hydraulics lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · experiment (1):...

111
The Islamic University of Gaza Engineering Faculty Civil Engineering Department Hydraulics Lab ECIV 3122 This course involves conducting a number of lab experiments to support and verify the principles taught in fluid mechanics and hydraulics courses. 2012-2013

Upload: lydiep

Post on 19-Jul-2018

266 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

The Islamic University of Gaza

Engineering Faculty

Civil Engineering Department

Hydraulics Lab ECIV 3122 This course involves conducting a number of lab experiments to support and verify the principles taught in fluid mechanics and hydraulics courses.

2012-2013

Page 2: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Table of contents

I

Contents

Experiment (1): Hydrostatic Force on a Plane Surface 1

Experiment (2): Buoyancy & Flotation – Metacentric Height 8

Experiment (3): Impact Jets 24

Experiment (4): Flow Measurement 32

Experiment (5): Flow through orifice 43

Experiment (6): Flow Over Weirs 48

Experiment (7): Investigation of Bernoulli Theorem 56

Experiment (8): Minor Losses 61

Experiment (10): Centrifugal Pump 73

Exercise B 74

Exercise C 79

Exercise D 85

Exercise E 86

Experiment (11): Series and Parallel Pumps 88

Exercise F 90

Exercise G 93

Experiment (12): Open Channel Flow 95

REFERENCES 96

APPENDIX A: Report Cover Page 97

APPANDIX B: FINAL EXAM 2nd Semester 2010-2011 98

Page 3: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (1): Hydrostatic Force

1

Exp. (1): Hydrostatic Force on a Plane Surface

Purpose: To verify the theoretical prediction of the resultant hydrostatic force and its

point of action on both (a) partially submerged and (b) fully submerged plane surface

in a liquid.

Apparatus: Armfield Hydrostatic Force Demonstration Unit (Fig1).

Theory:

Review the derivation of the resultant magnitude and point of action of hydrostatic

force on a submerged plane surface. List these expressions for a vertical surface that

is (a) partially submerged, and (b) fully submerged.

(a) When the surface is fully submerged (Fig2):

) 2

d -(y d b g F (Theoretical)

H 12

d

2

d a

L g M F

2 (Practical)

)2

d -(y

H 12

d H

2

P (Centre of pressure)

Page 4: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (1): Hydrostatic Force

2

Figure 2 - Surface is fully submerged

(b) When the surface is partially submerged (Fig3):

y b g 0.5 F 2 (Theoretical)

3

y d a

L g M F (Practical)

y 3

2 H P (Centre of pressure)

Figure 3 - surface is partially submerged

Page 5: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (1): Hydrostatic Force

3

Procedure:

1. Measure the dimensions a, b and d of the quadrant, and the distance between the

pivot and the weight hanger L.

2. Insert the quadrant into the tank locating the balance arm on the knife edges.

Adjust the counter-balance weight until the balance arm is horizontal, as indicated

on the datum level indicator.

3. Add all the weights supplied to the weight. Fill the tank with water until the

balance beam tips lifting the weights then drain out a small quantity of water to

bring the balance arm horizontal, don't level the balance arm by adjustment of the

counter balance weight or the datum setting of the balance arm will be lost.

Record the water level shown on the scale. Fine adjustment of the water level may

be achieved by over-filling and slowly draining, using the drain cock.

4. Remove one or more weights from the weight carrier and level the balance arm by

draining out more of the water. When the arm is level record the depth of

immersion shown on the scale on the quadrant.

5. Repeat reading for reducing masses on the weight carrier.

Data & Results:

L= ……… mm , a=……… mm , d= ……… mm , b= ……… mm

1) Complete Immersion

Trials 1 2 3

Total weight on arm (M grams)

Depth of Water (y mm)

F=

H12

2d( 2)d(aMgL (N)

Force on End Surface

(Theoretical) F = ρgbd(y - 2d ) (N)

Depth of Centre of Pressure Hp

(mm)

2) Partial Immersion

Trials 1 2 3

Total weight on arm (M grams)

Depth of Water (y mm)

F= 3ydaMgL (N)

Force on End Surface

(Theoretical) F = 0.5ρgby2 (N)

Depth of Centre of Pressure Hp

(mm)

Page 6: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (1): Hydrostatic Force

4

Exp 1: Hydrostatic Force

SI US

mass kg Slug

Force N (kg.m/s2) lb (Slug.ft/s2)

1 lb = 4.4482 N

1 slug = 14.5938 kg

1 ft = 0.3048 m

g = 9.81 m/s2 = 32.2 ft/s2

( Times New Roman 21الخط )التقرير باللغة اإلنجليزية باستخدام الكمبيوتر

مع وضع عناوين للجداول و التقارير. وضع صور للتجربة في التقرير

.التعليق على النتائج و سبب الخطأ باالضافة الى مقارنات

الهدف من التجربة:

Center of pressureعمليا و مقارنتها مع القيمة النظرية + حساب بعد Fحساب قيمة

(.pivot)ربع الدائرة( ال تحدث عزم حول نقطة الدوران ) quadrantمالحظة: قوة دفع الماء على

θ

H Hp

Pivot CounterWeight

Page 7: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (1): Hydrostatic Force

5

مع العمقالضغط يزداد

ف : تحديد القوة المؤثرة من المائع على السطحلهدا

المائع الساكن القوة عموديةفي

( القوة نفس االتجاه الجمع صحيحPlaneإذا كان السطح مستوي )

القوة نفس االتجاه لكن القيم مختلفة

δ

إلى سطح المائع centroid المسافة الرأسية من

مكونات الجهاز:

Quadrant ربع دائرة لهplane surface.

Scale لقياس قيمةy من أسفلquadrant .إلى مكان وصول الماء

( عمودpole( عليه نقطة )pivot عندها ).نجعل العزم متساوي

Counterweight على الpole يعادل وزن الquadrant.

جرام. 05حامل أوزان وزنه

أرجل و عدسة لضبط أفقية الجهاز. 3اإلناء شفاف له

θ D

0

R

P C

G

S A

A

Page 8: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (1): Hydrostatic Force

6

Complete Immersion:

Area, A = bd

,

( ) (

)

(

)

(

)

(Theoritical)

( )

(Practical)

Partial Immersion:

Area, A = by

,

( )

(

)

(

)

(Theoritical)

( )

(Practical)

خطوات التجربة:

a, b, d and Lنقيس األبعاد (2

(a=10 cm, b=7.5 cm, d=10 cm, L=27.5 cm)

نضبط أفقية الجهاز (1

.counterweightنتأكد من أن وزن الجهاز ملغي باستخدام (3

(counterweightمالحظة: بعد معادلة وزن الجهاز ال نغير موضع (

.quadrant)جم )يمكن وضعه بالبداية وإلغاء وزنه مع وزن ال 05نضع األوزان: وزن الحامل (4

+ أوزان إضافية

.Complete Immersionنمأل الجهاز بالماء (0

.y>100mmبحيث تكون أفقي poleنبدأ بتصريف المياه حتى يصبح ال نضيف كتلة مناسبة و (6

بمحاذاة الخط األوسط( pole)السطح السفلي لل

m(kg)، و الكتلة y(mm)نقرأ التدريج (7

. Fالماء دفع نعوض في القوانين لحساب قوة (8

.complete Immersionمرتين أخريين حالة 8و 7و 6الخطوات نكرر (9

.Partial Immersion (0<y<100mm) نبدأ بتصريف المياه حتى تصبح (25

أفقي. poleنضع كتلة مناسبة ونبدأ بتصريف المياه حتى يصبح ال (22

m(kg)، و الكتلة y(mm)نقرأ التدريج (21

. Fنعوض في القوانين لحساب قوة دفع الماء (23

.Partial Immersionمرتين أخريين حالة 23و 21و 22نكرر الخطوات (24

Pole

Page 9: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (1): Hydrostatic Force

7

Page 10: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

8

Exp. (2): BUOYANCY & FLOTATION – METACENTRIC HEIGHT

Purpose: To determine the metacentric height of a flat bottomed vessel.

Introduction:

A floating body is stable if it tends to return to its original equilibrium position

after it had been tilted through a small angle.

For a floating body to be stable it is essential that the metacenter (M) is above the

center of gravity; metacentric height (MG) should be positive.

Fig. (1) Stable & unstable equilibrium

The greater the metacentric height, the greater is the stability, however, very large

metacentric heights causes undesirable oscillations in the ships and are avoided.

Theory:

If a body is tilted through an angle θ, B1 will be the position of the center of buoyancy

after tilting. A vertical line through B1 will intersect the center line of the body at (M)

(Metacenter of the body), MG is the metacentric height. The force due to buoyancy

acts vertically up through B1 and is equal to W, the weight of the body acts

downwards through G. The resulting couple is of magnitude Px

Page 11: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

9

Px = W. GG1

= W. GM. sinθ

→W

PxGM …………(1)

θ in radian

Fig.(2) Metacentric height

* The metacentric height can be calculated as followed:

MG = BM + OB – OG………………..........(2)

Where:

- V

IBM - BM is the metacentric radius ,

- 3

12

1LDI - I : Moment of inertia of pontoon

- V: Total volume of displaced liquid.

- OB = 0.5 ( LxD

V )

Experimental Set-up:

The set up consists of a small water tank having transparent side walls in which a

small ship model is floated, the weight of the model can be changed by adding or

removing weights. Adjustable mass is used for tilting the ship, plump line is attached

to the mast to measure the tilting angle.

Page 12: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

10

Fig.(3) Experimental set-up Fig.(4) Cross section

Pontoon measurement:

- Pontoon dimension : Depth (H) = 170 mm

Length (L) = 380 mm, Width (D) = 250 mm.

- The height of the center of gravity of the pontoon is OGvm = 125 mm from outer

surface of vessel base.

- The balance weight is placed at x = 123 mm from pontoon center line.

- The weight of the pontoon and the mast Wvm = 3000 gm.

PART (1) : Determination of floatation characteristic for unloaded and for

loaded pontoon

Procedure:

1. Assemble the pontoon by positioning the bridge piece and mast.

2. Weigh the pontoon and determine the height of its center of gravity up the line of

the mast.

3. Fill the hydraulic bench measuring tank with water and float the pontoon in it, then

ensure that the plumb line on the zero mark.

4. Apply a weight of 50 g on the bridge piece loading pin then measure and record

the angle of tilting and the value of applied weight.

5. Repeat step 4 for different weights; 100, 150, & 200 g, and take the corresponding

angle of tilting.

6. Repeat the above procedure with increasing the bottom loading by 2000 gm and

4000 gm.

Page 13: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

11

7. Record the results in the table ( Table " 1" ),

8. Calculate GM practically where sin

)123(

W

PGM , W has three cases.

9. Draw a relationship between θ (x-axis) and GM (y-axis), then obtain GM when θ

equals zero.

10. Calculate GM theoretically according to equation (2),

where WbWvm

xWbOGWvm

WbWvm

OGWbOGWvmOG vmbvm

)1()()()(

OGvm = 125 mm, OGb= x1: from table "1".

PART (2) : Determination of floatation characteristic when changing the center

of gravity of the pontoon.

1.Replace the bilge weights by 4x 50 gm weights.

2. Apply a weight of 300gm on a height of 190 mm from the pontoon surface.

3. Apply weights of 40, 80 &120 gms on the bridge piece loading pin, then record the

corresponding tilting angle.

4. Move 50 gm bilge weight to the mast ahead, then repeat step 3.

5. Repeat step 3 moving 100, 150 & 200 gm bilge weight to the mast.

6. Calculate GM practically where sin3500

)123(PGM .

7. Determine the height of the center of gravity for each loading condition.

8. Calculate GM theoretically according to equation (2),

where W

LWmWbWbWvm

OG

)2

790()190(1)35()125(

Where : In case of 50 gm, L = 10 mm.

In case of 100 gm, L = 20 mm.

In case of 150 gm, L = 30 mm.

In case of 200 gm, L = 40 mm.

Fig.(5) Weights & Dimensions

Page 14: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

12

Tables of results:

Table "1": Part(1)

Bilge Weight Off balance wt. Mean

Def.

Exp.

GM

GM at

θ =0 BM OB

Theo.

GM

Wb (gm) P (gm) θ

(degree) (mm)

from

graph (mm) (mm) (mm)

0.00 50 2.13

100 4.45

150 6.90

200 9.23

2000.00 50 1.95

x1 = 30 100 3.98

150 6.10

200 8.25

4000.00 100 3.35

x1 = 37.5 150 5.10

200 6.90

250 8.75

Page 15: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

13

Table "2": Part(2)

Off balance wt.

Mean

Def. Exp. GM BM OG

Theo.

GM M above

P (gm)

θ

(degree) (mm) (mm) (mm) (mm)

water

level

Mast Weight = 0.0

40 2.40

80 4.88

120 7.50

Mast Weight = 50.0

40 3.45

80 7.23

120 10.50

Mast weight = 100.0

20 3.28

40 6.35

80 12.00

Mast Weight = 150.0

10 3.70

20 10.23

40 14.78

Mast weight = 200.0

Unstable

Page 16: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

14

Experiment 2: Buoyancy

When a body is submerged or floating in a static fluid, the resultant force exerted on it

.Buoyancy Forceby the fluid is called the

كثافة السائل *عجلة الجاذبية األرضية قوة الدفع إلى أعلى = وزن السائل المزاح = حجم الجسم المغمور *

Upthrust force on the body = weight of the fluid displaced by the body

.vertically upward للشكل، و اتجاهها center of volume مكان تأثير هذه القوة في

Center of Buoyancy: centroid of the volume of fluid displaced.

Archimedes Principle:

نتعامل مع الجزئية المغمورة فقط، ألن كثافة الهواء صغيرة. مالحظة: عندما يكون الجسم طاف

The equilibrium of a body may be:

Stable: if when displaced returns to equilibrium position.

عندما نطبق إزاحة صغيرة يرجع إلى وضعه األصلي

Unstable: إذا أخذ وضع اتزان جديد

Neutral: إذا بقي كما هو

Stability of submerged Bodies: ( األجسام المغمورة)

Center of gravity ال يتغير, Center of Buoyancy يتغيرال .

.Center of Buoyancy(B)، و Center of gravity (G)يتم التحديد باالعتماد على

I) Stable:

Center of gravity below Center of Buoyancy (B( أسفل )Gعندما يكون )

restoring moment ينشأ عزم إرجاع

II) Unstable:

G is above , B is below

III) Neutral: على بعض B,G إذا انطبق

B G

B

G

R

W W

R

B G G

R

W

R

W

B

Page 17: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

15

Stability of Floating Bodies: ( لطافيةاألجسام ا)

Center of gravity ال يتغير, Center of Buoyancy يتغير.

. Metacenter (M)، و Center of gravity (G)يتم التحديد باالعتماد على

I) Stable:

Center of gravity below Metacenter

Mأسفل G عندما تكون

:Mالجديد مع الخط الرأسي Bنقطة تقاطع الخط الرأسي القديم من

Metacentric Height ( ): M الى G المسافة من

II) Unstable:

G is above , M is below

III) Neutral: M على G إذا انطبق

If M coincides with G, the body is in neutral equiblrium

أي انطباق neutralتعني just stableمالحظة:

Floating Bodies Submerged Bodies

Gو Bالمقارنة بين Gو Mالمقارنة بين

Center of gravity (G):

يبقى مكانه، ألن توزيع األوزان ال تتغير

Center of Buoyancy (B):

يتغير مكانه، ألن

The shape of submerged part is

altered when the body is tilted

Center of gravity (G):

يبقى مكانه، ألن األوزان ال تتغير

Center of Buoyancy (B):

يبقى مكانه، ألن

The shape of displaced fluid is not

altered when the body is tilted

B G

B G

M

G W=mg

W=mg R=W R=W

θ

G

x

G

B

G

B G

W=mg

W=mg R=W

R=W x

G

M

G

Page 18: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

16

If M lies above G arighting moment is produced, equilibrium is stable and GM is

regarded as +ve.

( is small)

( )

Determination of the Metacentric Height ( ):

,

القوة الخارجية المسببة للدوران

P ذراع القوة

W: weight of the vessel including P الماء المزاحوزن

[ ]

Determination of the position of the Metacenter relative to the center of Buoyancy:

BM: metacentric radius

V: حجم السائل المزاح

I: moment of inertia

معرفة المساحة و حول أي محور يلزم

ألن إمكانية االنقالب حوله أكبر longitudinalالمحور بالشكل المجاور

Water line plane حول محورaa

center of volumeتقع في Bمالحظة:

G

W=mg R=W

B1 B

O

M

Water line plane

Page 19: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

17

(flat bottomed vesselدراسة الطفو لقارب مستوي القاع ) عنوان التجربة:

تنقسم التجربة إلى جزئين:

دراسة الطفو في حاالت تحميل مختلفة (2

Center of gravityدراسة الطفو في حالة الوزن ثابت و تغيير (1

Part 1: Determination of floatation characteristics for unloaded and for loaded

pontoon:

Wvm (i.e. vessel + mast) = 3000 gmوزن القارب مع السارية

أبعاد القارب:

Depth H = 170 mm

Length L = 380 mm

Width D = 250 mm

مرات 4حاالت و في كل حالة نقيس الزاوية part1 3في

[ Wb (i.e. bilge weight) = 0.0 ]ال نضع أوزان داخل القارب الحالة األولى:

و نقيس 200gmثم 150gmثم 100gmثم ,50gm (P)نضع القارب في الماء و نضع أوزان على الطرف

الزاوية في كل حالة تحميل.)نمأل القيم في الجدول(

OG = OGvm = 125mm

جرام في كل جهة 2555الوزن اإلضافي داخل القارب Wb (bilge) = 2000g الحالة الثانية:

جرام و نوجد الزوايا.)نمأل الجدول( 155، و 205، 255، 05باستخدام أوزان طرفية 2نكرر خطوات الحالة

OGbو OGvmتتغير لوجود OGهنا

( ) ( )

Wb = 4000)جرام في كل جهة فيصبح 2555أخر في جوف القارب جرام 1555: نضيف الحالة الثالثة

gm)

مم من المركز( 213كما بالسابق )على طرف الجسر على بعد و نضع أوزان على الطرف

جرام و نقيس الزاوية في كل مرة 105، 155، 205، 255

OG تتغير هنا أيضا

( ) ( )

نمأل القيم بالجدول و نبدأ بالحسابات

Page 20: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

18

و (P)األوزان على الطرف بالجرام الثاني( و Wbاألوزان في جوف القارب بالجرام )األولالعمود

)الزاوية بالدرجات( يتم الحصول عليهم في المختبر.الثالث

ل center of gravity)أي بعد OGbتتغير حسب قيمة الوزن في جوف القارب و هي عبارة عن x1قيمة

bilge weight عن النقطةO )الموجودة أسفل القارب

:الرابعالعمود

x = 123 mm

P: off balance weight )من العمود الثاني(

W: W total = Wb + Wvm جم( 7555، الثالثة 0555جرام، الثانية 3555)الحالة األولى

من الجدول و لكن نحولها الى راديان :

:الخامسالعمود

Draw a relationship between θ (x-axis) & Exp. GM (y-axis)

لكل حالة. ( yعلى محور Exp GM ( و ) x على محور باستخدام برنامج اكسل نرسم عالقة بين )

الحاالت الثالثة على رسمة واحدة و لكن كل حالة لها منحنى يتكون من أربع نقاط

( لكل منحنى.y-intercept) θ=0عند Exp. GMنصل أفضل خط مستقيم يمر بالنقاط ثم نحدد قيمة

:سادسالالعمود

, L = 380 mm, D = 250 mm, V = ?

( )

OB or EB:السابعالعمود

(

الطول العرض )

(الحجم المغمور

المساحة )

OC: ارتفاع الماء

العمود الثامن:

[ ] السابع العمود السادس

Page 21: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

19

( ) ( )

في الحالة األولى ( )

في الحالة الثانية ( ) ( )

في الحالة الثالثة ( ) ( )

النظرية مع العملية GMالهدف مقارنة

.θ=0عند تحسب GM theoretical، ألن θ=0عند GM practicalيتم حساب

Part 2: Determination of effect on floatation characteristics of altering the center of

gravity of the pontoon, with given total loading:

Gالوزن ثابت و يتغير

التجربة:خطوات

نضع القارب في الماء -2

(.bilgeجرام في جوف المركب ) 4x05نضع أوزان -1

Wb = 200 gm وOGb = 35 mm

على كل جهة على الجسر حول السارية 150gm(:300gmنضع أوزان اتزان ) -3

Wb1 = 300 gm وOGb1 = 190 mm

وزن القارب مع السارية

Wvm = 3000 gm وOGvm = 125 mm

ثابت في كل الجزء الثاني Wtotal = 3500 gmيصبح الوزن الكلي

مرات لألوزان الطرفية 3حاالت كل حالة P (off balance weight ) :4نطبق أوزان -4

Wm = 0و Wb = 200 gm :األولىالحالة

في كل مرة. θجم و نقرأ قيمة 215جم ثم 85جرام ثم P 45:نضع وزن

.Wtotو عدم إدخالها في حساب Pمالحظة: يمكن إهمال قيمة

Wm = 50 gmو Wb = 150 gm :الثانيةالحالة

( و نكرر خطوات mastجرام من قاع القارب و نضعها أعلى السارية ) 155جرام من ال 05نرفع

الحالة األولى

( )

L is given in by the following table:

Wb (

gm

)

200

Wm

(gm

)

0

L (

mm

)

-

150 50 10

100 100 20

50 150 30

0 200 40

790 mm .هي المسافة من أسفل القارب إلى مركز تثبيت الوزن على الصاري

150 gm 150 gm

35

mm

OG

m =

79

0 +

L/2

mm

Wm

Wb

OG

vm =

12

5 m

m

OG

b1

= 1

90

mm

Wb1

OG

tota

l = ?

?

Wvm

P

X = 123 mm

Page 22: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

20

في كل حالة center of gravityمالحظة: يلزم حساب

( ) ( ) ( ) (

)

ثابتة في كل حاالت الجزء الثاني

الثانيثابتة في كل حاالت الجزء

ثابتة في كل حاالت الجزء الثاني

Wm = 100 gmو Wb = 100 gm: الثالثةالحالة

جرام أخرى من القاع و نضعها أعلى السارية 05نرفع

. في كل مرة، و نحسب θجم و نقرأ قيمة 85جم ثم 45جرام ثم P 15:نضع وزن

Wm = 150 gmو Wb = 50 gm: الرابعةالحالة

جرام أخرى من القاع و نضعها أعلى السارية 05نرفع

. في كل مرة، و نحسب θجم و نقرأ قيمة 45جم ثم 15جرام ثم P 25:نضع وزن

Wm = 200 gmو Wb = 0 gmالحالة الخامسة:

Unstableهذه الحالة

الحسابات:

عليهم في المختبر. : يتم الحصولالثالث و الثاني و األولالعمود

:الرابعالعمود

P: من العمود الثاني,

x = 123 mm ثابت

W = 3500 gm ثابت

θ: tanθ sinθ من العمود الثالث و لكن بالراديان أو

:خامسالالعمود

.yعلى محور GMو xعلى محور θكما في الجزء األول

:سادسالالعمود

ثابت

ثابت ثابت ⇒

ثابتة في كل الجزء الثاني ⇒

Page 23: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

21

:سابعالالعمود

(ثابتة) ⇒

:ثامنالالعمود

( )

(من العمود السادس) (من العمود السابع) (متغيرة)

( ) ( ) ( ) (

)

:تاسعالالعمود

(من عمود ) (من المعادلة السابقة)

Homework:

Write the momentum equation on a paper with explanation of the symbols.

Page 24: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

22

Page 25: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (2): Buoyancy

23

Page 26: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

24

Exp. (3): Impact Jets

Purpose: To investigate the reaction force produced by the impact of a jet of water

on various target vanes.

Apparatus: Impact Jet Apparatus (Fig. 1), Targets (Fig. 2).

Figure 1: Impact jet apparatus

Figure 2: Interchangeable Target Vanes

Page 27: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

25

Theory:

Figure 3 : Impact of a Jet

θ - ρ Q V

R

i

cos1

A

QVn

g hVV ni 2 - 22

Where:

R : Impulse force.

iV : incident velocity.

Q : Volumetric flow rate.

nV : jet velocity.

h : height of target above nozzle.

Procedure:

1. Position the weight carrier on the weight platform and add weights until the top of

the target is clear of the stop and the weight platform is floating in mid position.

Move the pointer so that it is aligned with the weight platform.

2. Start the pump and establish the water flow by steadily opening the bench

regulating valve until it is fully open.

3. The vane will now be deflected by the impact of the jet. Place additional weights

onto the weight carrier until the weight platform is again floating in mid position.

Measure the flow rate (volume collected in certain time) and record the result on

the test sheet, together with the corresponding value of additional weight on the

tray. Observe the form of the deflected jet and note its shape.

4. Reduce the weight on the weight carrier in steps and maintain balance of the

weight platform by regulating the flow rate in about eight or ten even steps (In the

lab we made 3 steps only), each time recording the value of the flow rate and

weights on the weight carrier.

5. Close the control valve and switch off the pump. Allow the apparatus to drain.

Page 28: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

26

6. Replace the 5mm nozzle with the 8mm diameter nozzle and repeat the tests.

7. Replace the normal vane with the 45 conical vane and repeat the test with both

the 5mm and 8mm nozzles.

8. Replace the 45 conical vane with the hemispherical vane and repeat the test with

both the 5mm and 8mm nozzles.

Data & Results:

1. Record the results on a copy of the result sheet provided.

2. Calculate for each result the flow rate and the nozzle exit velocity. Correct the

nozzle velocity for the height of the target above the nozzle to obtain the

impact velocity.

3. Calculate the impact momentum, and plot graphs of the impact force R against

impact momentum and determine the slope of the graphs for each target.

Compare with the theoretical values.

Target Vanes

(degrees)

Nozzle

Dia -- d --

(mm)

Additional

Weights -- m --

(gm)

Volume of water

Collected - V - (Liter)

Time to

collect -- t --

(sec)

°

5

90

θ=

Flat

8

320 20 48

250 20 58

160 20 71

°

5

45

θ=

Co

nic

al

8

110 20 48

80 20 52

60 20 82

°

5

135

θ=

Sem

i-

sph

eric

al

8

450 20 55

300 20 66

150 20 88

Comment:

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

Page 29: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

27

Experiment 3: Impact of jet

Rate of flow

Mass rate of flow ( ) Volume rate of flow (Q)

(الحجم)

(السرعة)

Momentum Equation: m

Σفي األجسام الصلبة قانون نيوتن للحركة:

في الموائع:

⇒ ( ) [vector equation]

x-direction y-direction

resultant force acting on the fluid

نحن نريد تأثير الماء على األشياء قانون نيوتن الثالث ⇐

1- F1 = FR: by any solid body touching the control volume

2- F2 = FB: body force such as gravity

3- F3 = FP: fluid Pressure

R = - FR

FR + FP + FB = ( ) …. Vector equation

Application of the momentum equation:

Impact of a jet on a plane surface

Force due to flow round a curved vane

Force due to the flow of fluid round a pipe bend

Reaction of a jet

Pelton Wheelأحد تطبيقاته :

momentum equationيعتمد الجهاز على

( )

( )

( )

( )

(هذه القيمة نظريا معروفة) , R: Impact Force, : Incident Momentum

V1

V1 A1

V2

V2

Page 30: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

28

3 Target Vanes:

Flat Conical Hemispherical

1-cos

=1 = 0.293 = 1.707

Nozzle diameter:

5 mm or 8 mm

خطوات التجربة:

(nozzle 5 mmو نركب ) ( ) Flat Vaneأوال: نركب

ال بحيث تنزل )ال يدخل في الحسابات( نضع وزن ابتدائي platform .للنصف تقريبا

( نحرك المؤشرpointerحتى يكون بمحاذاة ال )platform .

نشغل المضخة ثم نزيد الflow إلى أعلى قيمة تدريجيا. 5من

نالحظ ارتفاع الplatform نتيجةimpact of the jet.

ترجع إلى محاذاة المؤشر. نضع أوزان إضافية )تدخل في الحسابات( حتى

نقيس الvolume .المتجمع خالل فترة زمنية، و نسجل كتلة األوزان اإلضافية

نالحظ شكل الjet .و انحرافه

نقلل األوزان و نحقق االتزان للplatform عن طريق تقليل الflow .

.نحسب حجم الماء المتجمع خالل فترة زمنية، و الكتلة

تين مرة ثالثة.نكرر الخطوتين السابق

نغلق الflow و نطفئ المضخة و نبدل الnozzle (0 ( ب )و نكرر 8مم ،)الخطوات و نأخذ قراءات مم

حاالت. 3

.8mmو 5mmأخذ قراءات ل ننكرر الخطوات و ، و ب ال targetنبدل الثانيا:

.hemispherical نكرر نفس الخطوات و لكن ثالثا:

Pointer Weights

Weight Carrier

Weight Platform

Page 31: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

29

الحسابات:

Volume) الرابع( و Additional Weights) الثالث( و .Nozzle Dia) الثاني( و Target) األولالعمود

Collected الخامس( و العمود (Time to collect.يتم الحصول عليهم في المختبر :)

Volumetric Flow Rate (Q): السادسالعمود

( )

t = 1 : 41.25 = 1*60+41.25لتحويل الزمن

) Nozzle Velocity:بعالساالعمود

)

( )

( ) Height above Nozzle :ثامنالالعمود

Height of the target above the nozzle (h) 2 mm

) Impact Velocity:تاسعالالعمود )

,

( )

( ) Impact Force:عاشرالالعمود

( ) (من العمود الثالث) ( )

):حادي عشرالالعمود ) Incident Momentum

(

(تحويل الوحدات إلى

( ),

( )

:ثاني عشرالالعمود

:عشر لثثاالالعمود

، و yعلى محور R(N)نرسم عالقة بين xعلى محور ( )

(5،5من خيارات خط االتجاه نختار أفضل خط مستقيم يمر بنقطة األصل )

.aفيكون الميل = y=axنظهر المعادلة

Page 32: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

30

Page 33: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (3): Impact of Jet

31

Page 34: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

32

Exp. (4) : FLOW MEASUREMENT

Purpose: To study some of the famous instruments used in flow measurements.

Theory:

There are many instruments used in flow measurements such as Venturi meter, orifice

plate and the Rotameter.

Fig.(1) Flow measurement instruments

Fig.(2) Flow measurement instruments

Page 35: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

33

1. Sudden Enlargement

The head loss through the sudden enlargement he

g

Vkehe

2

2

1 ……………………. (1)

Where 22

2

2

1 11

A

Ake

2

1

D

D ,

2

12

A

A →

Fig.(3) Sudden enlargement

2. Venturi Meter

The flow through venturi meter can calculated from the following equation

42

1

2

gHACQ dact …………… (2)

Where Cd is the coefficient of discharge.

Fig.(4) Venturi Meter

3. Orifices plate

The flow through venturi meter can calculated from the following equation

42

1

2

gHACQ dact ………………. (3)

Where Cd is the coefficient of discharge.

Fig.(5) Orifices plate

4. Elbows

The head loss through the elbow hb

g

Vkh bb

2

2

1 ………………………… (4)

Where kb is the coefficient of the elbow

5. Rotameter

The Rotameter reads the flow directly.

21

2

12

2

1

)12(2

A

A

A

A

hhgV

Page 36: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

34

Procedure:

1. Prepare the instruments such that the water passes Sudden Enlargement, then

Venturi meter, Orifice plate , Elbow , and finally Rotameter .

2. Switch the pump on , allow the water to enter the flow measurement instruments ,

which are connected to Manometers tubes.

3. Control the flow valve to obtain different readings of the heads in manometers and

the corresponding flow from the volume tank .

4. Record the results.

5. Calculate the head losses from the manometer readings and the flow and Cd

for Venturi and orifice plate .

Data & Results

Volume flow (Liters)

Time (min)

Head at tapping 1 (cm)

Head at tapping 2 (cm)

Head at tapping 3 (cm)

Head at tapping 4(cm)

Head at tapping 5 (cm)

Head at tapping 6 (cm)

Head at tapping 7 (cm)

Head at tapping 8 (cm)

Rotameter flow rate

Page 37: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

35

Experiment 4: Flow Measurement

From Bernoulli:

(

) … (1)

from Continuity equation * في األنابيب الساكنة *

⇒ … (2)

From (1) and (2) we get

(

)

From Mechanics of fluids by B.S. Massey, Sixth Edition

The net force acting towards right

( )

the mean pressure of eddying fluid over the annular face GD

Assume

Net force:

⇒( )

From steady-flow momentum equation this force equals the rate of increase of

momentum in the same direction:

( ) ( )

( ) ( )

Page 38: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

36

From energy equation for a constant :-

represents the loss of total head between 1 & 2

( )

( )

(

)

( )

From J.C. Borda and L.M. M Carnot

H.G.L is below E.G.L by

Step up occur in pressure

line at Enlargement.

{

( )

} ( )

Since negative, exceeds

Exit Loss

(E.G.L)

Pressure Line

(H.G.L)

( )

( )

Page 39: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

37

For sudden enlargement ( اشتقاق المعادلة توضيح ) :

Continuity equation:

2أعلى من ارتفاعه في 1نالحظ أن ارتفاع الماء في البيزوميتر

Using Bernoulli equation - Head Loss equations:

( )

, or

(

) (

)

( )

(

)

Substitute continuity equation, we get:

( )

(

)

(

)

(

)

[ (

)

(

)

]

[ (

)

(

(

)

)]

[ (

)

(

)

]

[

(

)

]

( )

(

)

1 2

Page 40: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

38

Purpose: To study some of the famous instruments used in flow measurement.

باستخدام أجهزة مختلفة Qقياس

There are many instruments used in flow measurements such as Venturimeter,

orifice plate and rotameter (Variable area meter).

Description of apparatus:

Water Flow Measuring Apparatus is designed as a free-standing apparatus for

use on the Hydraulics Bench, although it could be used in conjunction with a low

pressure water supply controlled by a valve and a discharge to drain. Water enters the

apparatus through the lower left-hand end and flows horizontally through a sudden

enlargement into a transparent venturi meter, and into an orifice plate, a 90º elbow

changes the flow direction to vertical and connects to a variable area flow meter, a

second bend passes the flow into a discharge pipe which incorporates an atmospheric

break.

The static head at various points in the flow path may be measured on a

manometer panel. The water flow through the apparatus is controlled by the delivery

valve of the Hydraulics Bench and the flow rate may be confirmed by using the

volumetric measuring tank of the Hydraulics Bench.

Calculations:

I. Sudden Enlargement:

( )

(

)

( )

. yعلى محور مع xعلى محور عن طريق رسم عالقة بين Cdنحصل على

حيث يساوي الميل Cdنرسم أفضل خط مستقيم يمر بنقطة األصل فنحصل على

Page 41: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

39

II. Venturi:

اشتقاق المعادلة: -

[

]

( )

(

) √

:الحسابات -

.yعلى محور مع xعلى محور √نرسم عالقة بين

و نوجد الميل عن طريق إظهار المعادلة (0,0)خط مستقيم يمر بنقطة األصل نرسم أفضل

(Excel)

…. Calculate Cd & check in the range (0.975 – 0.995)

III. Orifice:

h6, h7نستخدم h3, h4و نفس الحسابات، و لكن الفرق بدل ventureنفس اشتقاق

IV. Rotameter:

. L/minمباشرة بوحدة flowيقيس ال

K=Slope، حيث Kفنحصل على yعلى محور مع xعلى محور نرسم عالقة بين

أثناء الحسابات و الرسم. (Units)للوحداتانتبه -مالحظة مهمة:

عند أخذ قراءات المانوميتر يجب التأكد من عدم وجود أي فقاعات هواء داخل األنابيب. -

Page 42: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

40

Page 43: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

41

Page 44: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (4): Flow Measurement

42

Page 45: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (5): Flow through Orifice

43

Experiment 5: Flow through orifice

Purpose:

- Studying the flow through small orifice discharging to atmosphere.

- Calculating the coefficient of discharge (Cd).

- Calculating the coefficient of velocity (Cv).

- Calculating the coefficient of contraction (Cc).

حساب زمن تفريغ خزان -

استخدام عدة أشكال و مقارنتها -

Theory:

Orifice: H قطرها صغير مقارنة مع ارتفاع عبارة عن فتحة صغيرة في خزان )في الجانب أو في األسفل(

الماء

مم. 8مم، أو 0مم، 3متوفرة مع الجهاز : أقطار 3

H is constant ⇒

⇒ √

سببين الختالف التدفق: السرعة و المساحة

Cd in the range [0.6-0.65]

√ , where is the coefficient of velocity

, where is the coefficient of contraction

نأخذها بعيدة شوي عشان الضغط يكون صفر

Page 46: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (5): Flow through Orifice

44

:trajectoryو الحصول على yو xيتم قياس مسافات

In x-direction:

In y-direction:

, assuing positive is downward +

(

)

⇒ √

Calculations:

o Part 1 (Cd):

Head 50cm and 25 cm

لها قيمتين. Hألن نحصل على قيمتين ل

Page 47: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (5): Flow through Orifice

45

yعلى محور مع xعلى محور √نرسم عالقة بين

مع إظهار المعادلة (0,0)أفضل خط مستقيم يمر بنقطة األصل نرسم

√ (

→ )

o Part 2 (Cv):

في حالة عدم وجود تدفق نتأكد من أفقية الجهاز عن طريق التأكد من أن ارتفاع الماء في األنابيب متساو

مم 8( dسم و قطر) 05(H) نستخدم ارتفاع ماء

√ √

⇒ √ √ √

.yعلى محور ، مع xعلى محور √نرسم عالقة بين

مع إظهار المعادلة (0,0)نرسم أفضل خط مستقيم يمر بنقطة األصل

باستخدام الجدول التالي: trajectoryنرسم شكل ال

x

y

y (-ve)

or

بالسالب yنرسم قيم أو يتم عكس اتجاه المحور باستخدام اكسل

Homework:

لكل من: flow in open channel (Notches and Weirs)اشتقاق قانون + معادلة

{Rectangular, Triangular (Vee) and Trapezoidal}

( )

Page 48: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (5): Flow through Orifice

46

مالحظات:

بالصورة التالية: كما point gaugeيمكن استخدام yلقياس المسافة -

.للوحداتأثناء الحسابات و اختيار بيانات المحاور بالرسم يجب االنتباه -

Extension Pipe للمحافظة على

head ثابت، يمكن إزالته للحصول

سم. 25سم بدل 52على ارتفاع

أنبوب للتخلص من التدفق الزائد

)أعلى من االرتفاع المطلوب(.

.السفلييصل إلى الخزان

pointحجرين لرفع ال

gauge حتى نحصل

على قراءة الصفر.

Pipe به ثقوب جانبية عديدة، حتى

يرتفع الماء بشكل منتظم.

Page 49: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (5): Flow through Orifice

47

Page 50: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

48

Exp. (6): Flow Over Weirs

Purpose:

o To demonstrate the characteristics of flow over weirs.

o To determine the 'Coefficient of Discharge' for each type of weir.

Introduction:

In open channel hydraulics, weirs are commonly used to either regulate or to

measure the volumetric flow rate. They are of particular use in large scale situations

such as irrigation schemes, canals and rivers. For small scale applications, weirs are

often referred to as notches and invariably are sharp edged and manufactured from

thin plate material.

Apparatus:

Hydraulics Bench incorporates a weir channel. The rectangular notch weir or

(V) vee notch weir to be tested is clamped to the weir carrier in the channel by thumb

nuts.

Figure 1: Flow over Weirs - Figure 2: Flow over Weirs -

vee notch weir rectangular notch weir

Hydraulics Bench Basket of glass spheres

Weir channel Volumetric measuring tank

(V) Vee notch weir Rectangular weir

Hook & point gauge Hook Gauge and Scale

There are different shapes of weirs that can be used to measure the volumetric

flow rate. These shapes with their dimension are shown in fig 3 below.

4

3

5 8

7

1

2

5

6

7

1

3

2

6

8 4

Page 51: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

49

Figure 3: Details of weirs

Theory:

Rectangular Weir:

A rectangular notch is a thin square edged weir plate installed in a weir channel as

shown in figure 4.

Figure 4: Rectangular Notch

Consider the flow in an element of height at a depth h below the surface.

Assuming that the flow is everywhere normal to the plane of the weir and that the

free surface remains horizontal up to the plane of the weir, then

velocity through element √

Theoretical discharge through element √

Integrating between h = 0 and h = H

Total theoretical discharge ∫ √

√ ∫

Page 52: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

50

So,

In practice the flow through the notch will not be parallel and therefore will not be

normal to the plane of the weir. The free surface is not horizontal and viscosity

and surface tension will have an effect. There will be a considerable change in the

shape of the nappe as it passes through the notch with curvature of the stream

lines in both vertical and horizontal planes as indicated in Figure 5, in particular

the width of the nappe is reduced by the contractions at each end.

Figure 5: Shape of a Nappe

The discharge from a rectangular notch will be considerably less.

time

VolumeHgBCQCQ dthdact 2

3

23

2

In British Code:

2

3

)001.0](2716.05461.0[ HHQact Important Note: This Equation is special for Cussons Hydraulic Bench

(Rectangular Notch B = 10 cm ), For other notches (like Armfield Hydraulic

Bench) refer to original equation in British code.

Vee (Triangular) Notch:

A sharp edged triangular notch with an included angle of is shown in Figure 6

√ (

)

√ (

)

Figure 6: Triangular or V Notch

Page 53: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

51

Operation:

1. FLOW

MEASUREMENT

The discharge from the weir may be measured using either the

Rotameter (if fitted) or by using the volumetric measuring tank

and taking the time required to collect a quantity of water. The

time to collect the water is at least 120 seconds to obtain a

sufficiently accurate result.

2. Measuring the

Weir Datum

head-gauge datum or gauge zero, which is defined as the gauge reading corresponding to the level of the weir crest (rectangular weirs) or

the level of the vertex of the notch (triangular-notch weirs) …..BS ISO

1438:2008

3. Measuring the

Head

The surface of the water as it approaches the weir will fall, this is

particularly noticeable at high rates of discharge caused by high

heads. To obtain an accurate measure of the undisturbed water

level above the crest of the weir it is necessary to place the hook

gauge at a distance at least three times the head.

Experimental Procedure:

1. Place the flow stilling basket of glass spheres into the left end of the weir channel

and attach the hose from the bench regulating valve to the inlet connection into the

stilling basket.

2. Place the specific weir plate which is to be tested first and hold it using the five

thumb nuts. Ensure that the square edge of the weir faces upstream.

3. Start the pump and slowly open the bench regulating valve until the water level

reaches the crest of the weir and measure the water level to determine the datum

level Hzero.

4. Adjust the bench regulating valve to give the first required head level of

approximately 10mm. Measure the flow rate using the volumetric tank or the

rotameter. Observe the shape of the nappe.

5. Increase the flow by opening the bench regulating valve to set up heads above the

datum level in steps of approximately 10mm until the regulating valve is fully

open. At each condition measure the flow rate and observe the shape of the nappe.

6. Close the regulating valve, stop the pump and then replace the weir with the next

weir to be tested. Repeat the test procedure.

Results and Analysis:

1. Record the results on a copy of the results sheet. Record any observations of the

shape and type of nappe paying particular attention to whether the nappe was

clinging or sprung clear, and of the end contraction and general change in shape.

2. Plot a graph of loge (Q) against loge (H) for each weir. Measure the slopes and the

intercepts.

From the intercept calculate the coefficients of discharge and from the slopes of

the graphs confirm that the index is approximately 1.5 for the rectangular weir

and 2.5 for the triangular weirs.

3. Compare the results with those predicted using the empirical formula for

rectangular weir in British Standard BS3680.

Page 54: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

52

Experiment 6: Flow Over Weirs

Purpose:

To investigate the discharge-head characteristics of weirs

Determination of the coefficient of discharge for different shapes of weirs

Introduction:

In open channel weirs are used to either regulate or to measure the volumetric

flow rate.

Qو حساب flowتستخدم لتنظيم ال

.notchأكبر من weir: أن ال notchو ال weirالفرق بين ال

Vee Notchتكون أوضح في H، حيث rectangular: أدق في القياس من Veeميزة

Types:

o Rectangular:

o Triangular or Vee Notch:

Angle 60o or 90

o.

o Trapezoidal or Cippoletti:

o Linear:

Produce linear head flow characteristics

(general equation)

∫ √

√ ∫

Rectangular

√ ∫

[ √

]

Triangular (Vee)

b= …

√ (

)

Page 55: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

53

For Rectangular Notch:

,

سم weir =25عرض cussonsخاصة بجهاز التالية معادلة ال

( ) [ ] ( )

For Vee Notch:

√ (

)

:Cdاشتقاق

(

√ (

)

)

(

√ (

))

(

√ (

))

y-axis y-intercept x-axis

(

√ (

))

√ (

)

( )

:الخطوات

o تركيبRectangular weir .

o تنظيم التدفق باستخدام(Basket of glass spheres) غلول(، أما جهاز(Armfield .فله قطعة أخرى

o .نمأل القناة حتى يصل الماء لحافة الحاجز

o .نقيس مستوى الصفر

o نزيد التدفق و نأخذ قراءةH .و نحسب حجم الماء المتجمع مع الزمن

o Measuring head: place the hook guage at a distance at least three times the head

o عدة مرات.نكرر الخطوة السابقة

o نرسم عالقة بينlnH على محورx ، وlnQ على محورy و نوجد التقاطع مع محور ،y و نحسب ،Cd.

Page 56: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

54

o تركيبVee Notch.

o .نكرر الخطوات السابقة و نأخذ عدة قراءات

o نرسم عالقة بينlnH على محورx و ،lnQ على محورy و نوجد التقاطع مع محور ،y و نحسب ،Cd.

( )

:الحسابات

كل منيتم حساب

Qact = V/t

ln Qact

ln H

Qth

Intercept and Cd

مع ضرورة االنتباه للوحدات

:مالحظات

the shape of the Nappeمن أسباب االختالف في التدفق:

منسوب الماء ينخفض مع االقتراب من الحاجز العرض يتناقص

قبل الحاجز بمسافة Hلذلك يتم قراءة

Page 57: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (6): Flow over Weirs

55

Page 58: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (7): Bernoulli Theorem

56

Exp. (7): Investigation of Bernoulli Theorem

Purpose: To investigate Bernoulli Theorem Experimentally.

Apparatus: Bernoulli’s Apparatus (Fig. 1, Fig. 2)

Figure 2:

Bernoulli’s Apparatus

Page 59: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (7): Bernoulli Theorem

57

Table (1): Area of each section:

Tapping

Number 1 2 3 4 5 6 7 8 9 10 11

Flow

Area

(mm2)

102.56 90.11 77.66 65.22 52.77 40.32 52.77 65.22 77.66 90.11 102.56

Theory:

Bernoulli’s Theorem

tconszg

v

g

ptan

2

2

Where:

g

p

: pressure head

g

v

2

2

: kinetic head

z : potential head

Losses

fHzg

v

g

pz

g

v

g

p 2

2

221

2

11

22

Where:

fHHH 111

pressure Recovery

Recovery pressure = 611 hh

Loss pressure = 61 hh

61

611

hh

hhR degree of pressure recovery

Page 60: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (7): Bernoulli Theorem

58

Procedure:

1. Open the pump and let the water go through the apparatus until all the air bubbles leave.

2. Set the difference between the tanks to 10 cm by using the arm beside the shorter tank.

3. When the height of water in the piezometers not change put a white paper (

A3 ) behind the piezometers and mark on it the height of water.

4. Close the valve of the basin and begin the stop watch to calculate Q.

5. Repeat the previous steps with different differences between the two tanks (

15 then 20 cm )

6. Take the paper and connect every set of points with lines.

Data & Results:

1. Record the results on a copy of the result sheet provided. 2. Calculate the flow rate for each set of results. 3. For each set of results calculate at the cross-section adjacent to each

manometer tube, the flow velocity. 4. Plot a graph of head (H) against distance (S) and also (H+V2/2g) against

distance (S).

Page 61: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (7): Bernoulli Theorem

59

Page 62: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (7): Bernoulli Theorem

60

Page 63: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

61

Experiment 8: Minor Losses

Purpose:

To determine the loss factors for flow through a range of pipe fittings

including bends, a contraction, an enlargement and a gate-valve.

Introduction:

Energy losses in pipe flows are the result of friction between the fluid and the

pipe walls and internal friction between fluid particles. Minor (secondary) head

losses occur at any location in a pipe system where streamlines are not straight, such

as at pipe junctions, bends, valves, contractions, expansions, and reservoir inlets and

outlets. In this experiment, minor head losses through a pipe section that has several

bends, transitions, and fittings will be measured.

Apparatus:

Energy Losses in Bends and Fittings Apparatus.

It consists of:

- Sudden Enlargement

- Sudden Contraction

- Long Bend

- Short Bend

- Elbow Bend

- Mitre Bend figure 1:minor losses apparatus

Figure 2: Schematic drawing of the energy-loss apparatus

Page 64: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

62

Figure 3: Minor Losses Apparatus with hydraulic bench

- Flow rate through the circuit is controlled by a flow control valve.

- Pressure tappings in the circuit are connected to a twelve bank manometer, which

incorporates an air inlet/outlet valve in the top manifold. An air bleed screw

facilitates connection to a hand pump. This enables the levels in the manometer

bank to be adjusted to a convenient level to suit the system static pressure.

- A clamp which closes off the tappings to the mitre bend is introduced when

experiments on the valve fitting are required. A differential pressure gauge gives a

direct reading of losses through the gate valve.

Theory:

The energy balance between two points in a pipe can be described by the

Bernoulli equation, given by

where pi is static pressure (in Pa) at point i, g is specific weight of the fluid (in

N/m3), zi is the elevation (in meters) of point i, Vi is the fluid velocity (in m/s) at

point i, g is the gravitational constant (in m/s2), and hL is head loss (in meters).

The term pi/ is referred to as the static head; zi is the elevation head; and Vi2/2g is the

dynamic (or velocity) head. The summation of the static head and the elevation head, pi/ +

zi, is referred to as the piezometric head. The piezometric head is what is measured with the

piezometer (manometer) board on the apparatus for this experiment.

Head loss, hL, includes the sum of pipe friction losses, hf, and all minor losses,

where hi is the minor head loss (in meters) for the ith component and n is the number

of components (fittings, bends, etc.).

Lhg

Vz

p

g

Vz

p

22

2

22

2

2

11

1

ni

ifL hhh1

Page 65: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

63

Pipe friction losses are expressed as the Darcy-Weisbach equation given by

where f is a friction factor, L is the pipe length, and D is the pipe diameter. Pipe

friction losses are assumed to be negligible in this experiment

The energy loss which occurs in a pipe fitting (so-called secondary loss) is

commonly expressed in terms of a head loss (h, meters) in the form:

Where K = the loss coefficient and

v = mean velocity of flow into the fitting, For the expansion and contraction,

the V used is the velocity of the fluid in the smaller-diameter pipe.

Because of the complexity of flow in many fittings, K is usually determined

by experiment. For the pipe fitting experiment, the head loss is calculated from two

manometer readings, taken before and after each fitting, and K is then determined as

Due to the change in pipe cross-sectional area through the enlargement and

contraction, the system experiences an additional change in static pressure. This

change can be calculated as

To eliminate the effect of this area change on the measured head losses, this

value should be added to the head loss readings for the enlargement and the

contraction. Note that (h1 - h2) will be negative for the enlargement and

will be negative for the contraction.

For the gate valve experiment, pressure difference before and after gate is measured

directly using a pressure gauge. This can then be converted to an equivalent head loss

using the equation

1 bar = 10.2 m water

Procedure:

It is not possible to make measurements on all fittings simultaneously and,

therefore, it is necessary to run two separate tests.

o Part A:

1) Set up the losses apparatus on the hydraulic bench so that its base is horizontal

by adjusting the feet on the base plate if necessary. (this is necessary for accurate

height measurements from the manometers). Connect the test rig inlet to the bench

g

V

D

Lfh f

2

2

g

VKh

2

2

g

VhK

2/

2

gvgv 2/2/2

2

2

1

gvgv 2/2/2

2

2

1

Page 66: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

64

flow supply and run the outlet extension tube to the volumetric tank and secure it

in place.

2) Fully open the gate valve and the outlet flow control valve at the right hand end of the

apparatus.

3) Close the bench flow control valve then start the service pump.

4) Gradually open the bench flow control valve and allow the pipework to fill with

water until all air has been expelled from the pipework.

5) In order to bleed air from pressure tapping points and the manometers close

both the bench valve and the test rig flow control valve and open the air bleed

screw and remove the cap from the adjacent air valve. Connect a length of small

bore tubing from the air valve to the volumetric tank. Now, open the bench valve

and allow flow through the manometers to purge all air from them; then, tighten

the air bleed screw and partly open both the bench valve and the test rig flow

control valve.

Next, open the air bleed screw slightly to allow air to enter the top of the

manometers, re-tighten the screw when the manometer levels reach a convenient

height.

6) Check that all manometer levels are on scale at the maximum volume flow rate

required (approximately 17 liters/ minute). These levels can be adjusted further by

using the air bleed screw and the hand pump supplies. The air bleed screw

controls the air flow through the air valve, so when using the hand pump, the

bleed screw must be open. To retain the hand pump pressure in the system, the

screw must be closed after pumping.

7) If the levels in the manometer are too high then the hand pump can be used to

pressurise the top manifold. All levels will decrease simultaneously but retain the

appropriate differentials.

If the levels are too low then the hand pump should be disconnected and the

air bleed screw opened briefly to reduce the pressure in the top manifold.

Alternatively the outlet flow control valve can be closed to raise the static pressure

in the system which will raise all levels simultaneously.

If the level in any manometer tube is allowed to drop too low then air will

enter the bottom manifold. If the level in any manometer tube is too high then

water will enter the top manifold and flow into adjacent tubes.

8) Adjust the flow from the bench control valve and, at a given flow rate, take

height readings from all of the manometers after the levels have steadied. In order

to determine the volume flow rate, you should carry out a timed volume collection

using the volumetric tank. This is achieved by closing the ball valve and

Page 67: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

65

measuring (with a stopwatch) time taken to accumulate a known volume of fluid

in the tank, which is read from the sight glass. You should collect fluid for at least

one minute to minimize timing errors. ( note: valve should be kept fully open.)

9) Repeat this procedure to give a total of at least five sets of measurements over a

flow range from approximately 8 - 17 liters per minute.

o Part B:

10) Clamp off the connecting tubes to the mitre bend pressure tappings (to prevent

air being drawn into the system).

11) Start with the gate valve closed and open fully both the bench valve and the

lest rig flow control valve.

12) open the gate valve by approximately 50% of one turn (after taking up any

backlash).

13) For each of at least 5 flow rates, measure pressure drop across the valve from

the pressure gauge; adjust the flow rate by use of the test rig flow control valve.

Once measurements have started, do not adjust the gale valve. Determine the

volume flow rate by timed collection.

14) Repeat this procedure for the gate valve opened by approximately 70% of one

turn and then approximately 80% of one turn.

Data & Results:

The following dimensions from the equipment are used in the appropriate

calculations.

Internal diameter of pipework d = 0.0183 m

Internal diameter of pipework at enlargement outlet and contraction inlet

d = 0.0240 m

Page 68: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

66

Table 1. Raw Data for All Fittings Except Gate Valve

Case No. I II III IV V

Volume (L)

Time (sec)

Pie

zom

ete

r R

ead

ings

(m

m)

Enlargement 1

2

Contraction 3

4

Long Bend 5

6

Short Bend 7

8

Elbow 9

10

Mitre Bend 11

12

Table 2. Raw Data for Gate Valve

Case No. I II III IV V

50%

Op

ened

Volume (L)

Time (sec)

Gauge Reading

(bar)

Red (upstream)

Black (downstream)

70%

Op

ened

Volume (L)

Time (sec)

Gauge Reading

(bar)

Red (upstream)

Black (downstream)

80%

Op

ened

Volume (L)

Time (sec)

Gauge Reading

(bar)

Red (upstream)

Black (downstream)

Page 69: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

67

Table 3. Minor Head Losses of All Fittings Except Gate Valve

Case No. I II III IV V

Q (m3/sec)

V (m/s)

V2/2g (m)

Min

or

He

ad L

osse

s

(m)

Enlargement Δh

Δh +V12/2g- V2

2/2g

Contraction Δh Δh +V1

2/2g- V22/2g

Long Bend

Short Bend

Elbow

Mitre Bend

Table 4. Loss Coefficients for All Fittings Except Gate Valve

Case No. I II III IV V

Q (m3/sec)

V (m/s)

V2/2g (m)

Loss

C

oef

fici

ents

Enlargement

Contraction

Long Bend

Short Bend

Elbow

Mitre Bend

Table 5. Equivalent Minor Head Loss and Loss Coefficient for Gate Valve

Case No. I II III IV V

50%

Op

ened

Q (m3/sec)

V (m/sec)

V2/2g (m)

Minor Head Loss (m)

Loss Coefficient

70%

Op

ened

Q (m3/sec)

V (m/sec)

V2/2g (m)

Minor Head Loss (m)

Loss Coefficient

80%

Op

ened

Q (m3/sec)

V (m/sec)

V2/2g (m)

Minor Head Loss (m)

Loss Coefficient

Page 70: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

68

Calculations and Results

Fill in Tables 3 – 5 with calculated results. Assume that the pipe friction

losses between the upstream and downstream manometer ports are negligible, so the

total head loss is due to minor head losses. Remember the piezometric head is what is

measured with the piezometer (manometer) board on the experimental apparatus.

Questions

1. For Exercise A, prepare plots that show the effect of dynamic head on minor head

loss (i.e. plot graphs of head loss (∆h) against dynamic head (

)), and the effect of flow

rate on loss coefficients (i.e. K against volume flow rate Q).

2. For Exercise B, prepare plots that show the effect of dynamic head on equivalent

head loss (i.e. (∆h) against (

)), and the effect of flow rate on loss coefficients (i.e. K

against volume flow rate Q).

3. Comment on and explain the relationships evident in the plots of Questions 1 and

2. Include a comparison of the loss coefficients and geometry for the four types of

bends.

a. Is it justifiable to treat the loss coefficient as constant for a given

fitting? Explain.

b. How does the loss coefficient for the gate valve vary with the extent of

the opening of the valve? Explain.

4. Compare the experimental loss-coefficient values for different fittings to those

found in a fluid mechanics text book (or another source). Be sure to site the

source of the published values.

5. Does the static pressure increase or decrease for the enlargement and contraction?

Explain the increase or decrease in static pressure.

Page 71: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

69

Page 72: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

70

Page 73: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

71

Page 74: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (8): Minor Losses

72

Page 75: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

73

Experiment 10: Centrifugal Pump

Introduction:

Pumps fall into two main categories: positive displacement pumps and

rotodynamic pumps.

In a positive displacement pump, a fixed volume of fluid is forced from one

chamber into another. One of the oldest and most familiar designs is the reciprocating

engine, utilising a piston moving inside a cylinder. Steam pumps, the 'nodding

donkey', stirrup pumps and hydraulic rams are all of this type. Animal hearts are also

positive displacement pumps, which use volume reduction of one chamber to force

flow into another chamber.

The FM50 pump is, by contrast, a rotodynamic machine. Rotodynamic (or simply

dynamic) pumps impart momentum to a fluid, which then causes the fluid to move

into the delivery chamber or outlet. Turbines and centrifugal pumps all fall into this

category.

Pumps

Turbo-hydraulic (Kinetic) pumps Positive Displacement Pumps

Centrifugal Propeller Jet Screw Reciprocating

Pump (Radial) (Axial) (Mixed)

Description:

The apparatus consists of a tank and pipework which delivers water to and from a

small centrifugal pump. The unit is fitted with electronic sensors which measure the

process variables. Signals from these sensors are sent to a computer via an interface

device, and the unit is supplied with data

logging software as standard.

Pump speed and outlet pressure may

be varied to allow the collection of

performance data over a range of

parameters. The inlet (suction) head

pressure may be adjusted to investigate

the onset of cavitation. An alternative

impeller is also supplied so that the effect

of impeller design may be studied.

For more Details refer to Instruction

Manual FM50.

Figure 1: Centrifugal Pump Demonstration Unit

Page 76: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

74

Exercise B

Objective

To create head, power and efficiency characteristic curves for a centrifugal

pump.

Theory

One way of illustrating pump characteristics is to construct contour lines of

constant power or efficiency on a graph of pump head plotted against pump

discharge. These allow engineers to see the maximum efficiency of a pump

over a range of operating parameters, which can assist in the selection of an

appropriate pump to suit particular conditions. An example is given in Figure

2.

Figure 2

Equipment Set Up

If the equipment is not yet ready for use, proceed as follows:

Ensure the drain valve is fully closed.

If necessary, fill the reservoir to within 20cm of the top rim.

Ensure the inlet valve and gate valve are both fully open.

Ensure the equipment is connected to the IFD7 and the IFD7 is connected to a

suitable PC. The red and green indicator lights on the IFD7 should both be

illuminated.

Ensure the IFD7 is connected to an appropriate mains supply, and switch on

the supply.

Run the FM50-304 software. Check that 'IFD: OK' is displayed in the bottom

right corner of the screen and that there are values displayed in all the sensor

display boxes on the mimic diagram.

Page 77: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

75

Procedure

Switch on the IFD7.

Switch on the FM50 pump within the software using the Pump On button.

In the software, rename the current (blank) results table to '50%' (this will be

the only table if results from Exercise A are not available).

On the mimic diagram of the software, set the pump speed to 50%.

The interface will increase the pump speed until it reaches the required setting.

Allow water to circulate until all air has been f1ushed from the system.

Partially closing and opening the inlet and gate valves a few times will help in

priming the system and eliminating any bubbles caught within the valve

mechanism. Leave the inlet valve fully open.

Close the gate valve to give a flow rate Q of 0. (Note that the pump may not

run well with the gate valve closed or nearly closed, as the back pressure

produced is outside normal operating parameters. The pump should begin to

run more smoothly as the experiment progresses).

Select the icon to record the sensor readings and pump settings on the

results table of the software.

Open the gate valve to allow a low flow rate. Allow sufficient time for the

sensor readings to stabilise then select the icon to record the next set of

data.

Open the gate valve in small increments, allowing the sensor readings to

stabilise then recording the sensor and pump data each time.

Create a new results sheet by selecting the icon (you may also wish to

save the results at this time to avoid losing the data in the event of problems).

Close the gate valve.

Set the pump to 60%.

Select the icon to record the sensor readings and pump settings on the new

results table.

Repeat as before, opening the gate valve in small increments and allowing the

sensor readings to stabilise then recording the sensor and pump data each time.

Close the gate valve.

Repeat the procedure at 70%, 80%, 90% and 100%. Create a new results sheet

for each setting (and save the results if desired- the same file may be

overwritten each time as more data is added). For convenience, rename each

sheet of results in the software with the pump setting.

Ensure the results are saved after taking the final set of results.

Switch the pump off. If not proceeding directly to another exercise then switch off the IFD7 and close the FM50 software.

Page 78: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

76

Results

On the same graph plot Total Head Ht against Flow Rate Q for each setting. Graphs may be produced using the software graph facility, in which case the resulting graph with multiple plots must be printed. Alternatively the results may be imported into a more sophisticated spreadsheet program that allows the following procedure to be performed.

Select a value for efficiency, for example 40%. On each line plotted, mark the points at which an efficiency of 40% is achieved (the data is unlikely to include recorded points at which the efficiency is exactly 40%, so estimate the points based on the values obtained). Where the pump performance at a particular setting does not ever correspond to the efficiency chosen, note whether the efficiency would lie above the line or to the right of the pump performance curve. Join the marked points to form a smooth curve.

Repeat for other efficiency values. for example 35%.45% and 5090. to give a

family of efficiency curves.

Create and/or print a second head-flow rate graph for all pump frequencies.

Using the same procedure as for drawing contour lines of constant efficiency,

produce curves for constant mechanical power.

Conclusion

Examine and describe the shapes of the efficiency and power curves obtained.

Are the shapes consistent? How do they relate to the head-flow rate

characteristic? How do the efficiency and power curves relate to each other?

Compare the results to the example pump curves presented in the theory

section. How does the pump in the example compare to the pump on the FM50

in terms of capacity, power, and efficiency?

Page 79: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

77

Calculations

Table 1: Example of data taken from the Software (Setting 50%)

Sample Number

Notes

Pump Setting

S [%]

Pump Speed

n [rpm]

Water Temperature

T [°C]

Inlet Pressure

Pin [kPa]

Outlet Pressure

Pout [kPa]

Motor Torque

t [Nm]

Flow Rate

Q [l/s]

Density of

water

[kg/m³]

1

50 750 26.7 2.6 18.5 0.62 0.04 997

2

50 750 27.2 2.7 18.3 0.64 0.12 996

3

50 750 26.7 2.3 17.7 0.64 0.21 997

4

50 750 26.9 2.2 17.0 0.66 0.29 997

5

50 750 27.1 1.6 15.4 0.65 0.40 997

6

50 750 27.4 1.3 14.0 0.67 0.49 996

7

50 750 26.7 0.9 13.1 0.66 0.54 997

8

50 750 27.0 0.3 11.0 0.67 0.60 997

9

50 750 26.6 0.2 10.1 0.69 0.64 997

10

50 750 26.7 -0.4 9.5 0.68 0.66 997

11

50 750 26.8 -0.6 8.6 0.68 0.69 997

12

50 750 27.1 -0.9 8.1 0.68 0.72 996

13

50 750 26.7 -1.1 7.1 0.67 0.74 997

14

50 750 27.1 -1.0 7.2 0.70 0.76 996

15

50 750 26.7 -1.1 6.5 0.68 0.76 997

16

50 750 27.5 -1.0 6.2 0.69 0.76 996

17

50 750 27.1 -1.2 6.2 0.72 0.77 996

18

50 750 26.7 -1.2 6.2 0.70 0.77 997

19

50 750 27.4 -1.2 6.4 0.68 0.76 996

Table 1 (Cont.): Example 50% setting (n = 750 rpm)

Inlet Velocity

Vin [m/s]

Outlet Velocity

Vout [m/s]

Static Head

Hs [m]

Velocity Head

Hv [m]

Elevation Head

He [m]

Total Head

Ht [m]

Hydraulic Power

Ph [W]

Mechanical Power

Pm [W]

Pump Efficiency

E [%]

Predicted Flow Rate [l/s]

0.090 0.162 1.627 0.001 0.075 1.70 0.7 48.4 1.3 0.03

0.275 0.495 1.596 0.009 0.075 1.68 2.0 50.5 3.9 0.08

0.491 0.885 1.570 0.028 0.075 1.67 3.5 50.3 6.9 0.14

0.675 1.218 1.516 0.052 0.075 1.64 4.7 52.1 9.0 0.20

0.919 1.657 1.413 0.097 0.075 1.58 6.2 50.8 12.2 0.27

1.135 2.046 1.302 0.148 0.075 1.52 7.3 52.7 13.9 0.33

1.256 2.266 1.250 0.181 0.075 1.51 8.0 51.8 15.5 0.36

1.378 2.485 1.097 0.218 0.075 1.39 8.1 52.6 15.5 0.40

1.468 2.647 1.020 0.247 0.075 1.34 8.4 54.4 15.4 0.42

1.531 2.761 1.012 0.269 0.075 1.36 8.8 53.2 16.6 0.44

1.594 2.875 0.935 0.292 0.075 1.30 8.8 53.3 16.5 0.46

1.653 2.980 0.919 0.313 0.075 1.31 9.2 53.4 17.2 0.48

1.716 3.094 0.837 0.338 0.075 1.25 9.1 52.8 17.2 0.50

1.747 3.151 0.839 0.350 0.075 1.26 9.4 54.9 17.1 0.51

1.747 3.151 0.777 0.350 0.075 1.20 8.9 53.1 16.8 0.51

1.747 3.151 0.733 0.350 0.075 1.16 8.6 54.2 15.9 0.51

1.774 3.199 0.757 0.361 0.075 1.19 9.0 56.2 16.0 0.51

1.774 3.199 0.754 0.361 0.075 1.19 9.0 55.1 16.2 0.51

1.747 3.151 0.775 0.350 0.075 1.20 8.9 53.8 16.5 0.51

Page 80: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

78

Table 1 (Cont.): 50% setting (n = 750 rpm)

Predicted Total Head [m]

Vapour Pressure

Pv [kPa]

Net +ve Suction Head

Available [m]

Pipe Length

L [m]

Pipe Diameter

d [m]

Coefficient k

[-]

Coefficient C

[-]

System Head Loss [m]

Walkthrough Questions

Score [%]

0.757 36.64 6.73 0.916 0.032 4.9 140 0.06 0.746 37.33 6.68 0.916

4.9

0.21

0.743 36.64 6.72 0.916

4.9

0.40 0.730 36.89 6.71 0.916

4.9

0.58

0.704 37.14 6.67 0.916

4.9

0.86 0.678 37.58 6.64 0.916

4.9

1.13

0.669 36.70 6.72 0.916

4.9

1.29 0.618 37.08 6.66 0.916

4.9

1.46

0.597 36.57 6.73 0.916

4.9

1.60 0.603 36.64 6.69 0.916

4.9

1.69

0.578 36.82 6.68 0.916

4.9

1.79 0.581 37.20 6.63 0.916

4.9

1.88

0.555 36.64 6.69 0.916

4.9

1.98 0.562 37.20 6.65 0.916

4.9

2.04

0.534 36.70 6.69 0.916

4.9

2.04 0.515 37.65 6.60 0.916

4.9

2.04

0.530 37.20 6.64 0.916

4.9

2.08 0.529 36.64 6.70 0.916

4.9

2.08

0.533 37.58 6.59 0.916

4.9

2.04

Figure 3: Pump Curves for different velocities

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

Tota

l He

ad H

t [m

]

Flow Rate Q [l/s]

Pump Curves for different velocities (rpm)

725

955

1525

1555

1325

1255

Page 81: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

79

Exercise C

Objective

To investigate the use of the affinity laws in predicting the head-flow

characteristic for a pump.

Theory

When selecting a pump for a system, it is seldom practical to test the

performance of every size of pump in a manufacturer's range at all speeds at

which it may be designed to run. It is therefore useful to have a mathematical

solution that allows assumptions can be made about operating characteristics

of a pump running at one speed, impeller size, etc. from experimental results

taken at another.

The multiple curves obtained from plotting measured pump characteristics on

dimensional axes can be reduced to a single curve if appropriate dimensionless

groups are used. Provided the effects of t1uid viscosity on pump performance

are small, and that cavitation is not occurring, the characteristic of a given type

and shape of pump may be represented by:

[ ]

where n is the pump speed (rpm or Hz), and D is the impeller diameter (m)

For a single curve of the type suggested by this equation to represent more

than one operating condition of the particular type of pump, the criterion of

dynamic similarity must be fulfilled. That is, all fluid velocities at

corresponding points within the machine are in the same direction and

proportional to impeller speed. When this is the case, as for a particular pump

operated at different speeds, a simple graph of data is formed, as depicted in

Figure 4:

Figure 4: Dimensionless head-discharge characteristic of a particular centrifugal pump

operated at different speeds

Page 82: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

80

The dimensionless equation given previously is the basis from which the

affinity laws are derived. The affinity laws allow the performance of

geometrically similar pumps of different sizes or speeds to be predicted

accurately enough for practical purposes.

The methods used for deriving the affinity laws will not be presented here, but

the laws are as follows:

Power Coefficient

Flow Coefficient

Head Coefficient

These Laws are most often used to calculate changes in now rate, head and

power of a pump when the size, rotational speed or fluid density is changed.

The following formulae are derived from the above considerations, and allow

calculation of total head H, and power Pm at one speed n. to be deduced from

those measured at another speed n2:

More generally, the relationship between two geometrically similar machines

with characteristic diameters D1 and D2 operating at rotational speeds n1 and

n2 is shown in Figure 5. For any two points at which values of (gH / n2D

2) and

(Q / nD3) are the same, it follows that:

(

)

(

)

and

(

)

These are termed corresponding points.

The power coefficient

and the resulting efficiency E can be compared in

a similar manner.

Figure 5: Relationship of performance characteristics for geometrically similar machines

operating at different speeds

Page 83: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

81

Equipment Set Up

If the results from Exercise B are available then no further data is required.

Ensure you understand the Theory section then proceed directly to the results.

This experiment may be undertaken directly following another experiment, in

which case the equipment will already be prepared and need only be switched

back out of standby mode again.

If the equipment is not yet ready for use, proceed as follows:

Ensure the drain valve is fully closed.

If necessary, fill the reservoir to within 20cm of the top rim. Ensure the inlet

valve and the gate valve are both fully open.

Ensure the equipment is connected to the IFD7 and the IFD7 is connected to a

suitable PC. The red and green indicator lights on the IFD7 should both be

illuminated.

Ensure the IFD7 is connected to an appropriate mains supply, and switch on

the supply.

Run the FM50-304 software. Check that 'IFD: OK' is displayed in the bottom

right corner of the screen and that there are values displayed in all the sensor

display boxes on the mimic diagram

Procedure

The results from Exercise B may be used to perform the calculations and to

create the graphs for this exercise. Where these results are available, no further

data is required. Proceed directly to the Results section. If results are not

available, proceed as follows:

Switch on the IFD7.

Switch on the FM50 pump within the software.

In the software, set the pump to 50%.

Allow water to circulate until all air has been flushed from the system. Close

the gate valve to give a flow rate Q of 0.

Select the icon to record the sensor readings and pump settings on the

results table of the software.

Open the gate valve to give a very low flow rate. Allow sufficient time for the

sensor readings to stabilise then select the icon to record the next set of

data.

Open the gate valve in small increments, allowing the sensor readings to

stabilise then recording the sensor and pump data each time.

Create a new results sheet by selecting the icon (you may also wish to

save the results at this time to avoid losing the data in the event of problems).

Set the pump to 70%.

Close the gate valve.

Page 84: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

82

Select the icon to record the sensor readings and pump settings on the new

results table.

Open the gate valve to give a very low flow rate. Allow sufficient time for the

sensor readings to stubilise, then select the icon to record the next set of

data.

Repeat, opening the gate valve in small increments and allowing the sensor

readings to stabilise, then recording the sensor and pump data each time.

Ensure the results are saved using 'Save' or 'Save As .. .' from the software File

menu after taking the final set of results.

Switch off the FM50 within the software using the Power On/Standby button.

Switch off the IFD7.

Results The results taken at 70% will be used with the affinity laws to give predicted

results at 50%. This will then be compared to the actual results at 50%.

The software uses the affinity laws

and

to calculate the predicted values of Ht2 at predicted flow rates Q2 and 50%

setting from the measured values of Htl and Q1 and the values n1 = 70 and n2 =

50.

Plot a graph of Predicted Head against Predicted Flow Rate.

Plot the measured Total Head at 50% against measured Flow Rate at 50% (if

the data is exported into a dedicated spread sheet package or similar then it

may be possible to plot both graphs on the same axes).

Conclusion

Compare the predicted results at 50% with the measured results. How accurate

were the values obtained using the affinity laws? Discuss the advantages and

disadvantages of this technique for pump system design

Page 85: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

83

Calculations

Table 2: Data for 50% Setting and 70% setting from software

Practical

70% = 1050 rpm 50% = 750 rpm

Sample Number

Flow Rate

Q [l/s]

Total Head

Ht [m]

Flow Rate

Q [l/s]

Total Head

Ht [m]

1 0.08 3.41 0.04 1.70

2 0.15 3.38 0.12 1.68

3 0.27 3.26 0.21 1.67

4 0.43 3.26 0.29 1.64

5 0.56 3.11 0.40 1.58

6 0.66 2.99 0.49 1.52

7 0.76 2.88 0.54 1.51

8 0.82 2.79 0.60 1.39

9 0.89 2.68 0.64 1.34

10 0.93 2.63 0.66 1.36

11 1.00 2.58 0.69 1.30

12 1.01 2.52 0.72 1.31

13 1.04 2.42 0.74 1.25

14 1.04 2.33 0.76 1.26

15 1.06 2.44 0.76 1.20

16 1.05 2.34 0.76 1.16

17 1.06 2.34 0.77 1.19

18 1.08 2.38 0.77 1.19

19 1.08 2.35 0.76 1.20

20 1.06 2.34

Figure 6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.00 0.50 1.00 1.50

Tota

l He

ad H

t [m

]

Flow Rate Q [l/s]

Practical

70% = 1050 rpm

50% = 750 rpm

Page 86: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

84

Using Similarity Laws to calculate Q and Ht for 50%

and

Table 3: Data for 70% setting from software and 50% Setting from Similarity Laws

Similarity Laws

70% = 1050 rpm Calculated 50% = 750 rpm

Sample Number

Flow Rate

Q [l/s]

Total Head

Ht [m]

Flow Rate

Q [l/s]

Total Head

Ht [m]

1 0.08 3.41 0.06 1.74

2 0.15 3.38 0.10 1.72

3 0.27 3.26 0.19 1.66

4 0.43 3.26 0.30 1.66

5 0.56 3.11 0.40 1.59

6 0.66 2.99 0.47 1.53

7 0.76 2.88 0.54 1.47

8 0.82 2.79 0.59 1.42

9 0.89 2.68 0.64 1.37

10 0.93 2.63 0.66 1.34

11 1.00 2.58 0.71 1.32

12 1.01 2.52 0.72 1.29

13 1.04 2.42 0.74 1.23

14 1.04 2.33 0.74 1.19

15 1.06 2.44 0.76 1.24

16 1.05 2.34 0.75 1.19

17 1.06 2.34 0.76 1.19

18 1.08 2.38 0.77 1.22

19 1.08 2.35 0.77 1.20

20 1.06 2.34 0.76 1.19

Figure 7

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.00 0.50 1.00 1.50

Tota

l He

ad H

t [m

]

Flow Rate Q [l/s]

Affinity Laws

70% = 1050rpm

Calculated50% = 750rpm

Page 87: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

85

Exercise D

Objective

To investigate the effect of changing inlet head on pump performance.

Method

By varying the pressure at the inlet to the pump using a manual valve to

control the available flow.

Theory

In both the design and operation of a rotodynamic machine, careful attention

has to be paid to the fluid conditions on the suction side. In particular, it is

important to check the minimum pressure that can arise at any point to ensure

that cavitation does not take place.

Cavitation

If the pressure at any point is less than the vapour pressure of the liquid at the

temperature at that point, vaporisation will occur. This is most likely to arise in

the suction side where the lowest pressures are experienced. The vaporised

liquid appears as bubbles within the liquid, and these subsequently collapse

with such force that mechanical damage may be sustained. This condition,

known as cavitation, is accompanied by a marked increase in noise and

vibration in addition to the loss of head.

بالتدريج. suction pipeرؤية تكون الفقاعات عن طريق إغالق الصمام الموجود في يمكن

FM 51مالحظة: الفقاعات تكون اوضح في الجهاز االخر

Page 88: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

86

Exercise E

Objective

To obtain a Head - Flow curve for the piping system through which the fluid is

to be pumped. To determine the operating point of the pump.

Theory

System analysis for a pumping installation is used to select the most suitable

pumping units and to define their operating points. System analysis involves

calculating a head - flow curve for the pumping system (valves, pipes, fittings

etc.) and using this curve in conjunction with the performance curves of the

available pumps to select the most appropriate pump(s) for use within the

system.

The system curve is a graphic representation of the flow rate in the system with

respect to system head. It represents the relationship between flow rate and

hydraulic losses in a system. Such losses are due to the system design (e.g.

bends and fittings, surface roughness) and operating conditions (e.g.

temperature).

Assuming that

Flow velocity is proportional to volume now rate

Losses in the system are proportional to the square of the now velocity

it follows that system head loss must be proportional to the square of the

volume flow rate, and the system head - now graph will therefore be parabolic

in shape.

باقي الشرح موجود في الكتالوج الخاص بالجهاز

Calculations

Table 4

System Curve

Sample Number

Pump Setting

S [%]

Pump Speed

n [rpm]

Flow Rate

Q [l/s]

Total Head

Ht [m]

1 100 1500 1.49 4.28

2 90 1350 1.36 3.78

3 80 1200 1.22 3.03

4 70 1050 1.08 2.33

5 60 900 0.92 1.71

6 50 750 0.77 1.16

7 40 600 0.61 0.74

8 30 450 0.46 0.38

9 20 300 0.30 0.15

10 10 150 0.13 -0.01

11 0 0 0.00 -0.05

Page 89: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (9): Centrifugal Pump

87

Table 5

Pump Curve

Sample Number

Pump Setting

S [%]

Pump Speed

n [rpm]

Flow Rate

Q [l/s]

Total Head

Ht [m]

1 70 1050 1.08 2.28

2 70 1050 1.02 2.38

3 70 1050 1.00 2.55

4 70 1050 0.97 2.60

5 70 1050 0.92 2.69

6 70 1050 0.85 2.74

7 70 1050 0.80 2.86

8 70 1050 0.69 2.89

9 70 1050 0.61 3.10

10 70 1050 0.49 3.16

11 70 1050 0.35 3.28

12 70 1050 0.24 3.34

13 70 1050 0.13 3.39

14 70 1050 0.09 3.41

Figure 8

تم اخذها system curve، ألن قراءات pump curveمالحظة: نقطة التشغيل في الرسمة كانت اخر نقطة في

flow (outlet valve fully opened.)عند أعلى

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

0.00 0.50 1.00 1.50 2.00Tota

l He

ad H

t [m

]

Flow Rate Q [l/s]

Operating Point

Pump Curve

System Curve

Operating Point

Page 90: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (10): Series & Parallel Pumps

88

Experiment 11: Series and Parallel Pumps

Introduction to the Equipment

The apparatus consists of a tank and pipework which delivers water to and

from two identical centrifugal pumps. The unit is fitted with electronic sensors

which measure the process variables. Signals from these sensors are sent to a

computer via an interface device, and the unit is supplied with data logging

software as standard.

The speed of one of the pumps may be varied to allow the collection of

performance data over a range of parameters. Outlet pressures may be varied

to control the flow rate. Flow through the system may be set to allow single

pump operation, series pump operation or parallel pump operation.

Figure 1: Series and Parallel Pumps Demonstration Unit

Pumps

The two pumps are motor-driven centrifugal pumps. On pump 1 the speed of the motor is adjustable to give a range of 0 to 100%, allowing operation as a single pump for pump performance analysis. Pump 2 is an identical model but is run at its design speed, which is equivalent to a setting of 80% on the variable-speed pump for a 50Hz electrical supply, or 100% for a 60 Hz supply. The pump bodies and cover plates are made from clear acrylic, allowing the

impellers to be observed.

Inlet valve

A manual ball valve controls the inlet (suction) head supplied to the pumps. This valve should be fully open except when investigating the effect of inlet pressure on pump performance and cavitation formation.

Page 91: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (10): Series & Parallel Pumps

89

Setting the flow path

The system may be configured to drive flow

using single, series or parallel pumps. The

system valves are as shown:

Valves should be set to configure the system as follows. The software should also be

set to the corresponding flow path to ensure that the correct calculations are

performed.

Single Pump:

Series Pumps:

Parallel Pumps:

Page 92: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (10): Series & Parallel Pumps

90

Exercise F

Objective

To investigate the result on discharge and total head of operating pumps in

series.

Theory

A single pump may be insufficient to produce the performance required.

Combining two pumps increases the pumping capacity of the system. Two

pumps may be connected in series, so that water passes first through one pump

and then through the second. When two pumps operate in series, the flow rate

is the same as for a single pump but the total head is increased. The combined

pump head-capacity curve is found by adding the heads of the single pump

curves at the same capacity.

Figure 2

Equipment Set Up

Ensure the drain valve is fully closed.

If necessary, fill the reservoir to within 10 cm of the top rim.

Check that both pumps are fitted with similar impellers (the impellers may be

viewed through the clear cover plate of each pump).

Ensure the inlet valve and gate valve are both fully open.

Set the 3-way valve for flow in series (the earlier experiments have all used

this valve set for flow in parallel).

Ensure the equipment is connected to the IFD7 and the IFD7 is connected to a

suitable PC. The red and green indicator lights on the IFD7 should both be

illuminated.

Ensure the IFD7 is connected to an appropriate mains supply, and switch on

the supply. Switch on the IFD7.

Run the FM51-304 software. Check that 'IFD: OK' is displayed in the bottom

right corner of the screen and that there are values displayed in all the sensor

display boxes on the mimic diagram.

Page 93: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (10): Series & Parallel Pumps

91

Procedure

Both pumps must be used at the same setting in this experiment, to ensure

identical performance. As the speed of Pump 2 is fixed at its design

operational point, Pump 1 should be set to match - select 80% for a 50Hz

electrical supply, or 100% for 60 Hz.

Allow water to circulate until all air has been flushed from the system.

If results are already available for a single pump across its full flow range,

load those results into the software now and jump to the section of this

exercise using two pumps. If results are not available then proceed as follows:

Single pump performance:

Close Pump 2 outlet valve and open Pump 1 outlet valve.

In the software, on the mimic diagram, set the 'Mode' to 'Single' by selecting

the appropriate radio button.

Rename the results sheet to 'Single'.

Select the icon to record the sensor readings and pump settings on the

results table of the software.

Close the gate valve to reduce the flow by a small amount. Select the icon

again.

Continue to close the gate valve to give incremental changes in flow rate,

recording the sensor data each time.

After taking the final set of data, fully open the gate valve.

Series pump performance:

Create a new results sheet using the icon. Rename this new results sheet to

'Series'. In the software, on the mimic diagram, set the 'Mode' to 'Series' by

selecting the appropriate radio button.

Open Pump 2 outlet valve, close Pump 1 outlet valve and wait for any air to

circulate out of the system.

Select the icon to record the sensor readings and pump settings on the

results table of the software.

Close the gate valve to reduce the flow by a small increment. Select the

icon again.

Continue to close the gate valve to give incremental changes in flow rate,

recording the sensor data each time.

After taking the final set of data, fully open the gate valve again.

Exercise G may be performed immediately after this experiment without

closing the software; otherwise, save the results and ensure they are available

for Exercise G when required. (It may also be advisable to save the results

from this exercise before starting exercise G even if continuing straight on, to

ensure that the data is not lost in the event of a computer failure. The results

sheet may be overwritten with the combined results once Exercise G has been

completed).

Page 94: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (10): Series & Parallel Pumps

92

Results

On a base of flow rate, plot a graph of total head gain for the single pump and

for two pumps connected in series. Calculate the difference between the total

head gain for single and series pumps.

Conclusion

Does the total head gain for the two pumps in series match the theoretical

prediction of twice the head gain for a single pump (assuming the two pumps

used gave identical performance)?

Give examples of applications where pumps might be connected in series

Figure 3 Figure 4

عند توصيل المضخات على التوالي فإن

.تزداد Hقيمة

يجب أن تكون قيمة و لرؤية ذلك عمليا،

التدفق التي نقارن عندها منخفضة )أي أن

outlet valve مفتوح قليال( حتى يكون

لمضخة واحدة و headالفرق بين

لمضختين على التوالي واضح، كما بالشكل

المجاور.

Figure 5

Low Flow High Flow

حض

واق

رلفا

قرالف

رغي

حض

وا

Page 95: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (10): Series & Parallel Pumps

93

Exercise G

Objective

To investigate the result on discharge and total head of operating pumps in

parallel.

Theory

A single pump may be insufficient to produce the performance required.

Combining two pumps increases the pumping capacity of the system. Two

pumps may be connected in parallel, so that half the flow passes through one

of the pumps and the other half through the second pump. When two pumps

operate in parallel the total head increase remains unchanged but the flow rate

is increased. The head-capacity curve is found by adding the capacities of the

single pump curves at the same head.

Figure 6

Equipment Set Up

Ensure the drain valve is fully closed.

If necessary, fill the reservoir to within 10 cm of the top rim.

Check that both pumps are fitted with similar impellers (the impellers may be

viewed through the clear cover plate of each pump).

Ensure the inlet valve and gate valve are both full y open.

Set the 3-way valve for flow in parallel

Fully open the Pump 1 outlet valve and Pump 2 outlet valve. Opening both

valves fully ensures that the outlet pressure on both pumps is equal.

Ensure the equipment is connected to the IFD7 and the IFD7 is connected to a

suitable PC. The red and green indicator lights on the IFD7 should both be

illuminated.

Ensure the IFD7 is connected to an appropriate mains supply, and switch on

the supply. Switch on the IFD7.

Run the FM51-304 software. Check that 'IFD: OK' is displayed in the bottom

right corner of the screen and that there are values displayed in all the sensor

display boxes on the mimic diagram.

In the software, on the mimic diagram, set the 'Mode' to 'Parallel' by selecting

the appropriate radio button

Page 96: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Experiment (10): Series & Parallel Pumps

94

Procedure

Both pumps must be used at the same setting in this experiment, to ensure

identical performance. As the speed of Pump 2 is fixed at its design

operational point, Pump 1 should be set to match - select 80% for a 50Hz

electrical supply, or 100% for 60 Hz.

Allow water to circulate until all air has been flushed from the system.

Exercise F should be performed before this experiment, and the results loaded

into the software if the software is not still open from that exercise. If the

software is still open from Exercise F then create a new results sheet by

selecting the icon.

Rename the current (blank) results sheet to 'Parallel'.

Select the icon to record the sensor readings and pump settings on the

results table of the software.

Close the gate valve to reduce the flow by a small increment. Select the

icon again.

Continue to close the gate valve to give incremental changes in flow rate,

recording the sensor data each time

After taking the final set of data, fully open the gate valve. Set Pump 1 to 0%

and switch off both pumps

Results

On a base of flow rate, plot a graph of total head gain for the single pump and

for two pumps connected in parallel. Calculate the difference between the

capacity for single and parallel pumps.

Conclusion

Does the total head gain for the two pumps in parallel match the theoretical

prediction of twice the capacity of a single pump (assuming the two pumps

used gave identical performance)?

Compare the graphs for pumps in series and pumps in parallel, and describe

the similarities and differences.

Give examples of applications where pumps might be connected in parallel.

Drawing on the conclusions of earlier exercises, contrast these with

applications where it would be more appropriate to connect pumps in series,

and also with situations where it would be more appropriate to select a single

pump of higher performance.

Page 97: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 References

95

مالحظات:

Qعند توصيل المضخات على التوازي فإن قيمة -

.تزداد

و لرؤية ذلك عمليا، يجب أن تكون قيمة التدفق -

outlet valveعالية )أي أن التي نقارن عندها

fully opened حتى يكون الفرق بين )flow

ي واضح، ازلمضخة واحدة و لمضختين على التو

كما بالشكل المجاور.

Figure 7

Low Flow High Flow

أوضح منه 25تدريجيا في تجربة inlet valveعند إغالق cavitationتكون فقاعات الهواء التي تسبب -

.9في تجربة

Experiment 12: Open Channel Flow

http://www.cussons.co.uk/SOFTWARE/Part15/Part15.htm

18-7-2011

الفرق واضح

قليل الفرق

Page 98: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix A

96

REFERENCES

م. أحمد عبد القادر: مختبر الهيدروليكاملخص مختبر ميكانيكا موائع و

الكتب التالية:

o Fluid Mechanics, by Douglas, J.F., Gasiorek, J.M., Swaffield, J.A., Fourth Edition,2001

o Lecture notes for Hydraulics, Eng. Khalil Alastal

موقع شركة Cussons:

http://www.cussons.co.uk/SOFTWARE/Content.htm

18-7-2011

http://www.cussons.co.uk/SOFTWARE/ المعادالتإلظهار

18-7-2011

http://www.cussons.co.uk/en/ukindex.htm pdf ملفات

18-7-2011

موقع شركة Armfield:

http://www.discoverarmfield.co.uk/?js=enabled

18-7-2011

http://www.discoverarmfield.co.uk/data/fm51/ Series and Parallel Pumps

18-7-2011

http://www.discoverarmfield.co.uk/data/fm50/ Centrifugal Pump

18-7-2011

جامعة أجنبية موقع:

http://itll.colorado.edu/modular_experiments/experiment_directory/modules.php?f

ocus_area_id=6

18-7-2011 تحتوي ملفات لعدة تجارب

Instruction Manual .الخاص بجهاز التجربة الثامنة و التاسعة و العاشرة

(1522-7-28) :فيديوروابط للتجارب ملفات

- http://www.youtube.com/watch?v=Gi4qBOjVAXk&feature=related Exp.1

- http://www.youtube.com/watch?v=tXLI-IeAynI&feature=related Exp.3

- http://www.youtube.com/watch?v=_Y_vInO8gqw Exp.6, P1

- http://www.youtube.com/watch?v=l8kDN0E4x-k&feature=related Exp.6, P2

- http://www.youtube.com/watch?v=JXgkAyimSTM Exp.6, P3

- http://www.youtube.com/watch?v=h3ikeDyAoOE&feature=related Exp.11

Page 99: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix A

97

- http://www.youtube.com/watch?v=5etwhZ0d2GU Exp.11

- http://www.youtube.com/watch?v=h3ikeDyAoOE Exp.11

APPENDICES

APPENDIX A: Report Cover Page

THE ISLAMIC UNIVERSITY OF GAZA

FACULTY OF ENGINEERING

CIVIL ENGINEERING DEPARTMENT

HYDRAULICS LABORATORY

ECIV 3122

EXPERIMENT No.: …….

EXPERIMENT TITLE:

………………………………………………………………………

SUBMITTED BY:

1. …………………………………………….. 120………….

2. …………………………………………….. 120………….

CLASS NO.: …….

TEST DATE: ……..day …. / …. / ……..

REPORT SUBMITTAL DATE: ……..day …. / …. / ……..

Page 100: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix A

98

SUPERVISOR:

ENG. ……………………………..

Page 101: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

99

APPANDIX B: FINAL EXAM 2nd

Semester 2010-2011

Question 1 ( 36 points)

State whether the following statements are true or false (T/F) :

1

Major head losses occur at any location in pipe system where stream lines are not

straight

2

Minor head losses due to enlargement equals to the difference between piezometer

readings.

3 At Bernoulli theorem, the term (

) called the dynamic head.

4 Increasing in dynamic head leads to increasing in minor losses.

5 Actual flow through notches is less than theoretical flow.

6 Zero degree of pressure recovery occur when there is no losses in a pipe.

7

At Bernoulli theorem, increasing in pipe velocity leads to increasing in pressure

head.

8 Pipe diameter is directly proportional with pressure head in the pipe.

9 Rotameter is used to measure stream velocity directly.

10 In Hydrostatic force experiment we can level the balance arm for each reading by

adding or draining some water.

11 In Hydrostatic force experiment the hydrostatic force acting on the two curved

faces of the quadrant make a moment about the knife edge axis.

12 In Buoyancy experiment MG is the metacentric radius.

13 In Buoyancy experiment, as the off balance weight increases the deflection angle

increases.

14

In impact of jet experiment, the impact force in case of conical target is larger than

hemispherical target for the same flow rate.

15

In flow measurement experiment, the static head at various points in the flow path

can be measured by manometers.

Page 102: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

100

16

When an orifice is fitted in the horizontal discharge position, a Hook gauge can be

used to determine the jet profile.

17 The purpose of extension pipe is to get constant head by increasing the flow

through the orifice.

18

The height of water in manometers can be taken and used in calculations, although

air bubbles still in manometers.

19

Bernoulli’s theorem states that an increase in the speed of the fluid occurs

simultaneously (في نفس الوقت) with a decrease in pressure.

20

In Bernoulli experiment, the height of water in manometer # 11 returns to its

original height in manometer # 1.

21 The loss coefficient for the gate valve can be determined experimentally.

22

The minor head loss for enlargement and contraction equals to the difference in

manometers readings.

23

In minor losses experiment the gate valve should be kept fully closed during taking

the readings for all fittings except the gate valve.

24

In minor losses experiment, readings for all fittings including gate valve can be

taken simultaneously.

1

0 Pelton Wheel is an example of impact of jet applications.

1

6 The difference between weir and notch is that the weir is larger than the notch.

Question 2 ( 36 points)

Choose the most suitable answer from a, b or c :

1) In Hydrostatic force experiment, the counter-balance weight is adjusted:

a. before filling water b. before each reading c. Non of above

after filling water

2) In Hydrostatic force experiment, the total weight needed to level the balance arm in

complete immersion is …………… partial immersion.

Page 103: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

101

a. less than b. more than c. equal to

3) In Hydrostatic force experiment, if the mass used to level the balance arm is (100

gm) and the depth of water was (66 mm), then the practical force acting on the plane

surface is

a. 1.335 N b. 1.602 N c. 1.516 N

4) A floating body is stable if :

a. M is above G b. M coincides with G c. B is above G

5) If a floating pontoon on water weigh (3 kg), then the volume of submerged body

equal to:

a. 0.003 m3 b. 0.0003 m

3 c. can’t be calculated

6) If GM is negative, then the floating body is ……………

a. stable b. Unstable c. Neutral

7) If the coefficient of velocity = (0.9) and the coefficient of contraction is (0.6), then

the coefficient of discharge will be …………… .

a. 1.5 b. 0.54 c. 0.667

8) When the constant head is 50 cm, then the theoretical velocity of the flow

discharged through an orifice will be …………… .

a. 3.13 mm/s b. 3.13 cm/s c. 3.13 m/s

9) For rectangular notch with width = 3 cm, when drawing a relationship between

ln(Q) in (m3/s ) and ln (H) in m, if the intercept was (-2.73), then Cd will be

…………… .

a. 0.0736 b. 0.64 c. 0.736

10) The purpose of collecting a volume of water for at least two minutes is to:

a. increase the flow b. obtain sufficiently c. waste time

accurate results

11) The basket of glass spheres is used to:

a. smooth the flow b. increase velocity c. make the flow turbulent

12) Measuring the weir datum (zero level) by mounting the point gauge on:

a. half weir height b. channel bed c. weir plate crest level

13) If the height of water level in manometer #1 is (44.6 cm), in manometer #6 is

(16.9 cm), and in manometer #11 is (33.8 cm), then the degree of pressure recovery

equal:

a. 0.169 b. 0.61 c. 0.277

14) In the previous question the head loss equal to:

a. 0.61 m b. 0.277 m c. 0.108 m

Page 104: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

102

15) In Bernoulli experiment, when the difference between Inlet Tank and Outlet Tank

increases, the velocity …………… .

a. increases b. decreases c. remains constant

16) If the pressure gauge reading is 2 bar, this equivalent to …………… .

a. 1.02 m water b. 20.4 m water c. 2.04 m water

17) In Minor Losses experiment, clamping off the connecting tubes to the mitre bend

pressure tappings to …………… .

a. prevent increasing the b. prevent air being c. It should not be

flow after the gate valve drawn into the system clamped off

18) The loss coefficient for the gate valve 50% closed is …………… the loss

coefficient of the same gate valve 70% closed.

a. more than b. less than c. equal to

19) The term (

) is called …………… .

a. pressure head b. piezometric head c. elevation head

20) In Bernoulli experiment, the height of water in manometer # 11 ……………

height in manometer # 1.

a. is more than the b. is less than the c. returns to its original

Page 105: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

103

0.000

0.500

1.000

1.500

2.000

2.500

0.000 0.500 1.000 1.500 2.000 2.500

Slope for θ = .....°

diameter 5 mm

Question 3 ( 28 points )

1) Describe the form of the deflected jet and draw its shape for the three types of

targets (90°,45° and 135°)

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………..

2) In Impact of Jet Experiment the following data where obtained

Calculate the following and complete the table:

a. Impact Force.

b. Incident momentum.

c. Slope where y-intercept = 0 (draw graph).

d. Calculate θ for the type of target vane, and decide if it is flat, conical, or

semispherical.

e. Comment on the results.

Note: Neglect the influence of the distance between the nozzle and the target (i.e.

assume velocity at nozzle = impact velocity).

…………………………………………………………………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

5 mm dia

Page 106: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

104

Question 4 ( 28 points )

1) What are the following terms in Bernoulli equation called:

a)

(………………………)

b)

(………………………)

c) (………………………)

d)

(………………………)

2) The following data are recorded for Bernoulli experiment, if 20 Liters of water

was collected at 330 second.

a) Plot Hydraulic Gradient Line (HGL) and Energy Gradient Line (EGL).

b) Find degree of recovery pressure. Comment

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

H.G.L & E.G.L

H.G.L

E.G.L

Tapping No. 1 2 3 4 5 6 7 8 9 10 11

S (cm) 4.3 6.8 9.3 11.8 14.3 16.8 19.3 21.8 24.3 26.8 29.3

A (mm2) 102.56 90.11 77.66 65.22 52.77 40.32 52.77 65.22 77.66 90.11 102.56

H (m) 0.47 0.459 0.443 0.419 0.376 0.296 0.31 0.364 0.381 0.39 0.396

Page 107: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

105

Useful Formula For Hydraulics Laboratory (ECIV 3122)

g = 9.81 m2/s, ρ = 1000 kg/m

3 , 1 bar = 10.2 m water

Hydrostatic Force Experiment

a = 10 cm, b = 7.5 cm, L = 27.5 cm, d = 10 cm

When the surface is fully submerged y>100mm

) 2

d -(y d b g F ( Theoretical)

H 12

d

2

d a

L g M F

2

(Practical)

)2

d -(y

H 12

d H

2

P (Centre of pressure)

When the surface is partially submerged 0<y<100mm

y b g 0.5 F 2 ( Theoretical)

3

y d a

L g M F (Practical)

y 3

2 H P (Centre of pressure)

Buoyancy & Floatation - Metacentric Height Experiment

PART (1): unloaded and loaded pontoon PART (2): changing the center of gravity

Impact of Jets

θ - ρ Q V

R

i

cos1 , A

QVn ,

t

VQ , g hVV ni 2 - 22 ,

g mR , 2

4 dA

, x

yS

lope

Flow Measurement

1. Sudden Enlargement

g

Vkehe

2

2

1 , Where

22

2

2

1 11

A

Ake

2. Venturi Meter, Orifices

421

2

gHACQ dact

4. Elbows

g

Vkh bb

2

2

1

5. Rotameter

2

dyH

2

yH

LD

VOB

2

1

radianin

WWW

mmx

W

xPGMExp

bVM

123

.

..

W

XWbOGWOG

OGOBBMGM

VMVMtotal

totalth

1**

ebiVMtotal

displacedfluidtotaltotal

mmm

VggmW

V

DL

V

IBM

lg

3

**

**)12/1(

W

OGWOGWOGWOGWOG

OGOBBMGM

mmbbbbVMVM

total

totalth

**** 11

radianin

gmW

WWWWW

W

xP

W

xPGMExp

mbbVM

3500

.

.

sin.

..

1

D*L

V-OGGMM

21

2

12

2

1

)12(2

A

A

A

A

hhgV

time

VolumeQactual

Page 108: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

106

Flow Through Orifice

thdact QCQ

ghAQth 2 , thCact ACA ,

thvact vCv , ,

ghVth 2

Flow Over Weirs

(Rectangular)

2

3

23

2HgBQth

, 2

3

23

2HgBCQCQ dthdact

gB

eC

ercept

d

23

2

int

In British Code 2

3

)001.0](2716.05461.0[ HHQact

(Vee Notch)

Investigation of Bernoulli Theorem

fHzg

v

g

pz

g

v

g

p 2

2

221

2

11

22 , fHHH 111 ,

61

611

hh

hhR

, A

QV

Minor losses

, A

QV

Minor Head Losses Loss Coefficient

Enlargement Δh +V12/2g- V2

2/2g

Contraction Δh +V32/2g- V4

2/2g

Long Bend Δh = h5-h6

Short Bend Δh = h7-h8

Elbow Δh = h9-h10

Mitre Bend Δh = h11-h12

Gate Valve Δh = P1-P2 (bar)

time

VolumeQactual

Cv

CdCc

gA

SlopeCd

2

H

SlopeCv

2

time

VolumeQactual

time

VolumeQactual

time

VolumeQactual

g

V

g

v

g

vhK

222

22

2

2

1

g

V

g

v

g

vhK

222

22

4

2

3

g

VhK

2/

2

g

VmhK

2)(

2

Page 109: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

107

Other suggested questions:

Question 5 ( 25 points)

1) What is the difference between orifices and notches?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2) The following graph is for a rectangular notch with width = 30mm.

a) Find the actual flow rate.

b) Find the theoretical flow rate.

c) Find the intercept from graph and calculate the coefficient of

discharge.

d) Comment on the results.

1 2 3 4 5 6 7 8

H (mm) 8.5 12.5 20 26 32 37 45.5 51

V (L) 6 10 23 27 40 40 40 40

T (sec) 162.08 134.4 158.3 123.77 132.47 105.11 75.75 63.43

…………………………………………………………………………………………

…………………………………………………………………………………………

-11-10

-9-8-7-6-5-4-3-2-10

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

....

....

....

....

....

....

....

...

............................. Rectangular Notch

Page 110: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

108

Question 6 ( 15 points) - each branch 3 points -

1) Draw H.G.L for the given flow through Venturi meter. Explain the results.

………………………

………………………

………………………

………………………

………………………

………………………

………………………

………………………

………………………

………………………

………………………

2) Draw a relationship shows the shape of trajectory through side orifice. (write axis

titles)

3) Draw the shape of the nappe in flow over weirs. How does it effect on fluid height?

And where the height of fluid over notch can be measured?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

Page 111: Hydraulics Lab - site.iugaza.edu.pssite.iugaza.edu.ps/bbashbash/files/... · Experiment (1): Hydrostatic Force on a Plane Surface 1 Experiment (2): Buoyancy & Flotation – Metacentric

Hydraulics Lab - ECIV 3122 Appendix B

109

4) Complete the following Comparison by determining the sign (positive or

negative) and draw them.

∆h

∆h

Drawings

Enlargement

Contraction

5) The following plot gives the relation between dynamic head and head loss in gate

valve when it was 50% , 70% & 80% opened. Which figure expected for each case,

Why?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

With my best wishes