influences électrostatiques

23
Influences électrostatiques Condensateurs I- Introduction 1) Présentation On considère un conducteur K en l’équilibre électrostatique, isolé et initialement neutre. On le met dans une région où règne un champ électrique crée par une charge ponctuelle immobile. Les charges du conducteur K vont se trouver soumise à des forces telles que : des charges négatives de K vont migrer du côté de q. et des charges positives de K vont se trouver du côté opposé. E1 E2 q Eint = 0 K

Upload: coursuniv

Post on 14-Jun-2015

3.746 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Influences électrostatiques

Influences électrostatiquesCondensateurs

I- Introduction

1) Présentation

On considère un conducteur K en l’équilibre électrostatique, isolé et initialement neutre. On le

met dans une région où règne un champ électrique crée par une charge ponctuelle

immobile.Les charges du conducteur K vont se trouver soumise à des forces telles que :

des charges négatives de K vont migrer du côté de q. et des charges positives de K vont se trouver du côté opposé.

On dit dans ce cas que l’apparition des charges dans le conducteur K est faite par influence de la charge q sur ce conducteur.

2) Etude de l’équilibre électrostatique

La séparation des charges positives et négatives à l’intérieur du conducteur K va créer un

champ (cf.fig.ci-dessus). Ce dernier va se superposer au champ . A l’équilibre le champ

total à l’intérieur du conducteur K est nul :

E1E2

q Eint = 0

K

Page 2: Influences électrostatiques

3) Remarques

i/ Les lignes de champ de la charge q se trouve déformées par la présence du conducteur K.

ii/ Toutes les lignes de champ de la charge q n’arrivent pas au conducteur K.

iii/ Sur le conducteur K, les lignes de champ sont rentrant dans la zone à charges négatives et sont sortant dans la zone à charges positives.

II- Théorème des éléments correspondants

Soient K1 et K2 deux conducteurs sous influence mutuelle l’un par rapport à l’autre(cf.fig. ci-dessous).Supposons que K1 porte des charges positives, et considérons un tube de champ s’appuyant sur une surface élémentaire dS1 partant de K1. Ce tube de champ arrive sur K2 et découpe sur celui-ci une surface élémentaire dS2.

1) Définition

Les surfaces élémentaires dS1 et dS2 sont appelées éléments correspondants des conducteurs considérés.

2) Théorème

Deux éléments correspondants portent des charges égales en valeur absolue et de signes opposés.

Considérons une surface fermée, formée par les parois du tube de champ T et deux surfaces 1 et 2 prises à l’intérieur des conducteurs K1 et K2.

dq1 dq2

T

+++

+

E

2

K2

dS21

K1

dS1

+

+

+

+

+

Page 3: Influences électrostatiques

Le flux à travers cette surface fermée est :

 : le flux à travers 1,2 est nul puisque le champ en tout point intérieur à K1,2 est nul.

: le flux à travers les parois du tube de champ est nul, puisque le champ est tangent en

chaque point de cette surface latérale.

Les quantités d’électricité portées par deux éléments correspondants sont égales en valeurs absolues mais de signes contraires.

III- Influence partielle et influence totale

1) Influence partielle

a) Définition

Soit K2 un conducteur chargé positivement. On dit qu’il y a influence partielle du conducteur K2 sur le conducteur K1 initialement neutre, lorsque les lignes de champ issues de K2

n’arrivent pas toutes sur K1.

b) Conséquences

K2

q 1

q 2

K1

Q 2

Page 4: Influences électrostatiques

b) Remarque

Si on relie le conducteur (K1) au sol, c'est-à-dire alors :

2) Influence totale

a) Définition

Soient K1 et K2 deux conducteurs. On dit qu’il y a influence totale de K2 supposé être chargé positivement sur K1 initialement neutre lorsque K1 enveloppe complètement K 2, autrement dit si toutes les lignes de champ issues de K2 arrivent à K1.

b) Conséquences

Q 2

K2

q 1

K1

K1

K2

q1

q2

Q2

Page 5: Influences électrostatiques

c) Remarque

Si on relie le conducteur K1 au sol, c'est-à-dire

alors :

IV- Coefficients d’influence d’un système de conducteurs.

1) Système d’équations en Vi

* Considérons un système de n conducteurs fixes et indéformables

.

* Supposons que tous les conducteurs sont au potentiel zéro, sauf le premier que nous porterons au potentiel unité.Il se produit un état d’équilibre dans lequel le conducteur K1 prend une charge notée C11 et il apparaît par influence sur les n1 autres conducteurs des charges notées :

. Le premier indice ce rapporte au conducteur influencé, et le

second indice indique le conducteur influençant.

i/ Supposons un premier équilibre dans lequel, le premier conducteur est porté au potentiel V1

et tous les autres conducteurs étant au potentiel zéro. Toutes les charges sont multipliées par V1 et deviennent alors :

.

ii/ Dans un deuxième équilibre, c’est le conducteur K2 qui et porté au potentiel V2, tous les autres sont au potentiel zéro. Les charges seront alors :

.

iii/ Et ainsi de suite jusqu’au nième équilibre où tous les conducteurs sont au potentiel nul sauf le conducteur Kn qui est porté au potentiel Vn. Les charges des différents conducteurs sont :

.

K1

K2

q1

Q2

Page 6: Influences électrostatiques

iiii/ En superposant les n états d’équilibres la charge accumulée par chacun des conducteurs est donnée par :

………………………………………………………

………………………………………………………

………………………………………………………

………………………………………………………

2) Définitions

Le coefficient Cii est appelé coefficient de capacité du conducteur K i dans sa position relative qu’il occupe dans le système considéré.

Le coefficient Cij (ij) est appelé coefficient d’influence du conducteur Ki sur le conducteur Kj ou coefficient d’influence du conducteur Kj sur le conducteur Ki. C’est le coefficient d’influence mutuelle.

3) Propriétés

Les coefficients de capacité Cii sont positifs, les coefficients d’influences sont négatifs avec : Cij = Cji ( i j ).

4) Capacité d’un conducteur isolé

a) Définition La capacité d’un conducteur isolé dans l’espace est le coefficient de proportionnalité entre sa

charge Q et son potentiel V :

Page 7: Influences électrostatiques

La capacité C dépend de la forme géométrique du conducteur; elle est proportionnelle à la

constante diélectrique du milieu dans lequel est placé le conducteur. Les coefficients de

capacité et les coefficients d’influence s’expriment en farads (symbole :F).

V- Energie d’un système de charges

Les lois de Newton contiennent toute la mécanique et la loi de Coulomb contient toute l’électrostatique. En effet, connaître des charges et leurs positions permet de trouver toutes les forces électriques. De plus, avoir des charges pouvant circuler librement sous l’action d’autres types de forces permet de trouver l’état d’équilibre pour lequel les charges resteront statiques. De même qu’en mécanique, il est intéressant d’introduire le concept d’énergie. Pour l’électrostatique, l’énergie est un concept très utile car les forces électrostatiques sont conservatifs (le travail est indépendant du chemin suivi).

2) Cas de deux charges

Considérons deux particules de charges et

qui sont très éloignées l’une de l’autre.

Rapprochons lentement la charge de

placée en 1 jusqu’à ce que leur distance soit

(cf.fig.ci-contre).

Combien avons-nous dû fournir de travail ?

Au cours de ce déplacement, l’opérateur, exerçant sur la charge q2 une force , doit lutter

contre la force électrostatique exercée par la charge q1 sur q2.

La charge q2 immobile à l’infini est amenée en 2 où sa vitesse est nulle : d’après le théorème de l’énergie cinétique, on peut écrire :

Il vient :

Le travail de l’opérateur est égal et opposé au travail de la force électrique, soit :

1

2

r12

q1

q2

Page 8: Influences électrostatiques

où est le potentiel créé au point 2 par la charge .

soit :

Ce travail est intégralement converti en énergie emmagasinée par la charge et constitue par

définition son énergie électrostatique.

3) Cas de trois charges

Reprenons les deux charges et distant de .

Soit une troisième charge située en un point très

éloigné et amenons là en un point 3 dont la distance

à la charge est et celle à la charge est .

Le travail que l’on doit fournir pour effectuer ceci est :

où est le potentiel créé au point 3 par les charges et .

soit :

Ce travail est intégralement converti en énergie emmagasinée par la charge q3 et constitue par définition son énergie électrostatique.L’énergie totale W nécessaire pour obtenir ce système de trois charges est donc :

1

2

r12

q1

q2

3q2

r23

r13

Page 9: Influences électrostatiques

L’énergie du système à trois charges peut s’écrire :

est le potentiel électrostatique au point où se trouve . Il est

créé par les charges et .

est le potentiel électrostatique au point où se trouve . Il est

créé par les charges et .

est le potentiel électrostatique au point où se trouve . Il est

créé par les charges et .

En généralisant les résultats obtenus pour trois charges, on peut affirmer que l’énergie

nécessaire pour établir un système de n charges ponctuelles discrètes

s’exprime par :

Cette équation peut s’écrire de la façon suivante :

Chaque terme de la somme entre crochets est la contribution d’une des charges au potentiel

électrique Vj au point où se trouve la charge .

De cette façon, nous pouvons exprimer W sous la forme :

Page 10: Influences électrostatiques

5) Cas d’une distribution continue de charges

Si nous avons une distribution continue de charges au lieu d’avoir des charges discrètes, nous

remplaçons simplement la somme de l’équation par l’intégrale

correspondante.a) Distribution surfacique  :

: l’intégration (ici double) porte sur la surface chargée

b) Distribution volumique  :

: l’intégration (ici triple) porte sur le volume chargé

V est le potentiel électrostatique au point où se trouve la charge élémentaire ou encore (cf.figs et tableaux.pages1419).

VI- Energie d’un système de conducteurs

1) Définition

Considérons un système de n conducteurs de charges respectives et

de potentiels respectifs . L’énergie électrostatique de ce système de

n conducteurs est l’énergie qu’il faut dépenser pour le ramener à un état d’équilibre donné à

partir de l’état d’équilibre où et

.

2) Expression de l’énergie électrostatique

a) Energie d’un condensateur isolé

L’énergie d’un conducteur isolé à l’équilibre électrique est donnée par l’expression suivante :

l’intégration (ici double) porte sur la surface du conducteur

A l’équilibre le potentiel est constant. Il a la même valeur V en tout point du conducteur.

Page 11: Influences électrostatiques

Q étant la charge du conducteur considéré.

Sachant que Q = CV, l’énergie du conducteur peut s’écrire en fonction de C, Q et V :

b) Energie d’un système de conducteurs à l’équilibre

L’énergie d’un système de n conducteurs de charges respectifs et

de potentiels respectifs est donnée par l’expression :

VII- Condensateurs

1) Définition

On appelle condensateur, un ensemble de deux conducteurs K1 et K2 placés en influence totale l’un par rapport à l’autre. Les conducteurs formant un condensateur s’appellent armatures. On dit armature interne pour le conducteur K1 et armature externe pour le conducteur K2.. Q1 = C11V1 + C12V2

Q2 = C21V1 + C22V2

Q2 = Q1 + q (q est la charge initiale du conducteur K2)

2) Etude du condensateur

* Si on relie les deux armatures par un fil conducteur de capacité nulle (V 1 = V2), la charge Q1

de l’armature interne est neutralisée par la charge – Q1 de l’armature externe. Donc pour le conducteur K2 l’armature interne aura la charge 0 et l’armature externe aura la charge q sur sa surface externe.soit : 0 = (C11 + C12) V1 = (C11 + C12) V2 c'est-à-dire C12 = C11= C

Q 1

Q2

Q 1

K 1

K 2

Page 12: Influences électrostatiques

* Si on relie K2 à la terre ou à la masse (V2 = 0), on aura :q = 0 , Q2 = Q1 , Q1 = C11V1 et Q2 = C21V1

c'est-à-dire : C21 = C11 = C

* Si on reporte ces résultats dans les équations de la définition, on obtient :

Q1 = C11V1+C12V2 = C (V1 – V2)

Q2 = C11V1 + C22 V2 = C11 V1 + C22 V2 + C11V2 – C11V2

Q2 = C11 (V1 – V2) + (C22 – C11) V2

Q2 = C (V1 – V2) + (C22 – C11) V2

Q2 = Q1 + q

soient : Q1 = C (V1 – V2) et q = (C22 – C11) V2

3) Charge d’un condensateur

La charge d’un condensateur est la charge de l’armature interne. Elle est proportionnelle à la différence de potentiel, ou la tension entre les deux armatures.

Q1 = C (V1 – V2)

4) Capacité d’un condensateur

 

c’est un cœfficient qui ne dépend que de la forme et de la position relative des armatures, ainsi que de la nature du milieu placé entre les armatures. L’unité de capacité est le Farad (symbole : F). Dans la pratique le Farad est une unité très grande d’où l’utilisation des sous multiples : F (microfarad :106F), nF (nanofarad :109F) et pF (picofarad :1012F).

6) Lois d’association de condensateurs

a) Représentations schématiques

Capacité non polarisée Capacité polarisée

Page 13: Influences électrostatiques

b) Associations de condensateurs en série

La capacité équivalente C de n condensateurs , mis en série se

calcule comme suit. On écrit VAVB de deux manières :

et

d’où :

c) Association de condensateurs en parallèle

A B

A B

C 2C 1 C nC i

Q Q

C

Q Q Q Q Q Q

Q Q

C 1

C i

C n

C 2

A B

A B

Q 1 Q 1

Q 2 Q 2

Q i Q i

Q n Q n

Q Q

C

Page 14: Influences électrostatiques

La capacité équivalente C de n condensateurs montés en parallèle

se calcule comme suit. On exprime Q de deux façons :

et

d’où :

6) Energie d’un condensateur

a) Expression d’énergie

L’énergie électrostatique emmagasinée dans un condensateur de capacité C, de charge Q et dont la différence de potentiel entre ses bornes est V, s’écrit :

b) Densité d’énergie : cas du condensateur plan

On considère un condensateur plan, de surface S et d’épaisseur e. Dans le vide la capacité C

de ce condensateur est : .

L’énergie électrostatique emmagasinée dans ce condensateur est :

Le module du champ électrostatique entre les armatures d’un condensateur plan vaut:

. Sachant que = S e ( est le volume compris entre les deux

armatures), l’énergie du condensateur peut s’écrire :

e

S

VA

VB

E

Page 15: Influences électrostatiques

L’énergie par unité de volume (densité d’énergie) est donnée par :

L’énergie emmagasinée dans le volume où règne le champ électrostatique est :

l’intégration (ici triple) porte sur tout l’espace où règne le champ électrostatique

Ce résultat est tout à fait général quelque soit la forme du système étudié

Exemple

Une sphère conductrice isolée en équilibre électrostatique, de rayon R, porte une charge Q.1) Calculer la capacité de ce conducteur.2) Déduire son énergie électrostatique W.3) Retrouver l’expression de W à partir de la densité d’énergie .

1) A l’intérieur de la sphère conductrice le champ est nul.

Son potentiel est constant

A l’extérieur le champ a pour expression :

où r est la distance du point O, centre de sphère, au point M .Le champ électrostatique est à symétrie sphérique (il ne dépend que de r) et radial (porté par la droite (OM)).

La relation se réduit ici à : et par intégration, on obtient :

Lorsque , V = 0 (origine des potentiels)  

D’autre part pour r = R, on a : V(R) =  : potentiel de tout le conducteur.

d’où :

.

Page 16: Influences électrostatiques

Ainsi, la capacité est une valeur positive. Elle dépend de la géométrie du conducteur (R) et de la nature du milieu ( ) dans lequel il se trouve.

2) L’énergie d’un conducteur isolé à l’équilibre électrique est :

 : l’intégration (ici double) porte sur la surface du conducteur

3) L’énergie emmagasinée dans l’espace extérieur où règne le champ électrostatique

(expression générale) est :

On retrouve le même résultat que précédemment.

IIX- Forces électrostatiques sur les conducteurs

1) Introduction

Chaque conducteur faisant partie d’un système de n conducteurs en équilibre est soumis à une force dont la résultante est ou un couple dont la résultante est . Nous pouvons déterminer la force ou le couple par l’intermédiaire de l’énergie potentiel en utilisant le principe des déplacements virtuels. Ces déplacements fictifs sont supposés être faits soit à potentiels constants, soit à charges constantes.

Page 17: Influences électrostatiques

Dans le cas d’un mouvement de translation, nous allons utiliser les coordonnées cartésiennes et dans le cas d’un mouvement de rotation autour d’un axe, nous utiliserons les coordonnées polaires r et , sachant que est l’angle de rotation.

2) Déplacement à charges constantes

A charge constante : le système est isolé et l’énergie WQ est de nature potentielle (le travail

des forces électrostatiques est indépendant du chemin suivi)

a) Mouvement de translation :

b) Mouvement de rotation : .

3) Déplacement à potentiels constants

A potentiel constant : le système n’est plus isolé ; en effet, la source qui maintient le potentiel constant fait partie du système électrostatique.

a) Mouvement de translation :

b) Mouvement de rotation : .

Page 18: Influences électrostatiques