interval linear algebra and computational...

89
Interval Linear Algebra and Computational Complexity Jaroslav Hor´ cek Department of Applied Mathematics Charles University, Prague MatTriad September 2015

Upload: nguyendan

Post on 27-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Interval Linear Algebra and ComputationalComplexity

Jaroslav Horacek

Department of Applied MathematicsCharles University, Prague

MatTriadSeptember 2015

Page 2: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

The journey of Pi . . .

Page 3: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Our goal

Page 4: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Journey through interval linear algebra

4 / 59

Page 5: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Interval linear algebra

5 / 59

Page 6: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Interval linear algebra

I The key notion is an interval (real closed)

I We use the intervals instead of real coefficients

I Many reasons:I Floating point rounding (

√2, π)

I Data uncertaintyI Verification, computer assisted proofs

6 / 59

Page 7: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Interval linear algebra

I The key notion is an interval (real closed)

I We use the intervals instead of real coefficients

I Many reasons:I Floating point rounding (

√2, π)

I Data uncertaintyI Verification, computer assisted proofs

6 / 59

Page 8: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Interval linear algebra

I The key notion is an interval (real closed)

I We use the intervals instead of real coefficients

I Many reasons:I Floating point rounding (

√2, π)

I Data uncertaintyI Verification, computer assisted proofs

6 / 59

Page 9: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Interval linear algebra

Interval matrixA = [A,A] = {A | A ≤ A ≤ A}

I Can be also defined using midpoint matrix Ac and radiusmatrix ∆

A = [Ac −∆, Ac + ∆]

I A vector is a special type of the matrix

I Denoted by boldface!

7 / 59

Page 10: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Computational complexity

8 / 59

Page 11: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Computational complexity

PContains problems that can be solved in polynomial time.

I It is a class of tractable problems

I Examples: linear programming, sorting numbers, . . .

9 / 59

Page 12: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Computational complexity

NPContains problems where the solution can be verified inpolynomial time

I P ⊆ NPI Solving usually needs exponential many computationsI Examples: SAT, graph 3-coloring, . . .

10 / 59

Page 13: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

P=NP?

11 / 59

Page 14: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Philosophical meaning of NP?

12 / 59

Page 15: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

NP-hardI A problem is NP-hard if it is at least as hard as any

problem in NP

I Any problem in NP can be solved using some NP-hardproblem

I A problem is NP-complete if it is the hardest problem in NP

I All NP-complete problems can be reduced to each other

13 / 59

Page 16: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

P, NP, NP-complete, NP-hard

14 / 59

Page 17: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

co-NP

I Problem is in co-NP if its complement is in NP

I Examples: TAUT, . . .

15 / 59

Page 18: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

P=NP?

16 / 59

Page 19: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

co-NP-hard

I A problem is co-NP-hard if it is at least as hard as anyproblem in co-NP

I A problem is co-NP-complete if it is the hardest problem inco-NP

17 / 59

Page 20: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Difference between NP and co-NP?

I SAT = {φ | φ is a boolean satisfiable formula}

(NP-complete)

I TAUT = {φ | φ is a tautology}

(co-NP-complete)

18 / 59

Page 21: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Before we land . . .

19 / 59

Page 22: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

. . . let’s mention the deeper goal of this talk

I We meet various difficult problems

I All of then have exponential ways to solve them

I Surprising sufficient conditions

I Surprising feasible cases

I Reducibility between problems

20 / 59

Page 23: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

. . . let’s mention the deeper goal of this talk

I We meet various difficult problems

I All of then have exponential ways to solve them

I Surprising sufficient conditions

I Surprising feasible cases

I Reducibility between problems

20 / 59

Page 24: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

. . . let’s mention the deeper goal of this talk

I We meet various difficult problems

I All of then have exponential ways to solve them

I Surprising sufficient conditions

I Surprising feasible cases

I Reducibility between problems

20 / 59

Page 25: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

. . . let’s mention the deeper goal of this talk

I We meet various difficult problems

I All of then have exponential ways to solve them

I Surprising sufficient conditions

I Surprising feasible cases

I Reducibility between problems

20 / 59

Page 26: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

. . . let’s mention the deeper goal of this talk

I We meet various difficult problems

I All of then have exponential ways to solve them

I Surprising sufficient conditions

I Surprising feasible cases

I Reducibility between problems

20 / 59

Page 27: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

The map of interval linear algebra

21 / 59

Page 28: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Regularity and singularity

Regularity

A square interval matrix A is called regular if every A ∈ A isregular.

Singularity

Otherwise, it is called singular.

22 / 59

Page 29: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Regularity and singularity

I Regularity and singularity are complement problems.

I Checking matrix singularity is NP-complete

I Checking matrix regularity is co-NP-complete

23 / 59

Page 30: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Regularity and singularity

Regularity sufficient conditions

1. %(|A−1c |∆) < 1,

2. σmax(∆) < σmin(Ac),

3. ATc Ac − ‖∆T∆‖I is positive definite for some consistent

matrix norm ‖ · ‖.

Singularity sufficient conditions

1. maxj(∆|A−1c |)jj ≥ 1,

2. (∆− |Ac|)−1 ≥ 0,

3. ∆T∆ −ATc Ac is positive semidefinite.

24 / 59

Page 31: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Regularity and singularity

Regularity sufficient conditions

1. %(|A−1c |∆) < 1,

2. σmax(∆) < σmin(Ac),

3. ATc Ac − ‖∆T∆‖I is positive definite for some consistent

matrix norm ‖ · ‖.

Singularity sufficient conditions

1. maxj(∆|A−1c |)jj ≥ 1,

2. (∆− |Ac|)−1 ≥ 0,

3. ∆T∆ −ATc Ac is positive semidefinite.

24 / 59

Page 32: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special classes

I interval M-matrices

I interval H-matrices

I If A,A are regular and A−1 ≥ 0, A−1 ≥ 0 then A is regular

25 / 59

Page 33: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special classes

I interval M-matrices

I interval H-matrices

I If A,A are regular and A−1 ≥ 0, A−1 ≥ 0 then A is regular

25 / 59

Page 34: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special classes

I interval M-matrices

I interval H-matrices

I If A,A are regular and A−1 ≥ 0, A−1 ≥ 0 then A is regular

25 / 59

Page 35: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Map of interval linear algebra

26 / 59

Page 36: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Full column rank

Full column rankAn m× n interval matrix A has full column rank if every A ∈ Ahas full column rank.

27 / 59

Page 37: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Full column rank

I For square matrices this becomes regularityI Checking full column rank is co-NP-complete?

28 / 59

Page 38: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Full column rank

An interval m× n matrix A = [Ac −∆, Ac + ∆] has full columnrank if some of these conditions holds

Sufficient conditions

1. Ac has full column rank and %(|(Ac)+|A∆) < 1,

2. ‖I −RA‖ < 1,

3. σmax(∆) < σmin(Ac),

4. ‖∆‖ < ‖A+c ‖−1.

29 / 59

Page 39: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Map of interval linear algebra

30 / 59

Page 40: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Solving linear systems

Linear system

A is an interval matrix, b an interval vector.

Ax = b,

Solution set

Σ = {x | Ax = b for some A ∈ A, b ∈ b}.

31 / 59

Page 41: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Solving linear systems

HullThe tightest possible interval vector (box) x such that

Σ ⊆ x.

EnclosureAn interval vector (box) x such that

Σ ⊆ x.

32 / 59

Page 42: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Solving linear systems

HullThe tightest possible interval vector (box) x such that

Σ ⊆ x.

EnclosureAn interval vector (box) x such that

Σ ⊆ x.

32 / 59

Page 43: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Solution set 2D

[5, 10]x + [−20,−5] y = [50, 100],[10, 15]x + [5, 10] y = [−50, 280].

33 / 59

Page 44: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Solution set 3D

[−5, 10]x + 10 y + [15, 20] z = [50, 100],10x + −5 y + [5, 15] z = [−50, 50],10x + [10, 25] y + [−10,−5] z = [50, 100].

34 / 59

Page 45: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Solving linear systems

I Computing the exact hull is NP-hardI Computing arbitrary ε-approximation of the hull is NP-hardI Even if we limit the widths of intervals of a matrix in a

system.

35 / 59

Page 46: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

MethodsSquare systems

1. Gaussian elimination2. Jacobi, Gauss-Seidel, Krawczyk method3. Hansen-Bliek-Rohn method4. Hladik shaving method

Overdetermined systems

1. Gaussian elimination2. Rohn method3. Subsquares method4. Least squares5. Popova method

36 / 59

Page 47: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

MethodsSquare systems

1. Gaussian elimination2. Jacobi, Gauss-Seidel, Krawczyk method3. Hansen-Bliek-Rohn method4. Hladik shaving method

Overdetermined systems

1. Gaussian elimination2. Rohn method3. Subsquares method4. Least squares5. Popova method

36 / 59

Page 48: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special linear systems

I When A has full column rank and Ac is a diagonal matrixwith positive diagonal entries then HBR returns the exacthull

I When A is M-matrix Gauss-Seidel iteration converges tothe hull

I When A is M-matrix and b nonnegative, Gaussianelimination yields the hull

37 / 59

Page 49: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special linear systems

I When A has full column rank and Ac is a diagonal matrixwith positive diagonal entries then HBR returns the exacthull

I When A is M-matrix Gauss-Seidel iteration converges tothe hull

I When A is M-matrix and b nonnegative, Gaussianelimination yields the hull

37 / 59

Page 50: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special linear systems

I When A has full column rank and Ac is a diagonal matrixwith positive diagonal entries then HBR returns the exacthull

I When A is M-matrix Gauss-Seidel iteration converges tothe hull

I When A is M-matrix and b nonnegative, Gaussianelimination yields the hull

37 / 59

Page 51: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Map of interval linear algebra

38 / 59

Page 52: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Matrix inverse

A−1

An interval inverse to A is a matrix A−1 = [B,B], where

B = min{A−1, A ∈ A}

B = max{A−1, A ∈ A}

Enclosure of A−1

B, where A−1 ⊆ B

39 / 59

Page 53: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Matrix inverse

A−1

An interval inverse to A is a matrix A−1 = [B,B], where

B = min{A−1, A ∈ A}

B = max{A−1, A ∈ A}

Enclosure of A−1

B, where A−1 ⊆ B

39 / 59

Page 54: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Matrix inverse

I Interval matrix inverse can be computed by computing thehull of the systems Ax = ei

I Computing exact bounds of the interval inverse is NP-hardI Checking whether a matrix has nonnegative inverse is in P

40 / 59

Page 55: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Matrix inverse

I Enclosures of the systems Ax = ei

I Gaussian elimination on the matrix [A | I]

I Rohn formula for inverse enclosure

41 / 59

Page 56: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Matrix inverse

I Enclosures of the systems Ax = ei

I Gaussian elimination on the matrix [A | I]

I Rohn formula for inverse enclosure

41 / 59

Page 57: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Matrix inverse

I Enclosures of the systems Ax = ei

I Gaussian elimination on the matrix [A | I]

I Rohn formula for inverse enclosure

41 / 59

Page 58: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Matrix inverse

Special classes

If A,A are regular and A−1, A−1 ≥ 0, then A is regular and

A−1 = [A−1, A−1] ≥ 0.

I M-matrices

42 / 59

Page 59: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Map of interval linear algebra

43 / 59

Page 60: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Checking solvability

Solvability

An interval linear system Ax = b is (weakly) solvable if itssolution set Σ 6= ∅.

Strong solvability

An interval linear system Ax = b is strongly solvable if everyAx = b, A ∈ A, b ∈ b is solvable.

44 / 59

Page 61: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Checking solvability

Solvability

An interval linear system Ax = b is (weakly) solvable if itssolution set Σ 6= ∅.

Strong solvability

An interval linear system Ax = b is strongly solvable if everyAx = b, A ∈ A, b ∈ b is solvable.

44 / 59

Page 62: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Checking solvability

I Ax = b is not solvable if the matrix [A b] has full columnrank

I Checking solvability NP-completeI Checking strong solvability is in NP-complete

45 / 59

Page 63: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Checking solvability

I Use sufficient full column rank conditions

I Gaussian elimination, Jacobi method, Gauss-Seidel,subsquares method.

I If we have some enclosure x then clearly a system Ax = bis unsolvable if Ax ∩ b = ∅.

46 / 59

Page 64: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Checking solvability

I Use sufficient full column rank conditions

I Gaussian elimination, Jacobi method, Gauss-Seidel,subsquares method.

I If we have some enclosure x then clearly a system Ax = bis unsolvable if Ax ∩ b = ∅.

46 / 59

Page 65: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Checking solvability

I Use sufficient full column rank conditions

I Gaussian elimination, Jacobi method, Gauss-Seidel,subsquares method.

I If we have some enclosure x then clearly a system Ax = bis unsolvable if Ax ∩ b = ∅.

46 / 59

Page 66: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Interesting paradox

I In systems of linear equations

I Checking weak solvability NP-complete

I Checking strong solvability P!

47 / 59

Page 67: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Map of interval linear algebra

48 / 59

Page 68: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Positive definiteness

Symmetric matrix

Given A, with Ac,∆ are symmetric. ThenAS = {symmetric A ∈ A}

Positive definitenessA symmetric interval matrix AS is positive definite if xTAx > 0for each A ∈ AS and x 6= 0.

49 / 59

Page 69: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Positive definiteness

Symmetric matrix

Given A, with Ac,∆ are symmetric. ThenAS = {symmetric A ∈ A}

Positive definitenessA symmetric interval matrix AS is positive definite if xTAx > 0for each A ∈ AS and x 6= 0.

49 / 59

Page 70: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Positive definiteness

I Checking positive definiteness is co-NP-completeI Checking positive semi-definiteness is co-NP-complete

50 / 59

Page 71: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Positive definiteness

Sufficient and necessary condition

A symmetric interval matrix AS is positive definite if and only ifit is regular and contains at least one positive definite matrix.

I Equivalent to AS being regular and Ac positive definite

I Can be transformed to regularity checking

51 / 59

Page 72: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Positive definiteness

Sufficient and necessary condition

A symmetric interval matrix AS is positive definite if and only ifit is regular and contains at least one positive definite matrix.

I Equivalent to AS being regular and Ac positive definite

I Can be transformed to regularity checking

51 / 59

Page 73: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Positive definiteness

Sufficient and necessary condition

A symmetric interval matrix AS is positive definite if and only ifit is regular and contains at least one positive definite matrix.

I Equivalent to AS being regular and Ac positive definite

I Can be transformed to regularity checking

51 / 59

Page 74: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Positive definiteness

Sufficient conditions

1. Check regularity and positive definiteness of some matrix(e.g., Ac)

2. %(∆) < λmin(Ac)

52 / 59

Page 75: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Map of interval linear algebra

53 / 59

Page 76: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

Eigenvalue

λ is an eigenvalue of A if it is an eigenvalue of some A ∈ A

Eigenvector

x 6= 0 is an eigenvector of A if it is an eigenvector of someA ∈ A

Eigenpair

(λ, x) is an eigenpair of A if Ax = λx for some some A ∈ A

54 / 59

Page 77: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

Eigenvalue

λ is an eigenvalue of A if it is an eigenvalue of some A ∈ A

Eigenvector

x 6= 0 is an eigenvector of A if it is an eigenvector of someA ∈ A

Eigenpair

(λ, x) is an eigenpair of A if Ax = λx for some some A ∈ A

54 / 59

Page 78: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

Eigenvalue

λ is an eigenvalue of A if it is an eigenvalue of some A ∈ A

Eigenvector

x 6= 0 is an eigenvector of A if it is an eigenvector of someA ∈ A

Eigenpair

(λ, x) is an eigenpair of A if Ax = λx for some some A ∈ A

54 / 59

Page 79: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

I Checking whether λ = 0 is an eigenvalue of A is equal tochecking singularity

I Checking whether λ is an eigenvalue of A is NP-complete

I Checking whether x is an eigenvector of A is in P

I Checking whether (λ, x) is an eigenpair of A is in P

55 / 59

Page 80: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

I Checking whether λ = 0 is an eigenvalue of A is equal tochecking singularity

I Checking whether λ is an eigenvalue of A is NP-complete

I Checking whether x is an eigenvector of A is in P

I Checking whether (λ, x) is an eigenpair of A is in P

55 / 59

Page 81: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

I Checking whether λ = 0 is an eigenvalue of A is equal tochecking singularity

I Checking whether λ is an eigenvalue of A is NP-complete

I Checking whether x is an eigenvector of A is in P

I Checking whether (λ, x) is an eigenpair of A is in P

55 / 59

Page 82: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

I Checking whether λ = 0 is an eigenvalue of A is equal tochecking singularity

I Checking whether λ is an eigenvalue of A is NP-complete

I Checking whether x is an eigenvector of A is in P

I Checking whether (λ, x) is an eigenpair of A is in P

55 / 59

Page 83: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues

I Checking whether λ = 0 is an eigenvalue of A is equal tochecking singularity

I Checking whether λ is an eigenvalue of A is NP-complete

I Checking whether x is an eigenvector of A is in P

I Checking whether (λ, x) is an eigenpair of A is in P

55 / 59

Page 84: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Eigenvalues of symmetric matrices

Eigenvalues of a symmetric A are realλ1(A) ≥ λ2(A) ≥ . . . λn(A)

Eigenvalues

λi(AS) = {λi(A) : A ∈ AS}

I Set of compact intervals

I Computing λ1(AS), λn(AS) is NP-hard

56 / 59

Page 85: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special cases

I [λi(AS), λi(A

S)] ⊆ [λi(Ac)− %(∆), λi(Ac) + %(∆)]

I If Ac is nonnegative then λ1(AS) = λmax(A)

I If ∆ is diagonal

57 / 59

Page 86: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special cases

I [λi(AS), λi(A

S)] ⊆ [λi(Ac)− %(∆), λi(Ac) + %(∆)]

I If Ac is nonnegative then λ1(AS) = λmax(A)

I If ∆ is diagonal

57 / 59

Page 87: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Special cases

I [λi(AS), λi(A

S)] ⊆ [λi(Ac)− %(∆), λi(Ac) + %(∆)]

I If Ac is nonnegative then λ1(AS) = λmax(A)

I If ∆ is diagonal

57 / 59

Page 88: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

Our journey ends

58 / 59

Page 89: Interval Linear Algebra and Computational Complexitykam.mff.cuni.cz/~horacek/papers/mattriad2015.pdf · Interval Linear Algebra and Computational Complexity Jaroslav Hora´cekˇ Department

59 / 59