TRANSCRIPT

  • 11/13/2014

    1

    Studies on Geosynthetics Reinforced Materials

    Prepared and Presented by Mike Baylon

    Introduction to Geosynthetics: Type and Applications

    Session I

  • 11/13/2014

    2

    1. Preamble

    2. Different types of geosynthetics

    3. Main functions of geosynthetics

    4. Major applications of geosynthetics

    5. Major benefits of geosynthetics

    Presentation guidelines

    A planar product manufactured from polymeric material used within geomaterials to enhance geotechnical engineering/geo-structural properties through reinforcement and/or improvement.

    Geosynthetics is a generic term for all synthetic materials used in geotechnical engineering applications including geotextiles, geogrids, geomembranes, geocells, geocomposites, geonets etc.

    What is a Geosynthetic

    material?

    Preamble

  • 11/13/2014

    3

    TYPES OF GEOSYNTHETICS

    A geosynthetic formed by a regular network of tensile elements and apertures,

    typically used for reinforcement purposes

    1. GEOGRIDS

    1. GEOGRIDS

    Type 1:

    Categorized by the method/mode of manufacturing:

    Triaxial Geogrids Biaxial Geogrids

    Punched and Extruded Geogrids

    Welded Geogrids

  • 11/13/2014

    4

    GEOGRIDS

    Type 2:

    Categorized by the orientation of ribs

    Uniaxial Geogrids

    Triaxial Geogrids Biaxial Geogrids

    Quaxial Geogrids

    A geotextile/geofabric is a permeable textile used with foundation, soil, rock, earth, or any other geotechnical engineering-related materials as an integral part of a human-made project, structure, or system.

    2. GEOTEXTILES

  • 11/13/2014

    5

    2. GEOTEXTILES Type:

    Woven Geotextiles

    Non-woven Geotextiles

    Uniaxial Geogrids

    Geonets are made of stacked, criss-crossing polymer strands that provide in-plane drainage.

    Nearly all geonets are made of polyethylene.

    Two layers of strands are called bi-planar.

    Three layers are called tri-planar.

    3. GEONETS

  • 11/13/2014

    6

    3. GEONETS Type:

    Biplanar

    Triplanar

    Biplanar Geonets

    Triplanar Geonets

    These are products manufactured by combining the superior features of various types of geosynthetics.

    The objective is to produce materials which are multi-functional and are faster to install than the individual components.

    Interface friction becomes an issue when geosynthetics are placed on slopes and bonded materials address this potential problem.

    4. GEOCOMPOSITES

  • 11/13/2014

    7

    4. GEOCOMPOSITES

    Geocomposites

    Geomembranes are relatively impermeable sheets of plastic.

    5. GEOMEMBRANES

  • 11/13/2014

    8

    5. GEOMEMBRANES

    Geosynthetic clay liners (GCLs) include a thin layer of finely-ground bentonite clay. When wetted, the clay swells and becomes a very effective hydraulic barrier.

    GCLs are manufactured by sandwiching the bentonite within or layering it on geotextiles and/or geomembranes, bonding the layers with needling, stitching and/or chemical adhesives.

    6. GEOSYNTHETICS

    CLAY LINERS [GCLs]

  • 11/13/2014

    9

    6. GEOSYNTHETICS CLAY LINERS

    TYPES OF GEOSYNTHETICS

    Geocellular confinement systems (GCS) are 3-dimensional honeycomb-l ike structures fi l led with soil, rock or concrete.

    The GCS structure, often called a Geocell, is made of strips of polymer sheet or geotextile connected at staggered points so that, when the strips are pulled apart, a large honey-comb mat is formed.

    The GCS provides both a physical containment of a depth of soil and a transfer of load through

    6. GEOCELLULAR CONFINEMENT

    SYSTEMS

  • 11/13/2014

    10

    6. GEOCELLULAR CONFINEMENT

    SYSTEMS

    Geomat is a three-dimensional erosion control mat consisting of a UV-stabilized labyrinth-like extruded polymer core mounted on a warp knitted mesh

    The Geomats act in three major mechanisms:

    Surface reinforcement and confinement of the soil;

    Protection against rain drops

    Reinforcement of the slope and at the same time allowing vegetation [grass] growth

    7. GEOMATS

  • 11/13/2014

    11

    7. GEOMATS

    Biodegradable Geomats

    Non-biodegradable Geomats

    Another significant product which has been adopted as a geosynthetic is plastic pipe.

    There is a wide variety of civil engineering applications for these products, including:

    highway and railway edge drains,

    interceptor drains, and

    leachate removal systems.

    8. GEOPIPES

  • 11/13/2014

    12

    8. GEOPIPES

    Geofoam is manufactured into large blocks which are stacked to form a lightweight, thermally insulating mass buried within a soil or pavement structure.

    Typical applications of geofoams include:

    within soil embankments built over soft, weak soils;

    under roads, airfield pavements and railway track systems subject to excessive freeze-thaw conditions; and

    beneath on-grade storage tanks containing cold l iquids.

    9. GEOFOAMS

  • 11/13/2014

    13

    9. GEOFOAM

    Main Functions Of Geosynthetics

  • 11/13/2014

    14

    1. Reinforcement

    2. Filtration

    3. Separation

    4. Drainage

    5. Erosion Control

    6. Barrier/Protection

    Main Functions:

    1. REINFORCEMENT: RED UCTION OF STRESS

    INTENSITY (CONCENTRATION) TH ROUGH WIDER

    D ISTRIBUTION

    The stresses over the subgrade are higher in

    unreinforced flexible pavements than in

    geosynthetic-reinforced pavement due to

    stress distribution factor

    1Relative Load Magnitudes at Subgrade Layer Level for:

    (a) Unreinforced Flexible Pavement; and,

    (b) Geosynthetics-Reinforced (Improved) Flexible Pavement.

  • 11/13/2014

    15

    INTEGRAL MECHANISMS THAT CONTRIBUTE TO PERF ORMANCE

    Lateral restraint of the base and subgrade through friction and interlock between the aggregate, soil and the geosynthetic .

    Increase in the system bearing capacity by forcing the potential bearing capacity failure surface to develop along alternate, higher shear strength surfaces.

    Membrane support of the wheel loads.

    Geosynthetics provide reinforcement through

    three possible mechanisms.

    INTEGRAL MECHANISMS THAT CONTRIBUTE TO PERF ORMANCE

    Reinforcement Mechanisms Induced by Geosynthetics: (a) Lateral Restraint (b)

    Increased Bearing Capacity; and, (c) Membrane Tension Support

  • 11/13/2014

    16

    Aperture Stability

    Aperture Size

    Junction Integrity

    Radial stiffness

    Geosynthetics Characteristics

    Influencing Reinforcing

    Functions

    2. SEPARATION: Preventing intermixing of soil types

    or soil/aggregate to maintain the integrity of each material yet still allow the free passage of liquids/gases. Commonly used in between sub-base/subgrade and around drainage materials.

    Contamination of the base course layers leads to a reduction of strength, stiffness and drainage characteristics, promoting distress and early failure of roadway.

  • 11/13/2014

    17

    SEPARATION MECHANISMS

    3. FILTRATION: Restraining soil particles subject

    to hydraulic forces whilst allowing the passage of

    liquids/gases. This function is often partnered with separation.

  • 11/13/2014

    18

    4. DRAINAGE: Allowing fluids and gases to flow

    both through the plane of the material. Commonly used as

    components in geocomposites used for surface water runoff or for gas collection under membranes.

    Piping Resistance: Apparent Opening Size - AOS (as related to soil retention),

    Permeability: Flow capacity, and clogging potential.

    Strength and Durability: Grab, Puncture strengths

    Geosynthetics Characteristics

    Influencing Filter, Separation

    and Drainage Functions

  • 11/13/2014

    19

    5. BARRIER/PROTECTION:

    Isolating one material form another. The most frequent use of this function is in landfills where impermeable linings prevent contamination of surrounding soils

    Preventing or limiting localized damage to an adjacent material, usually a geomembrane used to line a lagoon or a landfill. Thick

    geotextiles prevent puncture or excessive strain in the membrane.

    5. EROSION CONTROL:

    Protecting and reinforcing slopes and drainage channels from erosive agents whilst allowing

    the establishment of vegetation cover.

  • 11/13/2014

    20

    Major Applications of Geosynthetics

    1. GEOSYNTHETICS IN ROADS AND PAVEMENTS:

    Subgrade Separation and Stabilization;

    Base Reinforcement;

    Overlay Stress Absorption and

    Overlay Reinforcement

  • 11/13/2014

    21

    SUBGRADE SEPARATION

    Separation refers to the ability of a Geosynthetics to provide and maintain physical separation between the base course aggregate and the underlying fine grained subgrade.

    It does prevent mixing of the two dissimilar materials, where mixing is caused by mechanical action generally induced by construction and operation traffic.

    The ingress of fines by as l ittle as 10% by weight results in the reduction of strength by more than 80%.

    Characteristics of Pavement Structure Subjected to Black Cotton Soil Intrusion

    After Repeated Dynamic Loading and Cyclic Seasonal Effects

  • 11/13/2014

    22

    ANALYSIS OF IMPACT OF INFERIOR MATERIAL INTRUSION INTO UPPER PAVEMENT L AYERS

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 10 20 30 40 50 60

    So

    ak

    ed

    CB

    R

    Plasticity Index, PI (%)

    '1:1 '2:1 '3:1 '4:1 '5:1 '1:0

    Reduction in CBR Practically Linear

    Rate of Reduction and Reduction Characteristics Dependent on Batching Ratio and Quality of Bearing Material

    Lower Bound Limits are Distinctly Dependent on Batching Ratio

    CBR Reduction ~ PI Threshold @PI =40%

    Relation with Structural Thickness

    Tendency to Residural (Threshold)

    Optimum Batching Ratio

    Impact of Black Cotton Soil Intrusion

    Impact of Varying Geomaterial Intrusion

    SUBGRADE STABILIZATION

    Stabilization of weak subgrades entails the confinement and mechanical interlocking of aggregates within the apertures of the geosynthetics to increase the bearing capacity.

    The three main important functions of reinforcement:

    Lateral restraint is the lateral interaction between the aggregate and the geosynthetic. The presence of the geosynthetic creates pressure in the aggregate that improves the strength and stiffness of the road structure.

    Membrane action is the ability of a geosynthetic material to reduce and spread stress arising from the weak subgrade. Additionally, when a geogrid is involved, a third function can be described:

    enhanced load distribution within the aggregate.

  • 11/13/2014

    23

    SUBGRADE STABIL IZATION

    BASE REINFORCEMENT

    Base Reinforcement is achieved through lateral restrain [confinement].

    With the addition of an appropriate geosynthetic, the Soil-Geosynthetic-Aggregate (SGA) system gains stiffness. The stiffened SGA system is better able to provide the following structural benefits:

    Preventing lateral spreading of the base

    Increasing confinement and thus stiffness of the base

    Improving vertical stress distribution on the subgrade

    Reducing shear s tress in the subgrade

  • 11/13/2014

    24

    OVERLAY STRESS ABSORPTION

    A geosynthetic interlayer can be placed over the distressed pavement or within the overlay to create an overlay system. The

    geosynthetic interlayer can contribute to the life of the overlay via stress absorption, strain relief and provision of tensile strength.

    A stress relieving interlayer retards the development of reflective cracks by absorbing the stresses that arise from the damaged pavement. It also waterproofs the pavement so that when cracking does occur, water ingress cannot worsen the situation.

    OVERLAY STRESS ABSORPTION

  • 11/13/2014

    25

    OVERLAY REINFORCEMENT

    Reinforcement occurs when an interlayer is able to contribute significant tensile strength to the pavement system. The

    reinforcement attempts to prevent the cracked old pavement from moving under traffic loads and thermal stress by holding the cracks together.

    The benefits of geosynthetic interlayers include:

    Reduction of overlay thickness

    Delaying the appearance of reflective cracks

    Lengthening the useful l ife of the overlay

    (MOD EL TESTING) ASPHALT

    CONCRETE CRACK PROPAGATION CH ARACTERISTICS

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0.00E+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06

    Ref

    eren

    ce li

    nes

    fo

    r o

    bse

    rvat

    ion

    s o

    f cr

    ack

    pro

    pag

    atio

    n

    Number of the cycles

    Propagation of the primary crack in non-reinforced sampleInterlayer bonding level of the binder and wearing course (the level of the reinforcement)Propagation of the primary crack in the geocomposite reinforced samplePropagation of the secondary crack in the geocomposite reinforced samplePropagation of the primary crack in the geogrid reinforced sample

    Average test temperature T 2:non-reinforced sample T=13,2 0,4Creinforced sample T=13,4 0,7C

  • 11/13/2014

    26

    OVERLAY REINFORCEMENT

    2. GEOSYNTHETICS IN SUBSURFACE DRAINAGE:

    Subgrade Dewatering;

    Road Base Drainage, and

    Structure Drainage

  • 11/13/2014

    27

    SUBGRADE DEWATERING:

    A high groundwater table can, and often does, interfere with the stability of subgrade soils. For instance, some clay soils can swell or shrink as their water content increases or decreases, respectively.

    Geosynthetic materials have become commonplace in subsurface drainage applications. Commonly, geotextiles are being used in l ieu of select grades of sand because they are less expensive, provide more consistent properties, and are much easier to install.

    ROAD BASE DRAINAGE :

    The introduction of geotextiles into drainage applications has enhanced the economical application of blanket and trench drains under and adjacent to the pavement structure, respectively.

    The excellent fi ltration and separation characteristics associated with fi ltration geotextiles permits the use of a single layer of open-graded base or trench aggregate enveloped in a geotextile.

  • 11/13/2014

    28

    STRUCTURE DRAINAGE:

    It has become customary to place a vertical blanket of pervious sand or gravel behind retaining walls for protection against hydrostatic pressures.

    One of the best ways to assure effective aggregate drainage is to sandwich an aggregate layer within layers of filtration geotextiles. The inclusion of a perforated drain pipe that collects and discharges seepage will increase the drains efficiency. Back fill is placed directly against the drain.

    GEOSYNTHETICS IN SUBSURFACE DRAINAGE

  • 11/13/2014

    29

    3. GEOSYNTHETICS IN EROSION AND SEDIMENT CONTROL:

    Slope Protection;

    Channel Protection, and

    Coastal Protection

    GEOSYNTHETICS IN EROSION AND SEDIMENT CONTROL:

  • 11/13/2014

    30

    4. GEOSYNTHETICS IN REINFORCED SOIL SYSTEMS:

    Embankments over Soft Foundations;

    Reinforced Steepened Slopes; and

    Mechanically Stabilized Earth Walls

    EMBANKMENTS OVER SOFT FOUNDATIONS :

    The primary problem with these soft soils results from their low shear strength and excessive consolidation settlements requiring special construction practices and leading to high construction costs.

    Several methods of treatment are available to reduce the problems associated with soft foundations. These methods include:

    Removal and replacement of soft soil.

    Displacement of compressible material by end-loading.

    Staged construction - placing fill at controlled rates to allow for consolidation and strength gains.

    Installation of drains to facilitate consolidation.

    Pre-loading the site to reduce settlements of the structure and provide higher strength.

    Deposit improvement using admixtures (e.g. soil, cement, lime) or injections

    Reinforcement of the soil matrix using a structural element.

  • 11/13/2014

    31

    EMBANKMENTS OVER SOFT FOUNDATIONS :

    soil reinforcement has emerged as an efficient, economical and effective solution to the problem of constructing embankments over soft soils.

    REINFORCED STEEPENED SLOPES [RSS]:

    For many years, retaining structures were almost exclusively made of reinforced concrete and were designed as gravity or cantilever walls which are essentially rigid structures and cannot accommodate significant differential settlements unless founded on deep foundations.

    The economic advantages of constructing a safe, steeper RSS than would normally be possible are the resulting material and rights-of-way savings. For example, in repair of landslides it is possible to reuse the slide debris rather than to import higher quality backfill.

  • 11/13/2014

    32

    REINFORCED STEEPENED SLOPES [RSS]:

    MECHANICALLY STABIL IZED WALLS [MSE];

  • 11/13/2014

    33

    5. GEOSYNTHETICS IN REINFORCED SOIL SYSTEMS:

    Structure waterproofing;

    Water Supply Preservation; and

    Environmental Protection,

    STRUCTURE WATERPROOFING

  • 11/13/2014

    34

    WATER SUPPLY PRESERVATION

    ENVIRONMENTAL PROTECTION

  • 11/13/2014

    35

    Benefits Based On Study Findings

    Summary of Benefits categorized into Structural and Value Engineering

    STRUCTURAL BENEF ITS

    Enhanced geotechnical engineering properties including bearing capacity, structural capacity, shear strength and deformation resistance [achievement of higher resilient/elastic modulus (stiffness)].

    Increased ranges of permissible resilient/linear elastic and lateral strains.

    Improvement of the subgrade strength and deformation resistance through stress mobilization and expanded distribution, as well as further tension cut-off.

    By spreading and distributing the imparted stresses over a wider area of the foundation, geosynthetics may be improving the foundation/subgrade in a mode that is analogous to stage loading consolidation.

    Enhanced structural performance resulting from increased resistance to deformation.

    Prevention of the migration of inferior material into the upper pavement layers. This results in the significant enhancement of structural performance and elongation of the life-span of the pavement structure.

    Structural benefits analyzed and realized on

    the basis of theoretical considerations and

    experimental data determined in this Study

    include:

  • 11/13/2014

    36

    VALUE ENGINEERING BENEFITS

    Construction cost-time savings through the reduction of required pavement material quantities, whilst maintaining enhanced structural performance.

    Elongated pavement structural l ife span particularly as a result of incorporating the fi ltration/separation geotextile.

    Reduction in maintenance requirements as a result of enhanced structural performance.

    Environmental conservation mainly due to reduction in material quantities and erosion control.

    Appropriate application of geosynthetics can

    realize the following benefits.