impact of partitioning, transmutation and waste reduction ...€¦ · impact of partitioning,...

29
Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner von Lensa, Forschungszentrum Jülich Co-authors: L. Boucher (CEA-France), E. Gonzales (CIEMAT, Spain), D. Greneche (AREVA-NC, France), D. Westlen, J. Wallenius (KTH, Sweden), J. Marivoet (SCK•CEN, Belgium), R. Nabbi, M. Rossbach & R. Odoj (FZJ-Germany), C.H. Zimmerman (Nexiasolutions, United Kingdom) IGD-TP / SNETP Exchange Forum, Prague, 29-30 October 2013 RED-IMPACT

Upload: others

Post on 20-Sep-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

Impact of Partitioning, Transmutation and Waste Reduction

Technologies on the Final Nuclear Waste Disposal

Werner von Lensa, Forschungszentrum Jülich

Co-authors:

L. Boucher (CEA-France), E. Gonzales (CIEMAT, Spain), D. Greneche (AREVA-NC, France), D. Westlen, J. Wallenius (KTH, Sweden),

J. Marivoet (SCK•CEN, Belgium), R. Nabbi, M. Rossbach & R. Odoj (FZJ-Germany), C.H. Zimmerman (Nexiasolutions, United Kingdom)

IGD-TP / SNETP Exchange Forum, Prague, 29-30 October 2013

RED-IMPACT

Page 2: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

2

Partners of RED-IMPACT

Research50%

Waste Agencies

18%

Nuclear Industry &

Utilities32%

23 partners + 2 subcontractors KTH-Sweden: Coordinator FZJ-Germany: Co-Coordinator Belgium: BN; SCK-CEN Czech Republic: NRI; RAWRA EC: ITU-Karlsruhe France: Areva ANP, CEA; COGEMA Germany:FANP; GRS; IER; KKP Netherlands: NRG Romania: CITON Slovakia: DECOM, VUJE Spain: CIEMAT; EA; ENRESA UK: NexiaSolutions; NIREX; UC

EC CONTRACT NO. FI6W-CT-2004-002408

Duration: March 2004 – September 2007

Page 3: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

3

Working procedure

1. Definition of fuel cycle 2. Heavy Metal mass flow 3. Neutronic calculations 4. Mass flow in reprocessing units Actinide losses: 0.1% in HLW, 0.02% in ILW Volatile Activation + Fission Products

• I: 1% in HLW, 1% in ILW • 14C: 10% in HLW • Cl: 1% in HLW, 0.2% in ILW

5. Waste inventories 6. Waste disposal analyses 7. Estimation of environmental, economic and

social indicators

Page 4: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

4

Investigated Fuel Cycles

• Industrial scenarios – Scenario A1: (reference) : once through open cycle with Gen-II / III reactors

– Scenario A2 : mono-recycling of plutonium in Gen-III reactors (+ variants e.g. Th-MOX, IMF, PWR vs. BWR etc.)

– Scenario A3 : Multirecycling of Pu (only) in Sodium Fast Reactors (EFR)

• Innovative scenarios – Scenario B1 : Multi-recycling of Pu & MA in Sodium Fast Reactors (EFR)

plus advanced PUREX

– Scenario B2 : multi-recycling of plutonium in Gen-III reactors and burning of Minor Actinides in ADS plus advanced PUREX & PYRO

– Scenario B3 : mono-recycling of plutonium in Gen-III reactors + burning of plutonium in Gen-IV fast reactors + burning of Minor Actinides in ADS including advanced PUREX and PYRO (reduced efforts)

Page 5: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

Cradle-to-Grave

5 A1: 5.354 spent fuel assemblies / TWhel B1: 1.644 canisters / TWhel (HLWvitr.)

Page 6: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

6

Performance indicators

The indicators have been divided into two major groups:

• “Technical” indicators related to waste management issues: – composition of the waste; number of SF-assemblies, number of canisters, – size of the repository; gallery length (influenced by heat load) – long-term performance of the repository system:

• individual annual dose; • radiotoxicity flux released into the biosphere; • integrated radiotoxicity flux released into the biosphere.

– Inclusion of ILW

• Economic, Environmental and Societal sustainability (EES) indicators – Production cost & external cost – Fuel import dependencies, resource consumptions – Proliferation and terrorist attack resistance – Health impacts on workers & public in normal operation & accidents – etc.

Page 7: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

7

Priorities

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1 10 100 1000 10000 100000 1000000time (years)

Sv p

er to

n H

M

Grand totalPlutoniumAmericiumCuriumUraniumNeptuniumFission Products

Plutonium Management has strongest Impact ! Focus on most important MA !!!

U-Equilibrium

Page 8: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

8

Thermal output and length of disposal galleries (Clay)

Scenario Clay: allowable

thermal output at disposal time

Total needed gallery length

Relative needed gallery length

(W/m) (m/TWhe) (-) A1 354 5.922 1 A2 332 / 376 5.743 0.970 A3 365 3.479 0.587 B2 379 2.895 0.489 B1 379 1.882 0.318 B1-separation of Sr 1.273 0.215 B1- separation of Cs and Sr (Cs-waste disposed after 100 a)

0.439 0.0741

Reduction by a Factor of 3 (A1 vs. B1)

Removal of Cs & Sr would allow further reduction

A1: LWR-open A2: LWR-Mono A3: SFR-Multi-Pu B1: SFR-Multi-Pu&MA B2: SFR+ADS B3: LWR, SFR+ADS

Page 9: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

9

Repository in granite Concept: Enresa, Spain

• Bentonite saturated after 20 a, corrosion starts

• Sequential failure of canisters from 1300 to 10000 a

• Average time for H2O to reach biosphere 8400 a

• Diffusion and sorbtion retards the transport of many nuclides

• Release to river (106 m3/a), exposed group use river water

Page 10: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

10

Long-Lived Fission Products dominate Doses (A1 granite)

1,E-14

1,E-13

1,E-12

1,E-11

1,E-10

1,E-09

1,E-08

1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

I129

Se79Sn126

C14

Cl36

Cs135

Ra226-Th230

TOTAL

Pa231Th229

135Cs

Page 11: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

11

Granite: calculated doses (all scenarios, Enresa)

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Scenario A1

Scenario B2Scenario A3

Scenarios A3 & B1

Scenario A2

Scenario B2

Scenarios A3 & B1

Differences mainly due to Iodine removal during reprocessing !!!

A1: LWR-open A2: LWR-Mono A3: SFR-Multi-Pu B1: SFR-Multi-Pu&MA B2: SFR+ADS B3: LWR, SFR+ADS

Page 12: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

12

Calculated doses in Clay (all scenarios, SCK•CEN)

1.0E-17

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)

A1A2 hlwA2 spf-moxtotal A2A3B1B2 hlw-uoxB2 hlw-moxB2 hlw-adstotal B2

A1: LWR-direct A2: LWR-Mono A3: LWR-Multi B1: SFR-Multi B2: SFR+ADS

Page 13: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

13

Variant scenarios of B1 (calculated e.g. for Granite)

Impact of waste matrix lifetime

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Se79

Sn126

C14

Cs135

I129

Ca41Cl36

Se79

I129

C14

Cs135

Ca41

Sn126

72.000yr glass

720.000yr glass

7.2 million yr glass

RN

RN

C14

I129

Cs135

Se79

RN

Actinides& daughters (overlapped)

Sn126

Page 14: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

14

Thorium: Reduction of MA

Uranium

0,7 %

Actinides: Long-term Radiotoxicity !!!

Secondary Fuels

Thorium (3 x more)

Th/Pu MOX: 2x better Pu/MA consumption !!!

Page 15: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

15

Human intrusion doses (all scenarios, Nirex)

1E-061E-051E-041E-031E-021E-011E+001E+011E+021E+031E+04

1E+02 1E+03 1E+04 1E+05 1E+06

Time (yr)

Dos

e (S

v)

Scenario A1Scenario A2 VHLWScenario A2 MOXScenario A3Scenario B1Scenario B2 ADSScenario B2 MOXScenario B2 UOXCigar Lake Natural AnalogueLower ICRP Intervention LevelUpper ICRP Intervention Level

Page 16: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

16

ILW-Packages

Source: • Structural Parts of Fuel Assemblies

– End-fittings, chopped claddings, grids etc. – Core & Blanket

• Reprocessing of ADS-Fuel (Zr-Nitride) – C-14, Cl-36, Nb-94 contents – Noble metals from Pyro-processing

• ADS core components – Pb-Bi, core support, window, accelerator

tube

A1 0 m3/TWeh A2 2,5 m3/TWeh A3 5,3 m3/TWeh B1 5,3 m3/TWeh B2 3,3 m3/TWeh

For granite repository:

• Waste matrix less retention

• Direct access of ground water

• doses start earlier

• ILW dominates till 20.000 y

Page 17: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

17

Calculated doses for ILW in Granite (scenario A2, Enresa)

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Se79

C14

Cl36

TOTALI129

Mo93

Ra226Th230

Cs135

Page 18: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

18

Doses for HLW + ILW in Granite

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Scenario A1

Scenario A2

Scenarios A3 & B1

Scenario B2

Scenarios A3 & B1

Enresa calculation

Page 19: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

19

Conclusions (1)

• P&T Impact on repository dimensions (heat load) – reduction of gallery length with a factor 3 – a factor 5 in case of Sr separation – a factor 10 (or more) in case of Cs and Sr separation

• P&T Impact on dose: HLW disposal – limited: due to mobile fission and activation products

(14C, 36Cl, 79Se, 99Tc, 129I, 135Cs, 126Sn) – depends on amount of disposed 129I, 14C, 36Cl vs.

discharged volatile isotopes during reprocessing – ADS-specific waste to be considered in more detail

• P&T Impact on Human Intrusion dose: significant • Impact of more stable matrix on dose: significant

Page 20: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

20

Conclusions (2)

• ILW Impact on dose: – Granite: ILW doses > HLW doses consider use of low activation materials, add barriers (C-14)

– Clay: ILW doses < HLW doses • Reduced generation of MA: Th-MOX, IMF vs. Pu-MOX

• Hetereogeneous recycling & other reactors (BWR, HWR, HTR etc.)

• Improved Partitioning / Reprocessing: LLFP, volatile FP • Partitioning & Conditioning (P&C): viable option • Cost / Benefit Evaluations: science / industry dialog • Repository/waste package adaptation to P&T waste Transition to advanced reprocessing/conditioning: ASAP

Page 21: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

21

Thanks for your attention

Page 22: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

22

Assumptions

• A1: reference scenario: open cycle • Burn-up 50 GWd/tHM, UOX : 235U enrichment 4.2%

– HLW: 5.354 spent fuel assemblies / TWhel • B1: Fast neutron Gen IV & advanced PUREX

• Burn-up: core 136 GWd/tHM (axial 15, radial 24) • MOX: 23.2% Pu + 2.7% MA

– Vitrified HLW: 1.644 canisters / TWhel • HLW disposal in 3 host formations

– Granite: ENRESA (Spain), NRI (Czech Republic) – Clay: SCK•CEN (Belgium) – Salt: GRS (Germany)

Page 23: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

23

Evolution of temperature

0

20

40

60

80

100

120

0.01 0.1 1 10 100 1000time (years)

T (°

C)

interface A1interface A2 HLWinterface A2 MOXinterface A3interface B1interface B2 UOXinterface B2 MOXinterface B2 ADS A1: LWR-open

A2: LWR-Mono A3: LWR-Multi B1: SFR-Multi B2: SFR+ADS

Page 24: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

24

Radiological impact

• Safety functions of repository system – Engineered containment

• Container lifetime (2000 a)

– Slow release of RNs • Waste matrix degradation (100 000 a) • Solubility limitation (reducing conditions)

– Very slow transport • Diffusive transport through buffer (and clay formation) • Sorption on (clay) minerals

• Small releases of radionuclides into biosphere

Page 25: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

25

Radiotoxicity Fluxes for Clay

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

RT

Flux

to N

eoge

ne (S

v/a/

TWhe

)

C14

Cl36

Ni59

Se79

Zr93

Nb94

Tc99

Pd107

Sn126

I129

Cs1351.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

RT

Flu

x to

Neo

gen

e (S

v/a/

TW

he)

Se79

Zr93

Tc99

Pd107

Sn126

I129

Cs135

A1 B1 Significant impact of long-lived fission products !

Minor Actinides strongly immobilised ! Strong dependence on solubility limits !

Page 26: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

26

Human intrusion doses (scenario A1, Nirex)

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100 1000 10000 100000 1000000

Time (yr)

Dos

e

Cl_36

Sr_90

Tc_99

I_129

Cs_137

Po_210

Pb_210

Rn_222

Ra_226

Ac_227

Th_228

Th_229

Th_230

Th_232

Pa_231

U_234

U_235

U_238

Pu_238

Pu_239

Pu_240

Pu_241

Am_241

Am_242m

Am_243

Total

Pu-240

Am-241

Pu-238Cs-137

Total

Pu-239 Rn-222

Th-229

Ra-226

Th-230

, Sv

MA dominate Human Intrusion Scenarios

Page 27: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

27

Human intrusion: required isolation times

Comparator

HLW/SF Types

Cigar Lake natural

analogue

ICRP 10 mSv intervention

level

ICRP 100 mSv intervention

level Radiotoxicity

Scenario B1: HLW ~200,000 a ~40,000 a ~1000 a ~300 a Scenario B2: HLW

from ADS fuel > 1 Ma ~70,000 a ~13,000 a ~300 a

Scenario A3: HLW > 1 Ma > 1 Ma ~70,000 a ~24,000 a Scenario A1: spent

UOX fuel > 1 Ma > 1 Ma ~100,000 a ~200,000 a

Scenario A2: spent MOX fuel > 1 Ma > 1 Ma ~200,000 a ~90,000 a

Page 28: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

28

ILW: calculated doses in Clay (scenario A3, SCK•CEN)

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)

C14

C14 (R=2)

Cl36

Se79

Tc99

Sn126

I129

TOTAL

Page 29: Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal Werner

29

Doses for HLW + ILW in Clay (all scenarios, SCK•CEN)

1.0E-17

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)

A1 sfA2 hlw and sf-moxA2 ilwtotal A2A3 hlwA3 ilwtotal A3B1 hlwB1 ilwtotal B1B2 hlwB2 ilwtotal B2

SF, HLW and ILW