hot relics in grb photosphere and gev photon delay

17
Hot Relics in GRB Photosphere and GeV Photon Delay Kunihito Ioka (KEK)

Upload: siran

Post on 22-Feb-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Hot Relics in GRB Photosphere and GeV Photon Delay. Kunihito Ioka (KEK). Contents. Very High Lorentz Factor (VHLF) G max can be up to ~10 6 (> G max, conv ~10 3 ) Internal Shock Synchrotron ⇒ Power-law component over >7 decades - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Hot Relics in GRB Photosphere and GeV Photon Delay

Kunihito Ioka (KEK)

Page 2: Hot Relics in GRB Photosphere and  GeV  Photon Delay

ContentsVery High Lorentz Factor (VHLF)Gmax can be up to ~106 (> Gmax,conv~103)

Internal Shock Synchrotron⇒ Power-law component over >7 decades

c tdelay ~ Baryon Load Radius~ Progenitor Radius ~ 1010cm

Neutrino – GeV g Anti-Correlation

Page 3: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Fermi Revolution

Abdo+ 09Ohno’s talk

MeV

GeV

GeV onset delay gg→e+e-

⇒ G>103

~1 sec

Page 4: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Fermi Revolution

Abdo+ 09Ohno’s talk

GRB 090902B

GRB 090510

Band component+ Power Law

Band ~ Black body-like⇒ Photosphere emission

GeVkeV

Hurley+94Gonzaletz+03

Page 5: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Photosphere-Internal-External Shock Model

Photo-sphere

InternalShock

ExternalShock

νFν

νkeV MeV GeV

Toma, Wu & MeszarosKumar & Barniol Duran 09Ghisellini+09, Wang+09Corsi+09, Gao+10

Variable Long-lived

Page 6: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Amati/Yonetoku Relation

L T∝ 2

L = 4πr02aT0

4

Tobs ~ T0

L T∝ 4

Yonetoku+KI 03[Ghirlanda’s talk]

A Distance Indicator

Page 7: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Fireball Dissipation

ln r

L = 4πrb2aTb

4

Tb ∝ rb−1 2L1 4

r0 rb

G

rsh rph

Tobs

Gm

For Yonetoku Rel.

rb ∝Γm−1 ∝ L−1 2

Rees & Meszaros 05Thompson+ 07Ghisellini+ 07Ryde & Pe’er 09KI+07

Page 8: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Radiation

in Comoving

Proton

Energy Densityafter Shock

pp collision thick pp collision thin

Accelerated to Very High

Radiation Dominated

Gm

′ U γ ~ ′ U p>> ′ U p,rest

Gc ~ Γm2

~ 104 −106( )

′ g p ~ Γm

~ 102 −103( )

(A) Ekinetic << Eγ ⇐ E internal( )

(B) Eγ ~ Ekinetic ⇐ E internal( )

~ Hot Relicsin Cosmology

Page 9: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Conventional Fireball

Gmax~103

Meszaros & ReesShemi & PiranPaczynskiGoodman

Baryon-LessBaryon-Rich

Page 10: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Reheated FireballGmax~106!

KIin prep.

Baryon-LessBaryon-Rich

Page 11: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Internal Shock Synchrotron

KIin prep.

Page 12: Hot Relics in GRB Photosphere and  GeV  Photon Delay

For Moderate GToma+10

G~103

Page 13: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Max Synchrotron Energy

′ t acc = ′ t cool

νmaxcool = mec

2

αΓ ~ 500 GeV Γ

104

⎛ ⎝ ⎜

⎞ ⎠ ⎟

′ t acc = ′ t dyn

νmaxdyn ~ 1 GeV Γ

6 ×104

⎛ ⎝ ⎜

⎞ ⎠ ⎟−6

GRB 090926 Break??

A target for CTA

Very High Lorentz Factor (VHLF) case

Wang+ 09Piran & Nakar 10Barniol Duran & Kumar 10

KI in prep.

Page 14: Hot Relics in GRB Photosphere and  GeV  Photon Delay

GeV Onset Delay

pp Collision Thick Thin⇒[Baryon-rich Barion-less]⇒

Page 15: Hot Relics in GRB Photosphere and  GeV  Photon Delay

νFν

νFν

νFν

Time

MeV g

GeV g

TeV ν

Time

Time

η

Time

ηk1pp thinpp thick

pp→p→νeν~Gm

2mpc2>0.1TeV

TeV ν – GeV g Anti-Correlation

Baryon-lessBaryon-rich

Page 16: Hot Relics in GRB Photosphere and  GeV  Photon Delay

SummaryVery High Lorentz Factor (VHLF)Gmax can be up to ~106 (> Gmax,conv~103)

Internal Shock Synchrotron⇒ Power-law component over >7 decades

c tdelay ~ [rm=rpp~L-1/5] ~ Rstar ~ 1010cm

Neutrino – GeV g Anti-Correlation

Page 17: Hot Relics in GRB Photosphere and  GeV  Photon Delay

Two-Mass Collision

Coasting Gc~Gm2

Mass=ErGr/Gm2<10− 8M ( available at Rstar)

E rΓr + Mc 2 = Γm Mc 2 + Em( )Γm

E r Γr2 −1 = Γm Mc2 + Em( ) Γm

2 −1

Energy

Momentum

⇒ Gm ~ E rΓr

2Mc 2 ∝ L1 2

E r

Γr

< Mc 2 < E rΓr

⎛ ⎝ ⎜

⎞ ⎠ ⎟

YonetokuRelation

Em ~ Γm Mc2 Before dissipation,rela. matter E ~ radiation E