hilti rebar 2

69
Post installed rebar connections 11 / 2010 681 Post installed rebar connections Basics of post installed rebar connections Hilti HIT-RE 500 post installed rebar Hilti HIT-HY 150 post installed rebar Hilti HIT- HY 150 MAX post installed rebar

Upload: jeevan-shendre

Post on 16-Apr-2015

151 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Hilti Rebar 2

Post installed rebar

connections

11 / 2010

681

Post installed rebar connections Basics of post installed rebar connections Hilti HIT-RE 500 post installed rebar Hilti HIT-HY 150 post installed rebar Hilti HIT- HY 150 MAX post installed rebar

Page 2: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

682

Basics of post installed rebar connections

1 Applications

1.1 Advantages of post-installed rebar connections

With the use of the Hilti-HIT injection systems it is possible to connect new reinforcement to existing structures with maximum confidence and flexibility.

design flexibility reliable like cast in horizontal, vertical and overhead

form work simplification

defined load characteristics

simple, high confidence application

1.2 Application examples

Post installed rebar connections are widely used within the construction industry in a wide range of applications, which vary from new construction projects, to structure upgrades and infrastructure requalifications.

Post-installed rebar connections in new construction projects

SSllaabb ccoonnnneeccttiioonnss DDiiaapphhrraaggmm wwaallllss

VVeerrttiiccaall//hhoorriizzoonnttaall ccoonnnneeccttiioonnss MMiissppllaacceedd bbaarrss

Page 3: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

683

Post-installed rebar connections in structure updgrades

Post-installed rebar connections in infrastructure requalifications

NNeeww ssllaabb ccoonnssttrruuccttiioonnss WWaallll ssttrreenngghhtteenniinngg

CCaannttiilleevveerrss//bbaallccoonniieess JJooiinntt ssttrreenngghhtteenniinngg

SSttrruuccttuurraall uuppggrraaddee SSllaabb wwiiddeenniinngg

SSiiddee--wwaallkk uuppggrraaddee SSllaabb ssttrreenngghhtteenniinngg

Page 4: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

684

2 Rebar basics

2.1 Definition of rebar

Rebar is standing for REinforcement BAR. At Hilti the word is used for a reinforcement bar inserted into a borehole filled with Hilti HIT in reinforced concrete structures, in other words for post-installed reinforcement. Post-installed reinforcement can be split up into four different main applications:

Good detailing practice Shear studs Rebar as structural rebar Rebar as an anchor

In the course of the Anchor FTM the focus will be on the last two types of applications. Chapter 3, “Adhesive Anchoring Systems”, deals with rebar as an anchor. The current chapter focuses on rebar as structural rebar, where the reinforcement is purely loaded in the longitudinal direction.

Figure 2.1: Example of structural rebar application

Structural rebar is characterized by very high loads. The reinforcement is often loaded up to steel yielding. The concrete structure (connection) shows a good serviceability. The deformations are small and due to this the crack width and therefore the influences by the environment (corrosion) are limited. The concrete connections behave as a monolithic structure or in other words as if the concrete was poured in one go. The high loads which can occur in either the anchorage or the splice can lead to an embedment length up to 15 till 80 times the diameter of the reinforcement.

The design can be done according to two design concepts;

Structural code, for instance EC2 EN 1992-1-1:2004 chapter 8.4 anchorage of longitudinal reinforcement, based on approvals (e.g. ETA according to EOTA TR023) See paragraph 4 of this chapter for an overview of the approvals

Hilti HIT-Rebar design concept, based on the American Standard (ACI 318-08), where the allowable bond stress is controlled by splitting / spalling behaviour.

For this type of connections an engineer is usually involved in the design.

0 v

10 ds

bd

bd

Page 5: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

685

2.2 Rebar as an anchor

Rebar as an anchor is characterized by the fact it is not possible to splice the reinforcement (due to e.g. lack of useable reinforcement). The loads are typically smaller as in the case of structural rebar and the serviceability is slightly lower. The anchor failure modes like concrete cone failure or combined concrete cone and pull-out failure are considered in this application according to standard anchor design.

For this type of connections an engineer is usually involved in the design.

2.3 Cast-in ribbed bars

Generally, for load transfer in reinforced concrete only tensile or compressive forces in bars are considered.

For ribbed bars, the load transfer in concrete is governed by the bearing of the ribs against the concrete (figure 2.3.a). The force reaction in the concrete is assumed to form a compressive strut in the direction of 45°.

For higher bond stress values, the concentrated bearing forces in front of the ribs cause the formation of cone-shaped cracks starting at the crest of the ribs. The resulting concrete keys between the ribs transfer the bearing forces into the surrounding concrete, but the wedging action of the ribs remains limited. In this stage the displacement of the bar with respect to the concrete (slip) consists of bending of the keys and crushing of the concrete in front of the ribs.

The bearing forces, which are inclined with respect to the bar axis, can be decomposed into directions parallel and perpendicular to the bar axis. The sum of the parallel components equals the bond force, whereas the radial components induce circumferential tensile stresses in the surrounding concrete, which may result in longitudinal radial (splitting / spalling) cracks.

Figure 2.3.a: Load transfer from ribbed bars into concrete Two failure modes can be considered:

a) Bond failure (fig. 2.3.a):

If the confinement (concrete cover, transverse reinforcement) is sufficient to prevent splitting of the concrete cover, bond failure is caused by pull-out of the bar. In that case the concrete keys are sheared off and a sliding plane around the bar is created. Thus, the force transfer mechanism changes from rib bearing to friction. The shear resistance of the keys can be considered as a criterion for this transition. It is attended by a considerable reduction of the bond stress. Under continued loading the sliding surface is smoothed due to wear and compaction, which will result in a further decrease of the bond stress, similar to the case of plain bars.

Page 6: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

686

Figure 2.4.2.b Figure 2.4.2.a S litti

b) Splitting failure (fig. 2.3.b):

If the radial cracks propagate through the entire cover, bond splitting failure is decisive. In that case the maximum bond stress follows from the maximum concrete confinement, which is reached when the radial cracks have penetrated the cover for about 70%. Further crack propagation results in a decrease of the confining stresses. At reaching the outer surface these stresses are strongly reduced, which results in a sudden drop of the bond stress.

2.4 Lapped bar splices

2.4.1 Model for load transfer at lapped bar splices The load transfer between bars is performed by means of compressive struts in the concrete (fig. 2.4.1). A 45° truss model is assumed. The resulting perpendicular forces act in a similar way as the splitting forces. The splitting forces normally are taken up by the transverse reinforcement. Small splitting forces are attributed to the tensile capacity of the concrete. The amount of the transverse or tie reinforcement necessary is specified in the design codes.

2.4.2 Influence of spacing and cover on splitting and spalling of concrete In most cases the reinforcement bars are placed close to the surface of the concrete member to achieve good crack distribution and economical bending capacity. For splices at wide spacing (normally in slabs, fig. 2.4.2a), the bearing capacity of the concrete depends only on the thickness of the concrete cover. At narrow spacing (normally in beams, fig. 2.4.2.b) the bearing capacity depends on the spacing and on the thickness of the cover. In the design codes the reduction of bearing capacity of the cover is taken into account by means of multiplying factors for the splice length.

2.4.3 Bond behaviour of post-installed ribbed bars The load transfer for post-installed bars is similar to cast in bars if the stiffness of the overall load transfer mechanism is similar to the cast-in system. The efficiency depends on the strength

Figure 2.4.1: Load transfer at lap splices

Figure 2.3.b

Page 7: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

687

of the adhesive mortar against the concentrated load near the ribs and on the capacity of load transfer at the interface of the drilled hole.

In many cases the bond values of post-installed bars are higher compared to cast in bars due to better performance of the adhesive mortar. But for small edge distance and/or narrow spacing splitting or spalling forces become decisive due to the low tensile capacity of the concrete.

3 Design basics

3.1 Rebar design methods Post-installed reinforcement connections can basically be designed in compliance with the national codes. Hilti is offering two design methods of which one is based on the Eurocode 2 (EC2 EN 1992-1-1:2004) and the other one on the American Standard (ACI 318-08). The most important characteristics will be explained in the following paragraphs.

3.2 Rebar design according to EC2/ETA approach The new technical report EOTA – TR 023 (Assessment of post-installed rebar connections) establishes a common method to qualify chemical anchors in compliance with EC2. Chemical anchors must comply with a predefined step-diagram for the different concrete classes (Figure 3.2: Chemical anchors without limitations). In general it shall be shown by the tests as described in the TR 023 that the post-installed rebar systems can develop the same design values of bond resistance with the same safety margin as cast-in place rebars according to EC2. In EC2 no requirements for testing are given, but the values for fbd are published.

These values are valid for worst case conditions, minimum concrete cover, minimum spacing and minimum transverse reinforcement.

In Figure 3.2 a comparison is given which bond resistance in the tests and evaluation according TR 023 have to be reached (on y- axis) to show equivalence with the values fbd (on x- axis).

A European Technical Approvals according to the EOTA TR023 allows a design according to EC2. However a design for fire resistance, fatigue, dynamic or seismic loading are excluded. The ETA for Rebar proves that approved systems are robust and durable. Influences of bad cleaning, wet holes, creep, freeze/thaw, durability, corrosion resistance, installation directions are tested within the approval.

The post-installed rebar connections assessed according to TR 023 shall be designed as straight cast-in reinforcement according to EC2 using the values of the design bond resistance fbd for deformed bars. The definition of the bond region in EC2 is valid also for post-installed reinforcement. The conditions in EC2 concerning detailing (e.g. concrete cover in respect to bond and corrosion resistance, bar spacing, transverse reinforcement) shall be complied with.

Page 8: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

688

Figure 3.2: Chemical anchors without limitations from EOTA TR023 The following additional provisions have to be taken into account.

To prevent damage of the concrete during drilling the following requirements have to be met:

cmin = 30 + 0,06lv ≥ 2ds (mm) for hammer drilled holes, with ds being the diameter of the rebar

cmin = 50 + 0,08lv ≥ 2ds (mm) for compressed air drilled holes

The factors 0,06 and 0,08 take into account the possible deviations during the drilling process. This value might be smaller if special drilling aid devices are used.

Minimum clear spacing between two post-installed rebars a = 40 mm ≥4ds

To account for potentially different behaviour of post-installed and cast-in rebars in cracked concrete, in general, the minimum embedment length lb,min and l0,min given in EC2 for anchorages and overlap splices shall be increased by a factor of 1,5. This increase may be neglected if it can be shown that the bond strength of the selected post-installed rebars and cast-in rebars in cracked concrete (w = 0,3 mm) is similar. In this case the influence of cracks openings (crack movement tests) can be neglected because for rebar connections several rebars are present (redundant fastening) and not all of the rebars will be situated in a longitudinal crack.

The transfer of shear forces between new and old concrete shall be designed according to EC2. See also paragraph 3.4 “strut-and-tie model”.

The reader is referred to the paragraph 4 “EC2 Design” for more detail about this design concept.

Page 9: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

689

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 10 20 30 40 50 60 70 80 90 100 110

cd

f bd

ACI 318-08 approach

EC2/ETA approach

3.3 N/mm2

6.9 N/mm2

C20/25, Ø = 12 mmcd,min

3.3 Hilti HIT-Rebar design and ACI 318-08 approach The American Standard ACI (American Concrete Institute) 318-08 gives an explicit formula for the design of anchorages and splices that considers splitting and spalling as a function of concrete cover and bar spacing. This function is adapted and extended for post-installed reinforcement for the Hilti HIT-Rebar design concept. The embedment length of an anchorage or splice is defined as a function of concrete strength, the bar diameter, the minimum edge distance or spacing and a coefficient taking into account the transverse reinforcement.

In figure 3.3 a typical design bond stress fbd curve as a function of the minimum edge distance/spacing distance, cd is shown for a concrete class C20/25 and for a rebar with a diameter of 12 mm (EC2/ETA approach). In this figure the equivalent design bond stresses resulting from the ACI and the EC2/ETA approaches are plotted to illustrate the two methods (the design bond stresses shown in the figure shall not be used for design purposes). The reduction of anchoring length allowed by ACI and EC2/ETA in specific conditions can be assimilated to an increase of the equivalent design bond stress if cd changes within certain limits. The equivalent design bond stress is defined by an inclined line and it increases with larger values of cd. The increase in the design bond stress is limited by the maximum pull-out bond stress, which is a value which is given by the standards in the case of a cast-in reinforcement. For post-installed reinforcement, the maximum design bond stress is a function of the bonding agent and not necessarily equals that of cast-in bars. Thus, the limitation for bond failure in the code has been replaced by the specific design bond stress of the bonding agent for the specific application conditions and the splitting function has been adapted according to the tests.

cd = min(a/2, c, c1)

Figure 3.3: equivalent design bond stress fbd as a function of cd., derived from reduction of anchoring lenght according to ACI 318-08 and EC2/ETA.

Page 10: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

690

Interaction of concrete cover and transverse reinforcement (splitting reinforcement) Tests show that transverse reinforcement improves the splitting capacity. Transverse reinforcement can be taken into account by adding a substitute value for the cover.

The ACI 318-08 code explicitly takes into account the influence of transverse reinforcement able to prevent splitting by means of the “transverse reinforcement index” Ktr.

4

trckbd

Kcff

; barsin -castfor 5.2

Kc ;

ns34.10

fAK tryttr

tr

with: Atr total cross-sectional area of all transverse reinforcement that is within the spacing s and that crosses the potential plane of splitting through the reinforcement being developed [mm2]

fyt yield strength of transverse reinforcement [N/mm2]

s maximum spacing of transverse reinforcement within �b, center to center [mm]

n number of bars being developed along the plane of splitting [-]

substitute for various adjustment factors

Hilti HIT-Rebar design concept

for 5.2Kc tr

(post-installed reinforcement and cast-in reinforcement):

4

trckbd

Kcff

for 5.2Kc tr

(bonded-in bars only):

5.275.05.2

4 trck

bd

Kcff

where: fbd design bond strength nominal bar size fck characteristic concrete cylinder strength c = cd = min(a/2, c, c1) Ktr see above bar size factor For more detailed Information see: Kunz, J.; Münger, F.: “Splitting- and bond failure of post-installed rebar splices and anchoring.”; Bond in Concrete – from research to standards, Proceedings of the 3rd International Symposium held at the Budapest University of Technology and Economics, Budapest, Hungary, 20 to 22 November 2002, p.447 -454. (Copy available from Hilti Technical Service)

Page 11: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

691

3.4 Strut-and-tie model The tensile bearing capacity of concrete is very low compared to its compressive strength. For this reason tensile forces are attributed to the steel reinforcement of the concrete member. The reinforcement should be adequately anchored in the nodes {Clause 6.5.3(2), EC2: EN 1992-1-1:2004}.

A strut-and-tie model is used to calculate the load path in reinforced concrete members. Where a non-linear strain distribution exists (e.g. supports) strut-and-tie models may be used {Clause 6.5.1(1), EC2: EN 1992-1-1:2004}.

Strut-and-tie models consist of struts representing compressive stress fields, of ties representing the reinforcement and of the connecting nodes. The forces in the elements of a strut-and-tie model should be determined by maintaining the equilibrium with the applied loads in ultimate limit state. The ties of a strut-and-tie model should coincide in position and direction with the corresponding reinforcement {Clause 5.6.4, EC2: EN 1992-1-1:2004 Analysis with strut and tie models}.

3.5 Joint to be roughened The model of inclined compressive struts is used to transfer the shear forces through the construction joint at the interface between concrete cast at different times. Therefore a rough interface is required to provide sufficient cohesion in the construction joint {Clause 6.2.5(2), EC2: EN 1992-1-1:2004}. Rough means a surface with at least 3 mm roughness (Rt > 3 mm), achieved by raking, exposing the aggregate or other methods giving an equivalent behaviour.

3.6 Anchorage of reinforcement The reinforcement has to be anchored at places where it is no longer needed. These situations may occur: when the load path of the tensile force has ended (e.g. support, figure 3.6.a) at curtailment of reinforcement (see figure 3.6.b) compression bar anchorage (see figure 3.6.c).

Crack limitation Compression cord and strut (concrete)

Tension cord Tension ties

Joint to be roughened

Figure 3.4: Strut-and-tie-model

Page 12: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

692

3.7 Lapped splice of reinforcement

Lapped splices are used to achieve continuity in the tensile tie of the truss model at construction joints. The load from one bar to the other is transferred by means of compressive struts in the concrete. A 45°-truss model is assumed.

The resulting splitting force (design bond stress) is limited to a value depending on the surface characteristics of the reinforcement, the tensile strength of the concrete and confinement of surrounding concrete. This depends on sufficient concrete cover, spacing of bar, transverse pressure and by the transverse reinforcement {Clause 6.6, EC2: EN 1992-1-1:2004}.

4 EC2 design

4.1 General The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing. The transfer of shear forces between new concrete and existing structure shall be designed according to EC2 EN 1992-1-1:2004. See also paragraph 3.4 “Strut-and-tie model” The joints for concreting must be roughened to at least such an extent that aggregate protrude. See also paragraph 3.5 “Joint to be roughened”. The design of post-installed rebar connections and determination of the internal section forces to be transferred in the construction joint shall be verified in accordance with EC2 EN 1992-1-1:2004. When ascertaining the tensile force in the rebar, allowance shall be made for the statically effective height of the bonded-in reinforcement. See also paragraph 5.2 “Example with overlap joint”

Figure 3.6.c: CompressionFigure 3.6.a:

Support, truss

Figure 3.6.b: Tensile force has ended

Figure 3.7: Lapped splice

Page 13: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

693

4.2 Determination of the basic anchorage length The calculation of the required anchorage length shall take into consideration the type of steel and bond properties of the reinforcement. The required basic anchorage length b,rqd shall be determined in accordance with clause 8.4.3, EC2: EN1992-1-1:2004: b,rqd = (ds / 4) (σsd / fbd) with: ds = diameter of the rebar σsd = calculated design stress of the rebar

fbd = design value of bond strength according to corresponding ETA, in consideration of the coefficient related to the quality of bond conditions and, of the coefficient related to the bar diameter and of the drilling technique. Refer to the relevant approval or technical data sheet for details.

4.3 Determination of the design anchorage length The required design anchorage length bd shall be determined in accordance with clause 8.4.4, EC2: EN 1992-1-1:2004: bd = α1 α2 α3 α4 α5 b,rqd ≥ b,min Where α1, α2, α3, α4 and α5 are coefficients given in Table 4.1.

α1 is for the effect of the form of the bars assuming adequate cover (post-installed reinforcement is always straight) α2 is for the effect of concrete minimum cover

00d2 /ddc0,151α

straight bars; c;c;a/2minc 1d

With no edge distance, α2 = 0,7 if the spacing given in the table below are fulfilled: ds (mm) 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 40

Spacing (mm) 56 70 84 98 112 126 140 154 168 175 182 196 210 224 238 252 280

a (mm) 48 60 72 84 96 108 120 132 144 150 156 168 180 192 204 216 240

α3 is for the effect of confinement by transverse reinforcement

α4 is for the influence of one or more welded transverse bars along the design anchorage length bd. (no welded transverse reinforcement possible with post-installed reinforcement)

α5 is for the effect of the pressure transverse to the plane of splitting along the design anchorage length.

The product (α2α3α5) ≥ 0,7

Page 14: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

694

b,rqd = according to section 5.2 b,min = minimum anchorage length according to clause 8.4.4, EC2: EN 1992-1-1:2004 = max {0.3 b,rqd; 10ds; 100 mm} under tension = max {0.6 b,rqd; 10ds; 100 mm} under compression (Please note that the minimum anchorage length may be increased by factor 1,5 according

to EOTA TR023, § 4.2. Refer to the relevant approval or technical data sheet for details.) Table 4.1: Values of α1, α2, α3, α4 and α5 coefficients

Influencing factor Type of anchorage Reinforcement bar In tension In compression

Shape of bars Straight α1 = 1.0 α1 = 1.0 Concrete cover Straight α2 = 1 – 0.15(cd –

ø)/ø ≥ 0.7 ≤ 1.0

α2 = 1.0

Confinement by transverse

reinforcement

Straight α3 = 1 – Kλ ≥ 0.7 ≤ 1.0

α3 = 1.0

Confinement by welded transverse

reinforcement

Straight α4 = 1.0 α4 = 1.0

Confinement by transverse pressure

Straight α5 = 1 – 0.04p ≥ 0.7 ≤ 1.0

-

where: λ = (ΣAst - ΣAst,min)/ As ΣAst cross-sectional area of the transverse reinforcement along the design anchorage length bd ΣAst,min cross-sectional area of the minimum transverse reinforcement = 0.25 As for beams and 0 for slabs As area of a single anchored bar with maximum bar diameter K values shown in Figure 4.10 p transverse pressure [MPa] at ultimate limit state along bd

Figure 4.3 : Values of K for beams and slabs

4.4 Overlap joints Forces are transmitted from one bar to another by lapping the bars. The detailing of laps between bars shall be such that:

- the transmission of the forces from one bar to the next is assured - spalling of the concrete in the neighbourhood of the joints does not occur - large cracks which affect the performance of the structure do not occur

Page 15: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

695

Laps between bars should not be located in areas of high moments / forces (e.g. plastic hinges) and at any section normally be arranged symmetrically. The arrangement of lapped bars should comply with Figure 4.4. The clear distance between lapped bars should be ≤ 4ø and ≤ 50 mm, otherwise the lap length should be increased by a length equal to the clear space where it exceeds 4ø or 50 mm. Figure 4.4: Adjacent laps The required design lap length 0 shall be determined in accordance with clause 8.7.3, EC2: EN 1992-1-1:2004: 0 = α1 α2 α3 α5 α6 b,rqd ≥ 0,min with: b,rqd = according to section 4.2 0,min = minimum lap length = max {0.3α6 b,rqd; 15ds; 200 mm} (Please note that the minimum anchorage length may be increased by factor 1,5

according to EOTA TR023, § 4.2. Refer to the relevant approval or technical data sheet for details.)

Values of α1, α2, α3 and α5 may be taken from Table 4.1; however, for the calculation of α3, ΣAst,min should be taken as 1,0 As(σsd/fyd), with As = area of one lapped bar. α6 = (ρ1/25)0.5 but neither not exceeding 1,5 nor less than 1,0, where ρ1 is the percentage of reinforcement lapped within 0.650 from the centre of the lap length considered. Values of α6 are given in Table 4.2. (Note: For post-installed rebar applications α6 = 1,5 for the majority of the cases) Table 4.2: Values of the coefficient α6

Percentage of lapped bars relative to the total cross-

section area

< 25% 33% 50% > 50%

α6 1 1,15 1,4 1,5

4.5 Embedment depth for overlap joints Overlap joint for rebars: For calculation of the effective embedment depth of overlap joints the concrete cover at end-face of the post-installed rebar c1 shall be considered: v ≥ 0 + c1 with: 0 = required lap length according to paragraph 4.4. c1 = concrete cover at end-face of bonded-in rebar. See Figure 4.5

≥ 3ø

Page 16: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

696

Figure 4.5: Concrete cover c1 If the clear distance between the overlapping bars is greater than 4ds the lap length shall be enlarged by the difference between the actual clear distance and 4ds.

4.6 Concrete cover The minimum concrete cover required for bonded-in rebars is shown in the ETA approvals in relation to the drilling method and the hole tolerance. Furthermore the minimum concrete cover given in clause 4.4.1.2, EC2: EN 1992-1-1: 2004 shall be observed.

4.7 Transverse reinforcement The requirements of transverse reinforcement in the area of the post-installed rebar connection shall comply with clause 8.7.4, EC2: EN 1992-1-1:2004.

4.8 Connection joint In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post installed rebar connection with a diameter of ds + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover for the respective environmental conditions in accordance with EC2: EN 1992-1-1:2004.

Page 17: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

697

h = 300 d = 260

h = 300

a1 = 130 al = 260

ln = 6,50 m

5 Design examples

5.1 Anchorage: End support of slab, simply supported slab: ln = 6,50 m, Qk = 5 kN/m2 ,h = 300 mm,d = 260 mm

wall: h = 300 mm Concrete strength class: C20/25, dry concrete Properties of reinforcement: fyk = 500 N/mm2 Short-term/long-term temperature is 20°C Fire resistance: F90 (90 minutes) Loads: Gd = 1,35 x 7,5 = 10,1 kN/m²;

Qd = 1,5 x 5,0 = 7,5 kN/m² = 17,6 kN/m²

Structural analysis (design forces) based on leff: MSd = 17,6 x 6,762 / 8 = 100,5 kNm/m VSd = 17,6 x (6,76 / 2) = 59,5 kN/m Bottom reinforcement required at mid span: A s,req = 100,5 x 1,15 / (0,26 x 0,9 x 0,5) = 988 mm²/m reinforcement provided: 16, s = 200 mm; A s,prov = 1010 mm²/m Bottom reinforcement at support: As,min = 0,4 x 1 x 2,2 x 150 x 1000 / 500 = 264 mm²/m {Clause 7.3.2(2), EC2: EN 1992-1-1:2004} As,min = 0,50 x 988 = 494 mm2/m {Clause 9.3.1.2(1), EC2: EN 1992-1-1:2004} {Clause 9.3.1.1(4), EC 2: EN 1992-1-1:2004} As,min = 0,25 x 988 = 247 mm²/m {Clause 9.2.1.4(1), EC2: EN 1992-1-1:2004} As,req = 59,5 x 1 / 0,9 x 1,15 / 0,5 = 152 mm2/m (al =d) {Clause 9.2.1.4(2), EC2: EN 1992-1-1:2004} Decisive is 494 mm²/m reinforcement provided: 12, s = 200 mm; A s,prov = 565 mm²/m a) Anchorage according to European Technical Approval (ETA) 08/0105, Post-installed rebar connections with Hilti injection mortar HIT-RE 500 Determination of the basic anchorage length

The required basic anchorage length b,rqd shall be determined in accordance with EC2: EN 1992-1-1:2004, section 8.4.3:

b,rqd = (ds / 4) x (σsd / fbd) with: ds = diameter of the rebar = 12 mm σsd = calculated design stress of the rebar = (494 / 565) x (500 / 1,15) = 380 N/mm² fbd = design value of bond strength according to corresponding ETA = 2,3 N/mm²

b,rqd = (12 / 4) x (380 / 2,3) = 496 mm

Page 18: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

698

Determination of the design anchorage length The required design anchorage length bd shall be determined in accordance with EC2: EN 1992-1-1:2004, section 8.4.4:

bd = α1 α2 α3 α4 α5 b,rqd ≥ b,min with: b,rqd as above α1 = 1,0 for straight bars α2 = 1 – 0,15(cd – ø)/ø α2 is for the effect of concrete minimum cover ≥ 0,7 ≤ 1,0 a = 200 – 12 = 188 mm a/2 = 94 mm with c1 and c > 94 mm ø = 12 mm α2 = 0,7 Straight bars, cd = min (a/2, c1, c) α3 = 1,0 because of no transverse reinforcement α4 = 1,0 because of no welded transverse reinforcement α5 = 1,0 influence of transverse pressure is neglected in this example

bd = 0,7 x 496 = 347 mm

2/3bd = 231 mm 230 mm b,min = minimum anchorage length

{Clause 8.4.4(1), EC2: EN 1992-1-1:2004} = max {0,3 x 496; 10 x 12; 100} = 149 mm

b) Anchorage according to Hilti HIT-Rebar design method (splitting): Reinforcement provided: 12, s = 200 mm; A s,prov = 565 mm²/m Mortar: Hilti HIT-RE 500 FSd = 494 x 0,5 / 1,15 = 214,8 kN/m Steel: FRd = 5 x (fyk x π x ² x ¼) / s = 245,9 kN/m > 214,8 kN/m ok Concrete (splitting) / Mortar (pull-out): Due to large edge distances in all directions (confined concrete) the failure mode splitting of concrete is not becoming decisive, but the pull out failure mode: fbd = 6.9 N/mm2 FRd = n(bd x x π x fbd) = 5(bd x 12 x π x 6.9) = 214.8 kN/m bd = 165 mm b,min = 120 mm (10 x ) ok Fire resistance: Fire rating class F 90 (90 min.) (design table see paragraph 4.7): FsT,req = 0,6 x 66,1 = 39,7 kN/m = 7,9 kN/bar {Clause 2.4.3 (4) and (5), EC2: ENV 1992-1-2:1995} Hilti HIT-RE 500: 12 inst = 14,5 cm; Fs,T = 6,02 kN inst = 18 cm; Fs,T = 15,0 kN

Page 19: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

699

Intermediate values may be interpolated linearly: inst = 16,5 cm; Fs,T = 11,2 kN/bar > 7,9 kN/bar inst = 165 mm Top reinforcement

Top reinforcement at support: Minimum reinforcement: 25% of bottom steel required at mid-span {Clause 9.3.1.2(2), EC2: EN 1992-1-1:2004} As,req = 0,25 x 988 = 247 mm2/m As,min = 0,4 x 1 x 2,2 x 150 x 1000 / 500 = 264 mm2/m {Clause 7.3.2(2), EC2: EN 1992-1-1:2004} Decisive is 264 mm²/m reinforcement provided: 12, s = 300 mm; A s,prov = 377 mm²/m

a) Anchorage according to European Technical Approval (ETA) 08/0105, Post-installed rebar connections with Hilti injection mortar HIT-RE 500 Determination of the basic anchorage length

The required basic anchorage length b,rqd shall be determined in accordance with EC2: EN 1992-1-1:2004, section 8.4.3:

b,rqd = (ds / 4) x (σsd / fbd) with: ds = diameter of the rebar = 12 mm σsd = calculated design stress of the rebar = (264 / 377) x (500 / 1.15) = 304 N/mm² fbd = design value of bond strength according to corresponding ETA = 2,3 N/mm²

b,rqd = (12 / 4) x (304 / 2,3) = 397 mm Determination of the design anchorage length

The required design anchorage length bd shall be determined in accordance with EC2: EN 1992-1-1:2004, section 8.4.4:

bd = α1 α2 α3 α4 α5 b,rqd ≥ b,min with: b,rqd as above α1 = 1,0 for straight bars α2 = 1 – 0,15(cd – ø)/ø α2 is for the effect of concrete minimum cover ≥ 0,7 ≤ 1,0 a = 300 – 12 = 288 mm a/2 = 144 mm with c1 and c > 144 mm ø = 12 mm 0,7 α3 = 1,0 because of no transverse reinforcement α4 = 1,0 because of no welded transverse reinforcement α5 = 1,0 influence of transverse pressure is neglected in this example

bd = 0,7 x 397 = 278 mm 280 mm Can be critical with drilling!

b,min = minimum anchorage length {Clause 8.4.4(1), EC2: EN 1992-1-1:2004} = max {0.3 x 397; 10 x 12; 100} = 120 mm ok

h = 300 d = 260

300

a1 = 130 al = 260

ln= 6.50 m

Page 20: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

700

b) Anchorage according to Hilti HIT Rebar Design Method (CC-Method): Reinforcement provided: 12, s = 300 mm; A s,prov = 377 mm2/m Mortar: Hilti HIT-RE 500 A s,min = 264 mm2/m Design Load: FSd = A s,min fyk/s

= 264 x 500 / 1.15 = 114.8 kN/m Fbd = Fsd s/1000 = 114.8 kN/m 300/1000 = 34.4 kN/bar

Steel Verification:

FRd =

4

11000 2 s

ykf

s

mm

= mkNmkN /8.114/9.1634

112

15.1

500

300

1000 2

Steel ok!

Combined pull-out and concrete cone failure:

NpsNp

NppRkpRk

A

ANN ,0

,

,0,,

Rk

Mcbdbd

Mp

RkbkpRd

FllN

000,

mml bd 9.1271512

1.24.340

(Rk from approval ETA-04/0027; table 13)

2

,,0, 115200mmssA NpcrNpcrNp

mmsc

mm

hs

NpcrNpcr

efucrRk

Npcr

7.1695.0

7.3839.12734.3395.7

151220

35.7

20

,,

5.0

5.0

,,

2,,,

,,

1018204.3393005.0

;

mmscsA

sscc

NpcrNpcrNp

NpcrNpcr

0.113.07.0 ,,

, NpsNpcr

Nps c

c

mmA

AFl

NpsNpMp

Rk

Npbdccpobd 5.144

0.11018201.2

1512

1152004.34

,,

0,

)&(

Page 21: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

701

Concrete cone failure:

NsNc

NccRkcRk A

ANN ,0

,

,0,,

Mc

cubeck

bdbdefcubeckcRk

fk

FlhfkN

32

,1

05.1,1

0,

k1 = 7.2 cracked concrete k1 = 10.1 uncracked concrete

mmlbd 1.1165.1251.10

4.34 32

0

mmchs NcrefNcr 15.174;3.3481.11633 ,,

A0

c,N= 121312.9mm2

2,,,

,,

1044903.348300)5.0(

;

mmscsA

sscc

NcrNcrNc

NcrNcr

0.113.07.0 ,,

, NpsNpcr

Nps c

c

mmA

A

fk

Fl Mc

NsNc

Nc

cubeck

bdccbd 8.1345.1

0.1

1

104490

9.121312

251.10

4.341 32

,,

,03

2

,1

)(

Splitting failure: only needed if c 1.2ccr,sp and h 2hmin: h/hef = 300mm / 144.5mm = 2.08; ccr,sp = 1.0hef= 144.5mm c > 173.4mm ok hmin = max(hef+30mm; hef+2d0) = max(174.5; 176.5) = 176.5mm h=300mm 353mm not true, verification needed!!!

sphNs

Nc

NcspRkspRk

A

ANN ,,0

,

,0,,

A0

c,N= 83521mm2 scr,sp = 289mm

2,,,

,,

86700289300)5.0(

;

mmscsA

sscc

NcrNcrNc

NcrNcr

Page 22: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

702

0.113.07.0 ,,

, NpsNpcr

Nps c

c

39.1

39.12

1

42.15.176

300

,

32

min,

32

32

min,

sph

efsph

sph

h

h

h

h

mmA

A

fk

Fl Mc

sphNsNc

Nc

cubeck

bdspbd 5.805.1

39.10.1

1

86700

83521

251.10

4.341 32

,,,

,03

2

,1

)(

Embedment depth to use: lbd = max[lbd(pp&cc); lbd(cc); lbd(sp)] lbd = 144.5mm 10ø = 120mm ok

5.2 Example with overlap joint Bending moment: MSd = 120 kNm/m

slab: h = 300 mm; d = 250 mm, cs = 50 mm Concrete strength class: C25/30, Properties of reinforcement: fyk = 500 N/mm² Fire resistance: F60 (60 minutes),

Light weight plaster for fire protection: 30 mm top reinforcement: 16, s = 150 mm; As,prov = 1340 mm²/m

cover to face c1 = 30 mm bottom reinforcement: 10, s = 200 mm; As,prov = 393 mm²/m

Note: reduced load in cast-in bar due to lever arm: = 250 / 270 = 0,93

a) Overlap joints according to European Technical Approval (ETA) 08/0105, Post-installed rebar connections with Hilti injection mortar HIT-RE 500 Post-installed reinforcement The required design lap length 0 shall be determined in accordance with EC2: EN 1992-1-1:2004, section 8.7.3:

0 = α1 α2 α3 α5 α6 b,rqd ≥ 0,min with: b,rqd the basic anchorage length, b,rqd = (ds / 4) x (σsd / fbd) ds = diameter of the rebar = 16 mm σsd = calculated design stress of the rebar

d = 250 mm, z 0,9 x 250 = 225 mm As,req = 120 x 1,15 / (0,225 x 0,5) = 1227 mm2/m σsd = (1227 / 1340) x (500 / 1,15) = 398 N/mm2

fbd = design value of bond strength according to corresponding ETA = 2,7 N/mm2

10

d = 250

30

cs = 50 30

h = 300

0

v

Page 23: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

703

b,rqd = (16 / 4) x (398 / 2.7) = 590 mm α1 = 1,0 for straight bars α2 = 1 – 0,15(cd – ø)/ø α2 is for the effect of concrete minimum cover ≥ 0,7 ≤ 1,0 c = 50 - 8 = 42 mm cd = 42 mm ø = 16 mm 0,76 α3 = 1,0 because of no transverse reinforcement α5 = 1,0 influence of transverse pressure is neglected in this example α6 = 1,5 influence of percentage of lapped bars relative to the total cross-section area {Clause 8.7.3(1), EC2: EN 1992-1-1:2004}

0 = 0,76 x 1,5 x 590 = 673 mm 675 mm

0,min = minimum lap length {Clause 8.7.3(1), EC2: EN 1992-1-1:2004} = max{0.3 x 1.5 x 590; 15 x 16; 200} = 266 mm ok

Cast-in reinforcement 0 = α1 α2 α3 α5 α6 b,rqd ≥ 0,min with: b,rqd the basic anchorage length, b,rqd = (ds / 4) x (σsd / fbd) ds = diameter of the rebar = 16 mm σsd = calculated design stress of the rebar

d = 270 mm, z 0,9 x 270 = 243 mm As,req = 120 x 1,15 / (0,243 x 0,5) = 1136 mm2/m σsd = (1136 / 1340) x (500 / 1,15) = 369 N/mm2

fbd = design value of bond strength according to corresponding ETA = 2,7 N/mm2

b,rqd = (16 / 4) x (369 / 2.7) = 547 mm α2 = 1 – 0,15(cd – ø)/ø α2 is for the effect of concrete minimum cover ≥ 0,7 ≤ 1,0 c = 30 - 8 = 22 mm cd = 22 mm ø = 16 mm 0,94

0 = 0,94 x 1,5 x 547 = 771 mm 770 mm Cast-in reinforcement is decisive!

0,min = minimum lap length {Clause 8.7.3(1), EC2: EN 1992-1-1:2004} = max{0,3 x 1,5 x 547; 15 x 16; 200} = 246 mm ok Embedment depth for overlap joints for rebars:

v ≥ 0 + c1

with: 0 = required lap length = 770 mm (see above) c1 = concrete cover at end face of cast-in rebar = 30 mm

v = 800 mm If the clear distance between the overlapping rebars is greater than 4ds (4 x 16 = 64 mm) the lap length shall be enlarged by the difference between the clear distance and 4ds. Most unfavorable case post-installed rebar is located right in the middle between the cast-in rebars. The clear distance between the overlap is: s22 = a – Ø1/2 – Ø2/2 ; a = (752 + 202)1/2 s22 = 77,6 mm – 8 mm – 8 mm = 61,6 mm

61,6 < 64 v = 800 mm

Page 24: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

704

b) Overlap joints according to Hilti HIT-Rebar design method (splitting): Post-installed reinforcement Reinforcement provided: 16, s = 150 mm; A s,prov = 1340 mm²/m Mortar: Hilti HIT-RE 500 FSd = 1340 x 398 = 533,3 kN/m (see above) Steel: FRd = 6,66(fyk x π x 2 x ¼) / уs = 582,2 kN/m > 533,3 kN/m ok Mortar (pull-out): fbd = 7,1 N/mm2 Concrete (splitting): (c + Ktr) / = 3.1 > 2.5 fbd is calculated according with: c = min{c, s/2} = 50 mm Ktr = 0 = 16 mm

'cf = compressive strength of concrete = 25 N/mm2 for C25/30

= reinforcement size factor = 0.8 for 18 fbd = 4,6 N/mm2 Due to edge distances (c = 50 mm) and spacing (s = 150 mm) the failure mode splitting of concrete is decisive. α6 = 1,5 fbd = 3,1 N/mm2 {Clause 8.7.3(1), EC2: EN 1992-1-1:2004} FRd = n(0 x x π x fbd) = 6.66(0 x 16 x π x 3,1) = 533,3 kN/m 0 = 514 mm Cast-in reinforcement (as above)

0 = 770 mm Cast-in reinforcement is decisive! Embedment depth for overlap joints for rebars:

v = 800 mm Fire resistance: Fire rating class F 60 (60 minutes) (design table see paragraph 4.7): Clear concrete cover including light weight plaster: c = 4 + 3 = 7 cm FsT,req = 0.6 x 120 / 0,225 = 320 kN/m = 48 kN/bar {Clause 2.4.3 (4) und (5), EC2: ENV 1992-1-2:1995} T,req = 48000 / (16 x π x 770) = 1,2 N/mm2

Hilti HIT-RE 500: T = 1,0 N/mm2 < 1,2 N/mm2 increase plaster to 4 cm c = 8 cm, T = 1,4 N/mm2 ok

4

5.275.05.2'

trc

bd

Kcf

f

Page 25: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

705

6 Corrosion behavior The Swiss Association for Protection against Corrosion (SGK) was given the assignment of evaluating the corrosion behavior of fastenings post-installed in concrete using the Hilti HIT-HY 150, Hilti HIT-HY 150 MAX and Hilti HIT-RE 500 injection systems. Corrosion tests were carried out. The behavior of the two systems had to be evaluated in relation to their use in field practice and compared with the behavior of cast-in reinforcement. The SGK can look back on extensive experience in this field, especially on expertise in the field of repair and maintenance work. The result can be summarized as follows: Hilti HIT-HY 150 + Hilti HIT-HY 150 MAX

The Hilti HIT-HY 150 and Hilti HIT-HY 150 MAX systems in combination with reinforcing bars can be considered resistant to corrosion when they are used in sound, alkaline concrete. The alkalinity of the adhesive mortar safeguards the initial passivation of the steel. Owing to the porosity of the adhesive mortar, an exchange takes place with the alkaline pore solution of the concrete.

If rebars are bonded-in into chloride-free concrete using this system, in the event of later chloride exposure, the rates of corrosion are about half those of rebars that are cast-in.

In concrete containing chlorides, the corrosion behavior of the system corresponds to that of cast-in rebars. Consequently, the use of unprotected steel in concrete exposed to chlorides in the past or possibly in the future is not recommended because corrosion must be expected after only short exposure times.

Hilti HIT-RE 500

If the Hilti HIT-RE 500 system is used in corrosive surroundings, a sufficiently thick coat of adhesive significantly increases the time before corrosion starts to attack the bonded-in steel.

The HIT-RE 500 system may be described as resistant to corrosion, even in concrete that is carbonated and contains chlorides, if a coat thickness of at least 1 mm can be ensured. In this case, the unprotected steel in the concrete joint and in the new concrete is critical.

If the coat thickness is not ensured, the HIT-RE 500 system may be used only in sound concrete. A rebar may then also be in contact with the wall of the drilled hole. At these points, the steel behaves as though it has a thin coating of epoxy resin.

In none of the cases investigated did previously rusted steel (without chlorides) show signs of an attack by corrosion, even in concrete containing chlorides.

Neither during this study an acceleration of corrosion was found at defective points in the adhesive nor was there any reference to this in literature. Even if a macro-element forms, the high resistance to it spreading inhibits a locally increased rate of corrosion.

Information in reference data corresponds with the results of this study.

7 Fire design If passive fire prevention requirements have to be met, the suitability of rebar connections should be verified additionally to ULS cold design. Large-area building components (walls and floors) can be verified according to tables 1 and 2. The design tables are derived from tests at the University / IBMB Braunschweig following the Standard ISO 834 temperature/time curve. Design for fire resistance is carried out in line with several specific standards. On the following pages only the fire data for Standard according EC2 are given. Details to all available Standards and specific reports are named below the following tables. Note for the following tables 1 to 6: Fs,T = force in bar when exposed to fire. Intermediate values may be interpolated linearly. Extrapolating is not permitted.

Page 26: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

706

Hilti HIT-HY 150 rebar Bar perpendicular to slab or wall surface exposed to fire

Temperature time curve (acc. ISO 834)

Table 1: Maximum force in rebar in conjuction with HIT-HY 150 as a function of embedment depth for the fire resistance classes F30 to F180 (yield strength fyk = 500 N/mm²) according EC2 a)

Bar Drill

hole F30 F60 F90 F120 F180

[mm] [mm] inst[mm]

FS,T

[kN] inst

[mm] FS,T

[kN] inst

[mm] FS,T

[kN] inst

[mm] FS,T

[kN] inst

[mm] FS,T

[kN] 120 10,6 120 5,0 120 2,8 120 1,9 120 0,7 140 14,1 140 8,4 140 4,5 140 3,3 140 1,5 150 15,6 160 11,9 160 7,9 160 5,2 160 2,7

180 15,4 180 11,4 180 8,6 200 5,3 190 15,6 200 14,9 200 12,1 240 9,6

8 10

210 15,6 220 15,6 280 15,6 150 19,8 150 12,7 150 1,7 150 5,1 150 2,6 160 22,0 160 14,9 160 9,9 160 6,5 160 3,3 180 24,3 180 19,3 180 14,3 180 10,7 180 4,9

200 23,7 200 18,7 200 15,1 220 8,5 210 24,3 220 23,1 220 19,5 260 16,4

10 12

230 24,3 250 24,3 300 24,3 180 31,7 180 23,1 180 17,1 180 12,9 180 5,9 200 35,1 200 28,4 200 22,4 200 18,1 200 8,0

220 33,7 220 27,7 220 23,4 240 14.,4 230 35,1 240 32,9 240 28,7 280 24,9

12 16

250 35,1 270 35,1 320 35,1 210 46,2 210 36,2 210 29,2 210 24,2 210 10,6 220 47,7 220 39,3 220 32,2 220 27,3 220 11,9

240 45,4 240 38,4 240 33,5 240 16,8 250 47,7 260 44,6 260 39,6 280 29,1 270 47,7 280 45,8 320 41,4

14 18

290 47,7 350 47,7 240 62,3 240 51,9 240 43,9 240 38,3 240 19,2

260 59,0 260 51,0 260 45,3 280 33,2 270 62,3 280 58,0 280 52,3 320 47,3 300 62,3 300 59,4 360 61,4

16 20

310 62,3 370 62,3 300 97,4 300 91,3 300 81,3 300 74,3 300 50,3

320 97,4 320 90,1 320 83,0 320 59,1 340 97,4 340 91,8 360 76,7 360 97,4 400 94,3

20 25

410 97,4

inst

Page 27: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

707

Bar Drill

hole F30 F60 F90 F120 F180

[mm] [mm] inst[mm]

FS,T

[kN] inst

[mm] FS,T

[kN] inst

[mm] FS,T

[kN] inst

[mm] FS,T

[kN] inst

[mm] FS,T

[kN] 375 152,2 375 152,2 375 142,9 375 134,0 375 104,1

380 145,6 380 136,7 380 106,9 400 152,2 400 147,7 400 117,9 410 152,2 440 139,9

25 32

470 152,2

Remark: The minimum setting depth is related to > 15 x ds a) For tables according British- and Singapore Standard (resistance class up to F240) see Warringtonfire report WF 166402 or/and IBMB Braunschweig report No 3162/6989 (including supplements). Hilti HIT-HY 150 rebar Bar connection parallel to slab or wall surface exposed to fire

Max. bond stress, T , depending on actual clear concrete cover for classifying the fire

resistance.

It must be verified that the actual force in the bar during a fire, Fs,T , can be taken up by the bar

connection of the selected length, inst. Note: Cold design for ULS is mandatory.

Fs, T (inst – cf) T where: (inst – cf) s;

s = lap length

= nominal diameter of bar

inst – cf = selected overlap joint length; this must be at least s,

but may not be assumed to be more than 80

T = bond stress when exposed to fire

Temperature time curve (acc. ISO 834)

Table 2: Critical temperature-dependent bond stress, crit,T, concerning “overlap joint” for Hilti-HIT-HY 150 injection adhesive in relation to fire resistance class and required minimum concrete coverage c.

Clear concrete cover c Max. bond stress, T [N/mm²] [mm] F30 F60 F90 F120 F180

20 0,7 0 30 1,4 0,2 40 1,9 0,7

0

50 2,4 1,2 0,4

0

60 2,8 1,7 0,7 0,3 70 4,9 2,2 1,2 0,7

0

inst

c

cf

Page 28: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

708

Clear concrete cover c Max. bond stress, T [N/mm²] [mm] F30 F60 F90 F120 F180

80 2,5 1,7 1,0 0,2 90 2,8 2,0 1,5 0,5

100 4,0 2,3 1,9 0,7 110 4,5 2,7 2,3 1,2 120 6,5 2,9 2,6 1,6 130 4,0 2,8 1,9 140 6,5 3,0 2,2 150 4,5 2,3 160 6,5 2,5 170 2,6 180 2,7 190 2,8 200 2,9 210 3,0 220 4,5 230 6,5 240

7,0

7,0 7,0

7,0

7,0

Hilti HIT-HY 150 MAX rebar Bar perpendicular to slab or wall surface exposed to fire

Temperature time curve (acc. ISO 834)

Table 3: Maximum force in rebar in conjuction with HIT-HY 150 MAX as a function of embedment depth for the fire resistance classes F30 to F180 (yield strength fyk = 500 N/mm²) according EC2a).

Bar Drill hole Max. Fs,T inst F30 F60 F90 F120 F180 [mm] [mm] [kN] [mm] [kN] [kN] [kN] [kN] [kN]

80 2,18 0,73 0,24 0,05 0 120 8,21 2,90 1,44 0,82 0,18 170 16,2 9,95 5,99 3,69 1,35 210 16,2 13,01 9,52 3,6 230 16,2 13,04 5,74 250 16,2 9,26

8 12 16,2

300 16,2 100 5,87 1,95 0,84 0,4 0 150 16,86 8,06 4,45 2,82 0,96 190 25,3 16,83 11,86 7,65 2,91 230 25,3 20,66 16,29 7,18 260 25,3 22,89 13,77 280 25,3 18,17

10 14 25,3

320 25,3

inst

Page 29: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

709

Bar Drill hole Max. Fs,T inst F30 F60 F90 F120 F180 [mm] [mm] [kN] [mm] [kN] [kN] [kN] [kN] [kN]

120 12,32 4,35 2,16 1,23 0,27 180 28,15 17,56 11,59 7,14 2,69 220 36,4 28,12 22,15 16,91 6,82 260 36,4 32,7 27,47 16,53 280 36,4 32,75 21,81 300 36,4 27,08

12 16 36,4

340 36,4 140 20,53 8,77 4,74 2,95 0,95 210 42,08 29,72 22,76 16,66 6,3 240 49,6 38,96 32,0 25,89 13,12 280 49,6 44,31 38,21 25,44 300 49,6 44,36 31,6 330 49,6 40,83

14 18 49,6

360 49,6 160 30,5 16,38 9,26 5,77 2,04 240 58,65 44,53 36,57 29,59 15,0 260 64,8 51,56 43,61 36,63 22,04 300 64,8 57,68 50,70 36,11 330 64,8 61,26 46,67 360 64,8 57,22

16 20 64,8

400 64,8 200 55,72 38,06 28,12 19,39 7,22 250 77,71 60,06 50,11 41,39 23,15 310 101,2 86,45 76,5 67,78 49,54 350 101,2 94,09 85,37 67,13 370 101,2 94,16 75,93 390 101,2 84,72

20 25 101,2

430 101,2 250 97,13 75,07 62,46 51,73 28,94 280 113,63 91,56 79,13 68,23 45,43 370 158,1 141,04 128,61 117,71 94,91 410 158,1 150,60 139,70 116,90 430 158,1 150,69 127,90 450 158,1 138,89

25 32 158,1

500 158,1

a) For HIT-HY 150 MAX rebar only the standard acc. EC2 is available (Data also in Warringtonfire report WF 166402 or/and IBMB Braunschweig report No 3884/8246-CM.

Hilti HIT-HY 150 MAX rebar Bar connection parallel to slab or wall surface exposed to fire

Max. bond stress, T , depending on actual clear concrete cover for classifying the fire resistance.

It must be verified that the actual force in the bar during a fire, Fs,T , can be taken up by the bar connection of the

selected length, inst. Note: Cold design for ULS is mandatory.

Fs, T (inst – cf) T where: (inst – cf) s;

s = lap length

= nominal diameter of bar

inst – cf = selected overlap joint length; this must be at least s,

but may not be assumed to be more than 80

T = bond stress when exposed to fire

Page 30: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

710

Table 4: Critical temperature-dependent bond stress, crit,T, concerning “overlap joint” for Hilti-HIT-HY 150 MAX injection adhesive in relation to fire resistance class and required minimum concrete coverage c.

Clear concrete cover c Max. bond stress, T [N/mm²] [mm] F30 F60 F90 F120 F180

30 0,46 35 0,56 40 0,69

0

45 0,84 0,37 50 1,04 0,45 55 1,22 0,53 60 1,47 0,62

0

65 1,85 0,73 0,38 70 0,87 0,46 75 1,02 0,52

0

80 1,21 0,59 0,37 85 1,35 0,67 0,43 90 1,52 0,78 0,52 95 1,74 0,91 0,58

100 2,02 1,07 0,66

0

105 1,21 0,77 0,38 110 1,39 0,91 0,44 115 1,61 1,05 0,48 120 1,89 1,21 0,53 125 2,12 1,37 0,61 130 1,57 0,69 135 1,82 0,75 140 2,13 0,81 145 0,89 150 0,88 155 0,97 160 1,08 165 1,22 170 1,40 175 1,62 180 1,90 185 2,05 190

2,20

2,20

2,20

2,20

2,20

Hilti HIT-RE 500 rebar Bar perpendicular to slab or wall surface exposed to fire

Temperature time curve (acc. ISO 834)

inst

Page 31: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

711

Table 5: Maximum force in rebar in conjuction with HIT-RE 500 as a function of embedment depth for the fire resistance classes F30 to F240 (yield strength fyk = 500 N/mm²) according EC2a).

Bar Drill hole

Max. Fs,T inst Fire resistance of bar in [kN]

[mm] [mm] [kN] [mm] F30 F60 F90 F120 F180 F240 65 1,38 0,57 0,19 0,05 0 0 80 2,35 1,02 0,47 0,26 0 0 95 3,87 1,68 0,88 0,55 0,12 0 115 7,3 3,07 1,71 1,14 0,44 0,18 150 16,19 8,15 4,59 3,14 1,41 0,8 180 16,19 9,99 6,75 2,94 1,7 205 16,19 12,38 5,08 2,86 220 16,19 6,95 3,82 265 16,19 8,57

8 10 16,19

305 16,19 80 2,94 1,27 0,59 0,33 0 0 100 5,68 2,45 1,31 0,85 0,24 0 120 10,66 4,44 2,48 1,68 0,68 0,31 140 17,57 7,76 4,38 2,99 1,33 0,73 165 25,29 15,06 8,5 5,79 2,58 1,5 195 25,29 17,63 12,18 5,12 2,93 220 25,29 20,66 8,69 4,78 235 25,29 11,8 6,30 280 25,29 13,86

10 12 25,29

320 25,29 95 5,8 2,52 1,32 0,83 0,18 0 120 12,79 5,33 2,97 2,01 0,82 0,37 145 23,16 10,68 6,02 4,12 1,84 1,03 180 36,42 24,29 14,99 10,12 4,41 2,55 210 36,42 27,38 20,65 8,47 4,74 235 36,42 312,01 14,16 7,56 250 36,42 19,13 9,89 295 36,42 21,43

12 16 36,42

335 36,42 110 10,92 4,65 2,55 1,7 0,61 0,20 140 24,60 10,87 6,13 4,19 1,86 1,03 170 39,12 23,50 13,55 9,2 4,07 2,37 195 49.58 35,6 24,69 17,05 7,17 4,10 225 49.58 39,20 31,34 13,48 7,34 250 49.58 43,44 22,32 11,54 265 49.58 29,49 15,00 310 49.58 31,98

14 18 49.58

350 49.58 130 22,59 9,42 5,30 3,61 1,56 0,8 160 39,17 21,33 11,95 8,15 3,65 2,11 190 55,76 37,92 24,45 17,25 7,35 4,22 210 64,75 48,98 36,51 27,53 11,29 6,32 240 64,75 53,10 44,12 20,88 11,04 265 64,75 57,94 33,7 17,14 280 64,75 42,0 22,17 325 64,75 44,84

16 20 64,75

365 64,75

Page 32: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

712

Bar Drill hole

Max. Fs,T inst Fire resistance of bar in [kN]

[mm] [mm] [kN] [mm] F30 F60 F90 F120 F180 F240 160 48,97 26,67 14,93 10,18 4,56 2,64 200 76,61 54,31 38,73 27,5 11,42 6,48 240 101,18 81,96 66,37 55,15 26,10 13,8 270 101,18 87,11 75,88 45,58 23,36 295 101,18 93,16 62,86 35,72 310 101,18 73,23 45,69 355 101,18 76,79

20

25 101,18

395 101,18 200 95,77 67,89 48,41 34,37 14,27 8,10 250 138,96 111,09 91,60 77,51 39,86 20,61 275 158,09 132,69 113,2 99,17 61,30 31,81 305 158,09 139,12 125,09 87,22 52,79 330 158,09 146,69 108,82 74,39 345 158,09 121,77 87,34 390 158,09 126,22

25 30 158,09

430 158,09 255 183,40 147,72 122,78 104,82 56,35 28,80 275 205,52 169,84 144,90 126,94 78,46 40,71 325 259,02 225,13 200,19 182,23 133,75 89,68 368 259,02 238,89 220,93 172,46 128,39 380 259,02 243,05 194,58 150,51 395 259,02 211,16 167,09 440 259,02 216,86

32 40 259,02

480 259,02 290 249,87 209,73 181,67 161,46 106,93 59,1 325 293,41 253,27 225,21 205,01 150,47 100,89 355 327,82 290,59 262,54 242,33 187,80 138,22 385 327,82 299,86 279,65 225,12 175,54 410 327,82 310,75 256,22 206,64 425 327,82 274,88 225,30 470 327,82 281,28

36 44 327,82

510 327,82 320 319,10 274,50 243,33 220,87 160,28 105,19 355 367,48 322,88 291,71 269,25 208,66 153,57 385 404,71 364,35 333,18 310,72 250,13 195,04 415 404,71 374,64 352,19 291,60 236,51 440 404,71 386,75 326,16 271,07 455 404,71 346,89 291,80 500 404,71 354,01

40 47 404,71

540 404,71 a) For tables according the standards to DIN 1045-1988, NF-ENV 1991-2-2(EC2), Österreichische Norm B 4700-2000, British-, Singapore- and Australian Standards see Warringtonfire report WF 166402 or/and IBMB Braunschweig report No 3357/0550-5.

Hilti HIT-RE 500 rebar Bar connection parallel to slab or wall surface exposed to fire Max. bond stress, T , depending on actual clear concrete cover for classifying the fire resistance.

It must be verified that the actual force in the bar during a fire, Fs,T , can be taken up by the bar connection of the

selected length, inst. Note: Cold design for ULS is mandatory.

Fs, T (inst – cf) T where: (inst – cf) s;

Page 33: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

713

s = lap length

= nominal diameter of bar

inst – cf = selected overlap joint length; this must be at least s,

but may not be assumed to be more than 80

T = bond stress when exposed to fire Table 6: Critical temperature-dependent bond stress, crit,T, concerning “overlap joint” for Hilti-HIT RE 500 injection adhesive in relation to fire resistance class and required minimum concrete coverage c.

Clear concrete cover c Max. bond stress, T [N/mm²] [mm] F30 F60 F90 F120 F180 F240

10 0 20 0,494 30 0,665

0

40 0,897 0,481 50 1,209 0,623

0

60 1,630 0,806 0,513

0

70 2,197 1,043 0,655 0,487 80 2,962 1,351 0,835 0,614

0

90 3,992 1,748 1,065 0,775 0,457 100 5,382 2,263 1,358 0,977 0,553

0

110 7,255 2,930 1,733 1,233 0,669 0,469 120 9,780 3,792 2,210 1,556 0,810 0,551 130 4,909 2,818 1,963 0,980 0,647 140 6,355 3,594 2,477 1,185 0,759 150 8,226 4,584 3,125 1,434 0,829 160 10.649 5,846 3,943 1,735 1,047 170 7,456 4,974 2,099 1,230 180 9,510 6,276 2,540 1,445 190 7,918 3,037 1,697 200 9,990 3,718 1,993 210 4,498 2,341 220 5,442 2,749 230 6,584 3,228 240 7,966 3,792 250 9,639 4,453 260 5,230 270 6,143 280 7,214 290 8,473 300 9,951 310

11,00

11,00 11,00

11,00

11,00

11,00

Page 34: Hilti Rebar 2

Basics of post installed rebar connections

11 / 2010

714

8 Fatigue of bonded-in reinforcement for joints with predominantly cyclical imposed loading

8.1 General notes For loadbearing elements which are subjected to considerable cyclic stress the bonded-in connections should be designed for fatigue. In that case evidence for fatigue of reinforcing steel bars, concrete and bond should be provided separately. For simple cases it is reasonable to use simplified methods on the safe side. The partial safety factors for loads are specified in the code for reinforced concrete. The partial safety factors for material are specified in Table 4.3. Table 4.3: Partial safety factors for materials subjected to cyclic loading Evidence for concrete bond reinforcing bars (steel) Partial safety factor 1.5 1.8 1.15

8.2 Fatigue of reinforcing bars (steel) The resistance for fatigue of reinforcing bars (steel) is specified in the actual code for reinforced concrete. The behaviour of the steel of reinforcing bars bonded-in by means of Hilti HIT is at least as good as cast-in place reinforcement.

8.3 Fatigue of bond and concrete (simplified approach) As a simple and conservative approach on the safe side evidence for fatigue is proven if the following equation is valid: FSd,fat NRd ffat where: FSd,fat Design value of the anchorage force for the ruling loading model for fatigue. NRd Design resistance for static load of the anchorage (bond and concrete). ffat Reduction factor for fatigue for bond and concrete: ffat = 0.5 If max/min of cycles is known, reduction factors are shown in Figure 4.13.

Diagram for a simplified approach with 2106 cycles (Weyrauch diagram)

Figure 4.13: Reduction factors for fatigue for bond and concrete Hilti design software for rebar connections does also the fatigue design. If the simplified method is not satisfying, additional information using the “Woehler” - lines is available. Ask Hilti Technical Service for the Hilti Guideline: TWU-TPF 06a/02 Hilti HIT-Rebar: Fatigue.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0 0.2 0.4 0.6 0.8 1

/ N Rd

Sd,fat max / N Rd

Sd,fat min 0

FSd,fat max

FSd,fat min

FSd,fat

time

Page 35: Hilti Rebar 2

Basics of post installed

rebar connections

11 / 2010

715

Page 36: Hilti Rebar 2

Hilti HIT-RE 500 post installed rebars

11 / 2010

716

Hilti HIT-RE 500 post installed rebars Injection mortar system Benefits

Hilti HIT-RE 500 330 ml foil pack

(also available as 500 ml and 1400 ml foil pack)

Static mixer

Rebar

- suitable for non-cracked concrete C 20/25 to C 50/60

- high loading capacity

- suitable for dry and water saturated concrete

- under water application

- large diameter applications

- high corrosion resistant

- long working time at elevated temperatures

- odourless epoxy

Concrete Fire resistance

European Technical Approval

DIBt approval Drinking

water appoved

Corossion tested Marque NF

Hilti anchor design

software

Hilti rebar design

software

Service temperature range Temperature range: -40°C to +80°C (max. long term temperature +50°C, max. short term temperature +80°C).

Approvals / certificates

Description Authority / Laboratory No. / date of issue European technical approval a) DIBt, Berlin ETA-08/0105 / 2008-06-30

DIBt approval DIBt, Berlin Z-21.8-1790 / 2009-03-16

Fire test report IBMB Braunschweig 3357/0550-5 / 2002-07-30

Assessment report (fire) Warringtonfire WF 166402 / 2007-10-26

a) All data given in this section according ETA-08/0105, issue 2008-06-30.

Page 37: Hilti Rebar 2

Hilti HIT-RE 500

post installed rebars

11 / 2010

717

Materials Reinforcmenent bars according to EC2 Annex C Table C.1 and C.2N.

Properties of reinforcement Product form Bars and de-coiled rods Class B C Characteristic yield strength fyk or f0,2k (MPa) 400 to 600

Minimum value of k = (ft/fy)k ≥ 1,08 ≥ 1,15 < 1,35

Characteristic strain at maximum force, uk (%) ≥ 5,0 ≥ 7,5

Bendability Bend / Rebend test Maximum deviation from nominal mass (individual bar) (%)

Nominal bar size (mm) ≤ 8 > 8

± 6,0 ± 4,5

Bond: Minimum relative rib area, fR,min

Nominal bar size (mm) 8 to 12 > 12

0,040 0,056

Setting details For detailed information on installation see instruction for use given with the package of the product.

Curing time for general conditions

Data according ETA-08/0105, issue 2008-06-30

Temperature of the

base material

Working time in which anchor can be inserted

and adjusted tgel

Initial curing time tcure,ini

Curing time before anchor can be fully

loaded tcure

5 °C TBM 10 °C 2 h 18 h 72 h

10 °C TBM 15 °C 90 min 12 h 48 h

15 °C TBM 20 °C 30 min 9 h 24 h

20 °C TBM 25 °C 20 min 6 h 12 h

25 °C TBM 30 °C 20 min 5 h 12 h

30 °C TBM 40 °C 12 min 4 h 8 h

TBM = 40 °C 12 min 4 h 4 h

For dry concrete curing times may be reduced according to the following table. For installation temperatures below +5 °C all load values have to be reduced according to the load reduction factors given below. Curing time for dry concrete

Additional Hilti technical data

Temperature of the

base material

Working time in which anchor can be inserted and adjusted

tgel

Initial curing time

tcure,ini

Reduced curing time before anchor can be

fully loaded tcure

Load reduction

factor TBM = -5 °C 4 h 36 h 72 h 0,6 TBM = 0 °C 3 h 25 h 50 h 0,7 TBM = 5 °C 2 ½ h 18 h 36 h 1

TBM = 10 °C 2 h 12 h 24 h 1 TBM = 15 °C 1 ½ h 9 h 18 h 1 TBM = 20 °C 30 min 6 h 12 h 1 TBM = 30 °C 20 min 4 h 8 h 1 TBM = 40 °C 12 min 2 h 4 h 1

Page 38: Hilti Rebar 2

Hilti HIT-RE 500 post installed rebars

11 / 2010

718

Dry and water-saturated concrete, hammer drilling

a)

a) Note: Manual cleaning for element sizes d 16mm and embedment depth hef 20 d only!

Page 39: Hilti Rebar 2

Hilti HIT-RE 500

post installed rebars

11 / 2010

719

Dry and water-saturated concrete, diamond coring drilling; Hilti technical information only

a) Note: Manual cleaning for element sizes d 16mm and embedment depth hef 20 d only! Fitness for use Some creep tests have been conducted in accordance with ETAG guideline 001 part 5 and TR 023 in the following conditions : in dry environnement at 50 °C during 90 days. These tests show an excellent behaviour of the post installed connection made with HIT-RE 500: low displacements with long term stability, failure load after exposure above reference load.

Page 40: Hilti Rebar 2

Hilti HIT-RE 500 post installed rebars

11 / 2010

720

Resistance to chemical substances

Categories Chemical substances resistant Non

resistant Drilling dust slurry pH = 12,6

Alkaline products Potassium hydroxide solution (10%) pH = 14

Acetic acid (10%)

Nitric acid (10%)

Hydrochloric acid (10%) Acids

Sulfuric acid (10%)

Benzyl alcohol

Ethanol

Ethyl acetate

Methyl ethyl keton (MEK)

Trichlor ethylene

Solvents

Xylol (mixture)

Concrete plasticizer

Diesel

Engine oil

Petrol

Products from job site

Oil for form work

Sslt water

De-mineralised water Environnement

Sulphurous atmosphere (80 cycles)

Electrical Conductivity HIT-RE 500 in the hardened state is not conductive electrically. Its electric resistivity is 661012 .m (DIN IEC 93 – 12.93). It is adapted well to realize electrically insulating anchorings (ex: railway applications, subway).

Page 41: Hilti Rebar 2

Hilti HIT-RE 500

post installed rebars

11 / 2010

721

Drilling diameters

Drill bit diameters d0 [mm] Diamond coring Rebar (mm) Hammer drill (HD)

Compressed air drill (CA) Wet (DD) Dry (PCC)

8 12 (10) a) - 12 (10) a) -

10 14 (12) a) - 14 (12) a) -

12 16 (14) a) 17 16 (14) a) -

14 18 17 18 -

16 20 20 20 -

18 22 22 22 -

20 25 26 25 -

22 28 28 28 -

24 32 32 32 35

25 32 32 32 35

26 35 35 35 35

28 35 35 35 35

30 37 35 37 35

32 40 40 40 47

34 45 42 42 47

36 45 45 47 47

40 55 57 52 52

a) Max. installation length I = 250 mm.

Page 42: Hilti Rebar 2

Hilti HIT-RE 500 post installed rebars

11 / 2010

722

Basic design data for rebar design according to ETA

Bond strength Bond strength in N/mm² according to ETA for good bond conditions for hammer drilling, compressed air drilling, dry diamond core drilling

Concrete class

Rebar (mm) C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 8 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

10 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

12 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

14 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

16 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

18 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

20 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

22 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

24 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

25 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

26 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

28 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

30 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

32 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

34 1,6 2,0 2,3 2,6 2,9 3,3 3,6 3,9 4,2

36 1,5 1,9 2,2 2,6 2,9 3,3 3,6 3,8 4,1

40 1,5 1,8 2,1 2,5 2,8 3,1 3,4 3,7 4,0

Page 43: Hilti Rebar 2

Hilti HIT-RE 500

post installed rebars

11 / 2010

723

Bond strength in N/mm² according to ETA for good bond conditions for wet diamond core drilling

Concrete class

Rebar (mm) C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60

8 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

10 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

12 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

14 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

16 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

18 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

20 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

22 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

24 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

25 1,6 2,0 2,3 2,7 3,0 3,4 3,7 4,0 4,3

26 1,6 2,0 2,3 2,7 2,7 2,7 2,7 2,7 2,7

28 1,6 2,0 2,3 2,7 2,7 2,7 2,7 2,7 2,7

30 1,6 2,0 2,3 2,7 2,7 2,7 2,7 2,7 2,7

32 1,6 2,0 2,3 2,7 2,7 2,7 2,7 2,7 2,7

34 1,6 2,0 2,3 2,6 2,6 2,6 2,6 2,6 2,6

36 1,5 1,9 2,2 2,6 2,6 2,6 2,6 2,6 2,6

40 1,5 1,8 2,1 2,5 2,5 2,5 2,5 2,5 2,5

Minimum anchorage length

According to ETA-08/0105, issue 2008-06-30, the minimum anchorage length shall be increased by factor 1,5 for wet diamond core drilling. For all the other given drilling methods the factor is 1,0.

Page 44: Hilti Rebar 2

Hilti HIT-RE 500 post installed rebars

11 / 2010

724

Minimum and maximum embedment depths and lap lengths for C20/25 according to ETA

Rebar Hammer drilling,

Compressed air drilling, Dry diamond coring drilling

Wet diamond coring drilling

Diameter ds

[mm]

fy,k [N/mm²]

lb,min* [mm]

l0,min * [mm]

lb,min* [mm]

l0,min * [mm]

lmax [mm]

8 500 113 200 170 300 1000

10 500 142 200 213 300 1000

12 500 170 200 255 300 1200

14 500 198 210 298 315 1400

16 500 227 240 340 360 1600

18 500 255 270 383 405 1800

20 500 284 300 425 450 2000

22 500 312 330 468 495 2200

24 500 340 360 510 540 2400

25 500 354 375 532 563 2500

26 500 369 390 553 585 2600

28 500 397 420 595 630 2800

30 500 425 450 638 675 3000

32 500 454 480 681 720 3200

34 500 492 510 738 765 3200

36 500 532 540 797 810 3200

40 500 616 621 925 932 3200

lb,min (8.6) and l0,min (8.11) are calculated for good bond conditions with maximum utilisation of rebar yield strength fyk = 500 N/mm² and 6 = 1,0

Page 45: Hilti Rebar 2

Hilti HIT-RE 500

post installed rebars

11 / 2010

725

Precalculated values Example of pre-calculated values for “anchoring” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions For all drilling procedures, excluding wet diamond core drilling (DD)

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=4=5=1.0 2 or 5= 0.7

1 = 3 = 4 = 1.0 100 6,79 8 100 9,70 8 160 10,86 12 160 15,52 12 200 13,58 15 - - -

8

322 21,87 24 225 21,87 17 121 10,24 11 121 14,63 11 200 16,96 18 200 24,22 18 250 21,20 23 250 30,28 23 300 25,43 27 - - -

10

403 34,13 36 282 34,13 25 145 14,74 15 145 21,06 15 240 24,41 25 240 34,87 25 300 30,51 32 300 43,59 32 360 36,61 38 - - -

12

483 49,13 51 338 49,13 36 169 20,09 20 169 28,70 20 280 33,26 34 280 47,52 34 350 41,58 42 350 59,40 42 480 57,02 58 - - -

14

564 66,96 68 395 66,96 48 193 26,22 26 193 37,45 26 320 43,42 43 320 62,02 43 400 54,27 54 400 77,53 54 480 65,12 65 - - -

16

644 87,39 87 451 87,39 61 217 36,86 46 217 52,66 46 360 61,04 76 360 87,20 76 450 76,30 95 450 109,00 95 540 91,56 115 - - -

18

725 122,87 154 507 122,87 108 242 40,96 51 242 58,51 51 400 67,82 85 400 96,89 85 500 84,78 106 500 121,11 106 600 101,74 127 - - -

20

805 136,52 171 564 136,52 120 266 49,57 56 266 70,81 56 440 82,08 93 440 117,26 93 550 102,60 117 550 146,58 117 660 123,12 140 - - -

22

886 165,22 188

620 165,22 131 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-d²)lb/4”

Page 46: Hilti Rebar 2

Hilti HIT-RE 500 post installed rebars

11 / 2010

726

Example of pre-calculated values for “anchoring” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions For all drilling procedures, excluding wet diamond core drilling (DD)

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=4=5=1.0 2 or 5= 0.7

1 = 3 = 4 = 1.0 290 58,97 61 290 84,24 61 480 97,65 102 480 139,51 102 600 122,07 127 600 174,38 127 720 146,48 153 - - -

24

966 196,57 205

676 196,57 143 302 64,04 114 302 91,49 114 500 106,06 188 500 151,51 188 625 132,57 235 625 189,39 235 750 159,08 282 - - -

25

1 006 213,48 378 705 213,48 265 314 69,26 67 314 98,94 67 520 114,70 110 520 163,85 110 650 143,37 138 650 204,81 138 780 172,04 165 - - -

26

1 047 230,87 222 733 230,87 155 338 80,35 72 338 114,78 72 600 142,56 127 600 203,66 127 700 166,32 148 700 237,60 148 840 199,59 178 - - -

28

1 127 267,83 239 789 267,83 167 362 92,22 160 362 131,74 160 600 152,71 265 600 218,16 265 750 190,89 332 750 272,70 332 900 229,07 398 - - -

30

1 418 360,91 627 845 307,39 374 386 104,87 210 386 149,81 210 640 173,66 347 640 248,09 347 800 217,08 434 800 310,11 434 960 260,50 521 - - -

32

1 288 349,57 699 902 349,57 490 426 118,43 90 426 169,19 90 680 188,86 144 680 269,81 144 850 236,08 180 850 337,26 180

1 020 283,30 216 - - - 34

1 421 394,78 301 995 394,78 211 452 132,78 96 452 189,69 96 720 211,74 153 720 302,49 153 900 264,68 191 900 378,11 191

1 080 317,61 229 - - - 36

1 505 442,60 319 1 054 442,60 223 522 163,96 701 522 234,22 701 800 251,40 1 074 800 359,14 1 074

1 000 314,25 1 343 1 000 448,93 1 343 1 200 377,10 1 612 - - -

40

1 739 546,52 2 336

1 217 546,52 1 635 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-ds²)lb/4” for hammer drilling

Page 47: Hilti Rebar 2

Hilti HIT-RE 500

post installed rebars

11 / 2010

727

Example of pre-calculated values for “overlap joints” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions For all drilling procedures, excluding diamond wet (DD)

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=5=6=1,0 2 or 5= 0,7

1 = 3 = 6 = 1,0 200 13,58 15 200 19,40 15 250 16,98 19 - - - 300 20,37 23 - - -

8

322 21,87 24 225 21,87 17 200 16,96 18 200 24,22 18 250 21,20 23 250 30,28 23 300 25,43 27 - - - 350 29,67 32 - - -

10

403 34,13 36 282 34,13 25 200 20,34 21 200 29,06 21 240 24,41 25 240 34,87 25 300 30,51 32 300 43,59 32 360 36,61 38 - - -

12

483 49,13 51 338 49,13 36 210 24,95 25 210 35,64 25 280 33,26 34 280 47,52 34 350 41,58 42 350 59,40 42 480 57,02 58 - - -

14

564 66,96 68 395 66,96 48 240 32,56 33 240 46,52 33 320 43,42 43 320 62,02 43 400 54,27 54 400 77,53 54 480 65,12 65 - - -

16

644 87,39 87 451 87,39 61 270 45,78 57 270 65,40 57 360 61,04 76 360 87,20 76 450 76,30 95 450 109,00 95 540 91,56 115 - - -

18

725 122,87 154 507 122,87 108 300 50,87 64 300 72,67 64 400 67,82 85 400 96,89 85 500 84,78 106 500 121,11 106 600 101,74 127 - - -

20

805 136,52 171 564 136,52 120 330 61,56 70 330 87,95 70 440 82,08 93 440 117,26 93 550 102,60 117 550 146,58 117 660 123,12 140 - - -

22

886 165,22 188

620 165,22 131 Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good

bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-ds²)lb/4” for hammer drilling

Page 48: Hilti Rebar 2

Hilti HIT-RE 500 post installed rebars

11 / 2010

728

Example of pre-calculated values for “overlap joints” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions For all drilling procedures, excluding diamond wet (DD)

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=4=5=1.0 2 or 5= 0.7

1 = 3 = 4 = 1.0 360 73,24 76 360 104,63 76 480 97,65 102 480 139,51 102 600 122,07 127 600 174,38 127 720 146,48 153 - - -

24

966 196,57 205

676 196,57 143 375 79,54 141 375 113,63 141 500 106,06 188 500 151,51 188 625 132,57 235 625 189,39 235 750 159,08 282 - - -

25

1 006 213,48 378 705 213,48 265 390 86,02 83 390 122,89 83 520 114,70 110 520 163,85 110 650 143,37 138 650 204,81 138 780 172,04 165 - - -

26

1 047 230,87 222 733 230,87 155 420 99,79 89 420 142,56 89 600 142,56 127 600 203,66 127 700 166,32 148 700 237,60 148 840 199,59 178 - - -

28

1 127 267,83 239 789 267,83 167 450 114,53 199 450 163,62 199 600 152,71 265 600 218,16 265 750 190,89 332 750 272,70 332 900 229,07 398 - - -

30

1 418 360,91 627 845 307,39 374 480 130,25 261 480 186,07 261 640 173,66 347 640 248,09 347 800 217,08 434 800 310,11 434 960 260,50 521 - - -

32

1 288 349,57 699 902 349,57 490 510 141,65 108 510 202,35 108 680 188,86 144 680 269,81 144 850 236,08 180 850 337,26 180

1 020 283,30 216 - - - 34

1 421 394,78 301 995 394,78 211 540 158,81 115 540 226,87 115 720 211,74 153 720 302,49 153 900 264,68 191 900 378,11 191

1 080 317,61 229 - - - 36

1 505 442,60 319 1 054 442,60 223 600 188,55 806 600 269,36 806 800 251,40 1 074 800 359,14 1 074

1 000 314,25 1 343 1 000 448,93 1 343 1 200 377,10 1 612 - - -

40

1 739 546,52 2 336

1 217 546,52 1 635 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-ds²)lb/4” for hammer drilling

Page 49: Hilti Rebar 2

Hilti HIT-RE 500

post installed rebars

11 / 2010

729

Page 50: Hilti Rebar 2

Hilti HIT-HY 150 post installed rebars

11 / 2010

730

Hilti HIT-HY 150 post installed rebars Injection mortar system Benefits

Hilti HIT-HY 150 330 ml foil pack

(also available as 500 ml and 1400 ml foil pack)

Statik mixer

Rebar

- suitable for concrete C 12/15 to C 50/60

- high loading capacity and fast cure

- suitable for dry and water saturated concrete

- for rebar diameters up to 25 mm

- non corrosive to rebar elements

- good load capacity at elevated temperatures

- hybrid chemistry

- suitable for embedment length till 2000 mm

- suitable for applications down to -5 °C

Concrete Drinking

water appoved

Corossion tested

Hilti anchor design

software

Hilti rebar design

software

Service temperature range Temperature range: -40°C to +80°C (max. long term temperature +50°C, max. short term temperature +80°C).

Approvals / certificates

Description Authority / Laboratory No. / date of issue Fire test report IBMB Braunschweig 3162/6989 / 1999-07-16

Assessment report (fire) Warringtonfire WF 166402 / 2007-10-26

Materials Reinforcmenent bars according to EC2 Annex C Table C.1 and C.2N.

Page 51: Hilti Rebar 2

Hilti HIT-HY 150

post installed rebars

11 / 2010

731

Properties of reinforcement Product form Bars and de-coiled rods

Class B C

Characteristic yield strength fyk or f0,2k (MPa) 400 to 600

Minimum value of k = (ft/fy)k ≥ 1,08 ≥ 1,15 < 1,35

Characteristic strain at maximum force, uk (%) ≥ 5,0 ≥ 7,5

Bendability Bend / Rebend test

Maximum deviation from nominal mass (individual bar) (%)

Nominal bar size (mm) ≤ 8 > 8

± 6,0 ± 4,5

Bond: Minimum relative rib area, fR,min

Nominal bar size (mm) 8 to 12 > 12

0,040 0,056

Setting details For detailed information on installation see instruction for use given with the package of the product.

Working time, Curing time

Temperature of the base material TBM

Working time tgel

Curing time tcure *

-5 °C TBM 0 °C 90 min 9 h

0 °C TBM 5 °C 45 min 4,5 h

5 °C TBM 10 °C 20 min 2 h

10 °C TBM 20 °C 6 min 90 min

20 °C TBM 30 °C 4 min 50 min

30 °C TBM 40 °C 2 min 40 min

* The curing time data are valid for dry anchorage base only. For water saturated anchorage bases the curing times must be doubled.

Page 52: Hilti Rebar 2

Hilti HIT-HY 150 post installed rebars

11 / 2010

732

Dry and water-saturated concrete, hammer drilling

a)

a) Note: Manual cleaning for element sizes d 16mm and embedment depth hef 10 d only!

Page 53: Hilti Rebar 2

Hilti HIT-HY 150

post installed rebars

11 / 2010

733

Fitness for use

Creep behaviour Creep tests have been conducted in accordance with national standards in different conditions:

in wet environnement at 23 °C during 90 days in dry environnement at 43 °C during 90 days.

These tests show an excellent behaviour of the post installed connection made with HIT-HY 150: low displacements with long term stabilisation, failure load after exposure above reference load.

Resistance to chemical products HIT-HY 150 has been tested to its resistance to chemical products and the results are given in the table below:

Chemical product Concentration (in % of weight)

First effects (in days)

Resistance

Acetic acid Pure 6 o 10 % + Hydrochloric Acid 20 % + Nitric Acid 40 % < 1 - Phosphoric Acid 40 % + Sulphuric acid 40 % + Ethyl acetate Pure 8 - Acetone Pure 1 - Ammoniac 5 % 21 - Diesel Pure + Gasoline Pure + Ethanol 96 % 30 o Machine oils Pure + Methanol Pure 2 - Peroxide of hydrogen 30% 3 o Solution of phenol Saturated < 1 - Silicate of sodium 50% pH=14! + Solution of chlorine saturated + Solution of hydrocarbons 60 % vol Toluene; 30 % vol

Xylene 10 % vol Naphtalene of methyl

+

Salted solution (sodium chloride)

10 % +

Suspension of cement Saturated + Carbon tetrachloride Pure + Xylene Pure +

We can retain that HIT-HY 150 behaves well as alkaline middle and that it is very resistant: in aqueous solutions in elevated pH (ex: silicate of sodium): no risk of saponification under weathering in salty solutions (ex: sea water) in solutions saturated in chlorine (ex: applications in swimming pool).

Electrical conductivity HIT-HY 150 in cured state shows low electrical conductivity. Its electric resistivity is 2.1011 .m (DIN VDE 0303T3). It suits well electrically insulating anchoring (ex: railway applications, subway).

Page 54: Hilti Rebar 2

Hilti HIT-HY 150 post installed rebars

11 / 2010

734

Drilling diameters

Drill bit diameters d0 [mm] Rebar (mm) Hammer drill (HD)

Compressed air drill (CA)

8 12 -

10 14 -

12 16 17

14 18 17

16 20 20

20 25 26

25 32 32

Basic design data for rebar design

Bond strength Bond strength in N/mm² according to EC2 for good bond conditions for all drilling methods

Concrete class

Rebar (mm) C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 8 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

10 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

12 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

14 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

16 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

18 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

20 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

22 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

24 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

25 1,6 2,0 2,3 2,7 3,0 3,0 3,0 3,0 3,0

Minimum anchorage length

The multiplication factor for minimum anchorage length shall be considered as 1,5 for all drilling methods.

Page 55: Hilti Rebar 2

Hilti HIT-HY 150

post installed rebars

11 / 2010

735

Minimum and maximum embedment depth and lap lengths for C20/25

Rebar Hammer drilling,

Compressed air drilling Diameter ds

[mm] fy,k

[N/mm²] lb,min* [mm]

l0,min * [mm]

lmax

[mm] 8 500 170 300 1000

10 500 213 300 1000

12 500 255 300 1000

14 500 298 315 1000

16 500 340 360 1500

20 500 425 450 2000

25 500 532 563 2000

*lb,min (8.6) and l0,min (8.11) are calculated for good bond conditions with maximum utilisation of rebar yield strength fyk = 500 N/mm² and 6 = 1,0

Page 56: Hilti Rebar 2

Hilti HIT-HY 150 post installed rebars

11 / 2010

736

Precalculated values

Example of pre-calculated values for “anchoring” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=4=5=1.0 2 or 5= 0.7

1 = 3 = 4 = 1.0 150 10,18 12 150 14,55 12 160 10,86 12 160 15,52 12 200 13,58 15 - - -

8

322 21,87 24 225 21,87 17 182 15,36 17 182 21,95 17 200 16,96 18 200 24,22 18 250 21,20 23 250 30,28 23 300 25,43 27 - - -

10

403 34,13 36 282 34,13 25 218 22,11 22 218 31,59 22 240 24,41 25 240 34,87 25 300 30,51 32 300 43,59 32 360 36,61 38 - - -

12

483 49,13 51 338 49,13 36 254 31,35 30 254 43,05 30 280 33,26 34 280 47,52 34 350 41,58 42 350 59,40 42 480 57,02 58 - - -

14

564 66,96 68 395 66,96 48 290 39,33 39 290 56,18 39 320 43,42 43 320 62,02 43 400 54,27 54 400 77,53 54 480 65,12 65 - - -

16

644 87,39 87 451 87,39 61 361 61,48 76 361 87,76 76 400 67,82 85 400 96,89 85 500 84,78 106 500 121,11 106 600 101,74 127 - - -

20

805 136,52 171 564 136,52 120 453 96,06 171 453 137,24 171 500 106,06 188 500 151,51 188 625 132,57 235 625 189,39 235 750 159,08 282 - - -

25

1 006 213,48 378 705 213,48 265 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-d²)lb/4”

Page 57: Hilti Rebar 2

Hilti HIT-HY 150

post installed rebars

11 / 2010

737

Example of pre-calculated values for “overlap joints” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=5=6=1,0 2 or 5= 0,7

1 = 3 = 6 = 1,0 200 13,58 15 200 19,40 15 250 16,98 19 - - - 300 20,37 23 - - -

8

322 21,87 24 225 21,87 17 200 16,96 18 200 24,22 18 250 21,20 23 250 30,28 23 300 25,43 27 - - - 350 29,67 32 - - -

10

403 34,13 36 282 34,13 25 220 22,37 23 200 31,97 23 240 24,41 25 240 34,87 25 300 30,51 32 300 43,59 32 360 36,61 38 - - -

12

483 49,13 51 338 49,13 36 260 30,89 31 260 44,12 31 280 33,26 34 280 47,52 34 350 41,58 42 350 59,40 42 480 57,02 58 - - -

14

564 66,96 68 395 66,96 48 290 39,34 40 290 56,21 40 320 43,42 43 320 62,02 43 400 54,27 54 400 77,53 54 480 65,12 65 - - -

16

644 87,39 87 451 87,39 61 370 62,74 79 370 89,63 79 400 67,82 85 400 96,89 85 500 84,78 106 500 121,11 106 600 101,74 127 - - -

20

805 136,52 171 564 136,52 120 460 97,57 173 460 139,39 173 500 106,06 188 500 151,51 188 625 132,57 235 625 189,39 235 750 159,08 282 - - -

25

1 006 213,48 378 705 213,48 265 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-ds²)lb/4”

Page 58: Hilti Rebar 2

Hilti HIT-HY 150 MAX post installed rebars

11 / 2010

738

Hilti HIT-HY 150 MAX post installed rebars Injection mortar system Benefits

Hilti HIT-HY 150 MAX 330 ml foil pack

(also available as 500 ml and 1400 ml foil pack)

Static mixer

Rebar

- suitable for concrete C 12/15 to C 50/60

- high loading capacity and fast cure

- suitable for dry and water saturated concrete

- for rebar diameters up to 25 mm

- non corrosive to rebar elements

- good load capacity at elevated temperatures

- hybrid chemistry

- multiplication factor for minimum anchoring and splice length 1.0

- suitable for embedment length till 2000 mm

- suitable for applications down to -10 °C

Concrete Fire resistance

European Technical Approval

CE conformity

Drinking water

appoved

Corossion tested

Hilti anchor design

software

Hilti rebar design

software

Service temperature range Temperature range: -40°C to +80°C (max. long term temperature +50°C, max. short term temperature +80°C).

Approvals / certificates

Description Authority / Laboratory No. / date of issue European technical approval a) CSTB, France ETA-08/0202 / 2008-07-24

Fire test report IBMB Braunschweig 3884/8246 / 2007-05-24

Assessment report (fire) Warringtonfire WF 166402 / 2007-10-26

a) All data given in this section according ETA-08/0202, issue 2008-07-24.

Materials Reinforcmenent bars according to EC2 Annex C Table C.1 and C.2N.

Page 59: Hilti Rebar 2

Hilti HIT-HY 150 MAX

post installed rebars

11 / 2010

739

Properties of reinforcement Product form Bars and de-coiled rods

Class B C

Characteristic yield strength fyk or f0,2k (MPa) 400 to 600

Minimum value of k = (ft/fy)k ≥ 1,08 ≥ 1,15 < 1,35

Characteristic strain at maximum force, uk (%) ≥ 5,0 ≥ 7,5

Bendability Bend / Rebend test

Maximum deviation from nominal mass (individual bar) (%)

Nominal bar size (mm) ≤ 8 > 8

± 6,0 ± 4,5

Bond: Minimum relative rib area, fR,min

Nominal bar size (mm) 8 to 12 > 12

0,040 0,056

Setting details For detailed information on installation see instruction for use given with the package of the product.

Working time, Curing time

Temperature of the base material TBM

Working time tgel

Curing time tcure

-10 °C TBM -5 °C 180 min 12 h

-5 °C TBM -0 °C 90 min 9 h

0 °C TBM 5 °C 45 min 4,5 h

5 °C TBM 10 °C 20 min 2 h

10 °C TBM 15 °C 7 min 50 min

15 °C TBM 20 °C 6 min 40 min

20 °C TBM 25 °C 5 min 30 min

25 °C TBM 30 °C 3 min 30 min

30 °C TBM 40 °C 2 min 30 min

Page 60: Hilti Rebar 2

Hilti HIT-HY 150 MAX post installed rebars

11 / 2010

740

Dry and water-saturated concrete, hammer drilling

a)

a) Note: Manual cleaning for element sizes d 16mm and embedment depth hef 10 d only!

Page 61: Hilti Rebar 2

Hilti HIT-HY 150 MAX

post installed rebars

11 / 2010

741

Fitness for use

Creep behaviour Creep tests have been conducted in accordance with ETAG guideline 001 part 5 and TR 023 in the following conditions: in dry environnement at 50 °C during 90 days.

These tests show an excellent behaviour of the post installed connection made with HIT-HY 150 MAX: low displacements with long term stability, failure load after exposure above reference load.

Water behaviour Water: HIT-HY 150 MAX is water tight and water resistant, without any toxicity risk for the environnement.

Drinking water: HIT-HY 150 MAX is «NSF» certified, in accordance with NSF/ANSI St 61 «Drinking Water System Components - Health Effects». Tests are done at 60 °C, which corresponds to domestic hot water. The use of HIT-HY 150 MAX is possible for water tanks.

Resistance to chemical substances Chemical substance Comment Resistance Sulphuric acid 23°C + Under sea water 23°C + Under water 23°C + Alkaline medium pH = 13,2, 23°C +

Drilling diameters

Drill bit diameters d0 [mm] Rebar (mm) Hammer drill (HD)

Compressed air drill (CA)

8 12 (10) a) -

10 14 (12) a) -

12 16 (14) a) 17

14 18 17

16 20 20

18 22 22

20 25 26

22 28 28

24 32 32

25 32 32

a) Max. installation length I = 250 mm.

Page 62: Hilti Rebar 2

Hilti HIT-HY 150 MAX post installed rebars

11 / 2010

742

Basic design data for rebar design according to ETA

Bond strength Bond strength in N/mm² according to ETA for good bond conditions for all drilling methods

Concrete class

Rebar (mm) C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 8 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

10 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

12 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

14 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

16 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

18 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

20 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

22 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

24 1,6 2,0 2,3 2,7 3,0 3,4 3,4 3,4 3,7

25 1,6 2,0 2,3 2,7 3,0 3,4 3,7 3,7 3,7

Minimum anchorage length

According to ETA-08/0202, the multiplication factor for minimum anchorage length is 1,0 for all approved drilling methods.

Minimum and maximum embedment depth and lap lengths for C20/25

Rebar Hammer drilling,

Compressed air drilling

Diameter ds [mm]

fy,k [N/mm²]

lb,min* [mm]

l0,min * [mm]

lmax [mm]

8 500 113 200 1000 10 500 142 200 1000 12 500 170 200 1000 14 500 198 210 1000 16 500 227 240 1500 18 500 255 270 2000 20 500 284 300 2000 22 500 312 330 2000 24 500 340 360 2000 25 500 354 375 2000

lb,min (8.6) and l0,min (8.11) are calculated for good bond conditions with maximum utilisation of rebar yield strength fyk = 500 N/mm² and 6 = 1,0

Page 63: Hilti Rebar 2

Hilti HIT-HY 150 MAX

post installed rebars

11 / 2010

743

Precalculated values

Example of pre-calculated values for “anchoring” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=4=5=1.0 2 or 5= 0.7

1 = 3 = 4 = 1.0 100 6,79 8 (4)** 100 9,70 8 (4)** 160 10,86 12 (6)** 160 15,52 12 (6)** 200 13,58 15 - - -

8

322 21,87 24 225 21,87 17 121 10,24 11 (5)** 121 14,63 11 (5)** 200 16,96 18 (8)** 200 24,22 18 (8)** 250 21,20 23 250 30,28 23 300 25,43 27 - - -

10

403 34,13 36 282 34,13 25 145 14,74 15 (7)** 145 21,06 15 (7)** 240 24,41 25 (12)** 240 34,87 25 (12)** 300 30,51 32 300 43,59 32 360 36,61 38 - - -

12

483 49,13 51 338 49,13 36 169 20,09 20 169 28,70 20 280 33,26 34 280 47,52 34 350 41,58 42 350 59,40 42 480 57,02 58 - - -

14

564 66,96 68 395 66,96 48 193 26,22 26 193 37,45 26 320 43,42 43 320 62,02 43 400 54,27 54 400 77,53 54 480 65,12 65 - - -

16

644 87,39 87 451 87,39 61 217 36,86 46 217 52,66 46 360 61,04 76 360 87,20 76 450 76,30 95 450 109,00 95 540 91,56 115 - - -

18

725 122,87 154 507 122,87 108 242 40,96 51 242 58,51 51 400 67,82 85 400 96,89 85 500 84,78 106 500 121,11 106 600 101,74 127 - - -

20

805 136,52 171 564 136,52 120 266 49,57 56 266 70,81 56 440 82,08 93 440 117,26 93 550 102,60 117 550 146,58 117 660 123,12 140 - - -

22

886 165,22 188

620 165,22 131 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-d²)lb/4” (** values correspond to min. hole diameter)

Page 64: Hilti Rebar 2

Hilti HIT-HY 150 MAX post installed rebars

11 / 2010

744

Example of pre-calculated values for “anchoring” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=4=5=1.0 2 or 5= 0.7

1 = 3 = 4 = 1.0 290 58,97 61 290 84,24 61 480 97,65 102 480 139,51 102 600 122,07 127 600 174,38 127 720 146,48 153 - - -

24

966 196,57 205

676 196,57 143 302 64,04 114 302 91,49 114 500 106,06 188 500 151,51 188 625 132,57 235 625 189,39 235 750 159,08 282 - - -

25

1 006 213,48 378

705 213,48 265 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-ds²)lb/4” (** values correspond to min. hole diameter)

Page 65: Hilti Rebar 2

Hilti HIT-HY 150 MAX

post installed rebars

11 / 2010

745

Example of pre-calculated values for “overlap joints” Rebar yield strength fyk = 500 N/mm², concrete C25/30, good bond conditions

Rebar Anchorage length lbd

Design value NRd

Mortar volume

Anchorage length lbd

Design value NRd

Mortar volume

[mm] [mm] [kN] [ml] [mm] [kN] [ml]

1=2=3=5=6=1,0 2 or 5= 0,7

1 = 3 = 6 = 1,0 200 13,58 15 (7)** 200 19,40 15 (7)** 250 16,98 19 (9)** - - - 8 322 21,87 24 225 21,87 17 200 16,96 18 (8)** 200 24,22 18 (8)** 300 25,43 27 - - - 350 29,67 32 - - -

10

403 34,13 43 282 34,13 25 200 20,34 21 (10)** 200 29,06 21 (10)** 240 24,41 25 (12)** 240 34,87 25 (12)** 300 30,51 32 300 43,59 32 360 36,61 38 - - -

12

483 49,13 51 338 49,13 36 210 24,95 25 210 35,64 25 280 33,26 34 280 47,52 34 350 41,58 42 350 59,40 42 480 57,02 58 - - -

14

564 66,96 68 395 66,96 48 240 32,56 33 240 46,52 33 320 43,42 43 320 62,02 43 400 54,27 54 400 77,53 54 480 65,12 65 - - -

16

644 87,39 87 451 87,39 61 270 45,78 57 270 65,40 57 360 61,04 76 360 87,20 76 450 76,30 95 450 109,00 95 540 91,56 115 - - -

18

725 122,87 154 507 122,87 108 300 50,87 64 300 72,67 64 400 67,82 85 400 96,89 85 500 84,78 106 500 121,11 106 600 101,74 127 - - -

20

805 136,52 171 564 136,52 120 330 61,56 70 330 87,95 70 440 82,08 93 440 117,26 93 550 102,60 117 550 146,58 117 660 123,12 140 - - -

22

886 165,22 188

620 165,22 131 360 73,24 76 360 104,63 76 480 97,65 102 480 139,51 102 600 122,07 127 600 174,38 127 720 146,48 153 - - -

24

966 196,57 205 676 196,57 143 375 79,54 141 375 113,63 141 500 106,06 188 500 151,51 188 625 132,57 235 625 189,39 235 750 159,08 282 - - -

25

1 006 213,48 378 705 213,48 265 * Values corresponding to the minimum anchorage length. The maximum permissible load is valid for “good bond conditions” as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7. The volume of mortar correspond to the formula “1,2(d0²-ds²)�lb/4” (** values correspond to min. hole diameter)

Page 66: Hilti Rebar 2

Hilti worldwide

11 / 2010

746

Hilti worldwide Afghanistan Ansary Engineering Products & Services (AEP), Hilti Division, Kabul Phone +93 799 481 935

Algeria BFIX SARL, Algiers Phone+213 216 013 60 Fax+213 216 055 03

Angola Agrinsul S.A.R.L, Luanda Phone+244 222 395 884 Fax+244 222 397 935

Argentina Hilti Argentina, S.R.L., Buenos Aires Phone+54 11 4721 4400 Fax+54 11 4721 4410

Aruba Carfast Holding N.V, Oranjestad Phone +297-5-828-449 Fax +297-5-832-582

Australia Hilti (Aust.) Pty. Ltd., Rhodes Phone+61 2 8748 1000 Fax+61 2 8748 1190

Austria Hilti Austria Ges.m.b.H., Wien Phone+43 1 66101 Fax+43 1 66101 257

Azerbaijan HCA Ltd., Baku Phone+994 12 598 0955 Fax+994 12 598 0957

Bahrain Hilti Bahrain W.L.L., Manama Phone +973 17 702 101 Fax +973 17 702 151

Bangladesh Aziz & Company Ltd., Hilti Division, Dhaka Phone+8802 881 4461 Fax+8802 8827028

Barbados Williams Equipment, Ltd., St.Michel Phone+1 246 425 5000 Fax+1 246 417 9140

Belgium Hilti Belgium S.A., Asse (Zellik) Phone+32 2 4677911 Fax+32 2 4665802

Belize Benny's Homecenter Ltd., Belize City, Phone+501 227 2126 Fax+501 227 4340

Benin La Roche S.A.R.L., Cotonou Phone+229 21330775 Fax+229 21331920

Bhutan Hilti Regional Office Middle East & South Asia Region, Dubai Phone+9714 8060300 Fax+9718 4480485

Bolivia Genex, S.A., Santa Cruz Phone+591 3 343 1819 Fax+591 3 343 1819

Bosnia and Herzegovina Hilti Systems BH d.o.o. Sarajevo, Sarajevo-Ilidža Phone +387 33 761 100 Fax +387 33 761 101

Botswana Turbo Agencies, Gaborone Phone+267 312288 Fax+267 352925

Brazil Hilti do Brasil Comercial Ltda., Barueri Phone+55 11 4134 9000 Fax+55 11 4134 9021

Bulgaria Hilti (Bulgaria) GmbH, Sofia Phone +359 2976 00 11 Fax +359 2974 01 23

Canada Hilti (Canada) Ltd., Mississauga, Ontario Phone 1-800-363-4458 Fax 1-800-363-4459

Cayman Islands Active Traders Ltd., Georgetown Phone +345-769-4458 Fax +345-769-5886

Chile Hilti Chile, Ltda.,Santiago Phone+562 655 3000 Fax+562 365 0505

China Hilti (China) Ltd., Shanghai Phone+86 21 6485 3158 Fax+86 21 6485 0311

Colombia Hilti Colombia, Bogotá Phone+571 3810121/3810134 Fax+571 3810131

Costa Rica Superba S.A., La Uruca, San José Phone+506 255 1044 Fax+506 255 1110

Croatia Hilti Croatia d.o.o., Sesvete-Zagreb Phone+385 1 2030 777 Fax+385 1 2030 766

Cyprus Cyprus Trading Corp. Ltd., Nicosia Phone+357 22 740340 Fax+357 22 482892

Czech Republik Hilti CR spol. s r.o, Prag-Pruhonice Phone+420 2 611 95 611 Fax+420 2 726 80 440

Denmark Hilti Danmark A/S, Rødovre Phone +45 88 8000 Fax +45 44 88 8084

Dominican Republik Dalsan C por A, Santo Domingo Phone+1 809 565 4431 Fax+1 809 541 7313

Ecuador Quifatex S.A., Quito Phone+593 2 247 7400 Fax+593 2 247 8600

Egypt M.A.P.S.O. for Marine Propulsion & Supply S.A.E., Cairo Phone +202 2 698 47 77 Fax+202 2 698 82 60

El Salvador Electrama, S.A. de C.V., San Salvador Phone+503 274 9745 Fax+503 274 9747

Page 67: Hilti Rebar 2

Hilti worldwide

11 / 2010

747

Estonia Hilti Eesti OÜ, Tallinn Phone+372 6 550 900 Fax+372 6 550 901

Ethiopia A. Sarafian Industrial Accessories & Tools, Addis Ababa Phone+251 115512408 Fax+251 115519068

Fiji Central Pacific Agencies, Suva Phone+ 679 336 2580

Finland Hilti (Suomi) OY, Vantaa Phone+358 9 47870 0 Fax+358 9 47870 100

France Hilti France S.A., Magny-les-Hameaux Phone+33 1 3012 5000 Fax+331 3012 5012

Gabon CECA-GADIS, Libreville Phone+241 740747 Fax+241 720416

Georgia ICT Georgia Ltd., Tbilisi Phone+995 32 25 38 42

Germany Hilti Deutschland GmbH, Kaufering Phone+49 8191/90-0 Fax+49 8191/90-1122

Ghana Auto Parts Limited, Accra Phone+233 21225924 Fax+233 21224899

Great Britain Hilti (Gt. Britain) Ltd., Manchester Phone+44 161 886 1000 Fax+44 161 872 1240

Greece Hilti Hellas SA, Likovrisi Phone+30210 288 0600 Fax+30210 288 0607

Guatemala Equipos y Fijaciones, S.A., Guatemala City Phone+502 339 3583 Fax+502 339 3585

Guyana Agostini's Fastening Systems Ltd., Port of Spain Phone +1 868 623 2236 Fax+1 868 624 6751

Honduras Lazarus & Lazarus, S.A., San Pedro Sula Phone+504 565 8882 Fax+504 565 8624

Hong Kong Hilti (Hong Kong) Ltd., Tsimshatsui, Kowloon Phone+852 8228 8118 Fax+852 2764 3234 (main)

Hungary Hilti (Hungária), Budapest Phone+36 1 4366 300 Fax+36 1 4366 390

Iceland HAGI ehf HILTI Iceland, Reykjavik Phone+354 4143700 Fax+354 4143720

India Hilti India Pvt Ltd., New Dehli Phone +91 11 4270 1111 Fax+91 11 2637 1634

Indonesia P.T. Hilti Nusantara, Jakarta Phone+62 21 / 789-0850 Fax+62 21 / 789-0845

Iran Madavi Company, Hilti Division, Tehran Phone+98 21 81 721 Fax+98 21 887 61 523

Iraq Systems Engineering Services Co. (SESCO), Hilti Division, Baghdad Phone+964 1 778 8933 Phone+964 7901 309592

Ireland Hilti (Fastening Systems) Ltd., Dublin Phone+353 1 886 Fax+353 1 886 3569

Israel Hilti (Israel) Ltd., Petach Tikva Phone+972 3 930 4499 Fax+972 3 930 2095

Italy Hilti Italia S.p.A., Milano Phone+3902 212721 Fax+3902 25902189

Jamaica Evans Safety Ltd., Kingston Phone+1 876 929 5546 Fax+1 876 926 2069

Japan Hilti (Japan) Ltd., Yokohama Phone+81 45 943 6211 Fax+81 45 943 6231

Jordan Newport Trading Agency, Hilti Division, Amman Phone +962 6 4026829 Fax+962 6 4026794

Kazakhstan EATC Ltd., Almaty Phone +7327 298 01 80 Fax+7 3272 50 39 57

Korea Hilti (Korea) Ltd., Seoul, Phone +82 2 2007 2802 Fax +82 2 2007 2809

Kuwait Works & Building Co, Hilti Division, Safat Phone+965 844 855 Fax+965 4831379

Latvia Hilti Services Limited, Riga Phone+371 762 8822 Fax+371 762 8821

Lebanon Chehab Brothers S.A.L., Hilti Division, Beirut Phone+9611 244435 Fax+9611 243623

Libya Wemco Workshop & Maintenance Equipments Co., Tripoli Phone+ 218 21 4801213 Fax+ 218 21 4802810

Liechtenstein Hilti Aktiengesellschaft, Schaan Liechtenstein Phone+423 234 2111 Fax+423 234 2965

Lithuania UAB Hilti Complete Systems, Vilnius Phone+370 6 872 7898 Fax+370 5 271 5341

Page 68: Hilti Rebar 2

Hilti worldwide

11 / 2010

748

Luxembourg Hilti G.D. Luxembourg, Bertrange Phone+352 310 705 Fax+352 310 751

Macedonia Famaki-ve doel, Skopje Phone+389 2 246 96 Fax+389 2 246 99 97

Madagascar Société F. Bonnet Et Fils, Antananarivo Phone+261 202220326 Fax+261 202222253

Malaysia Hilti (Malaysia) Sdn. Bhd., Petaling Jaya Phone+60 3 563 38583 Fax+60 3 563 37100

Maldives Aima Con. Co. Pvt. Ltd, Hilti Division, Malé Phone +960 3330909 Fax+960 3313366

Malta Panta Marketing & Services Ltd., Msida Phone+356 21 441 361 Fax+356 21 440 000

Mauritius Ireland Blyth Limited, Port Louis Phone+230 207 05 00 Fax+230 207 04 41

Mexico Hilti Mexicana, S.A. de C.V., Mexico City Phone+5255 5387-1600 Fax+5255 5281-5967

Moldova Sculcom Grup SRL, Chisinau Phone+373 22 212488 Fax+373 22 238196

Mongolia PSC CO. LTD., Hilti Division, Ulaan Baatar Phone+976 +50 88 45 84 Fax+976 50 88 45 85

Morocco Mafix SA, Casablanca Phone+2122 257301 Fax+2122 257364

Mozambique Diatecnica Lda., Maputo Phone+2581 303816 Fax+2581 303804

Namibia A. Huester Machinetool Company (Pty) Ltd., Windhoek Phone+26461 237083 Fax+26461 227696

Nepal INCO (P) Ltd., Kathmandu Phone+9771 4431 992 Fax+9771 4432 728

Netherlands Hilti Nederland B.V., Berkel en Rodenrijs Phone+3110 5191111 Fax+3110 5191199

Netherlands Antilles Fabory Carribbean Fasteners N.V., Davelaar Phone+599 9 737 6288 Fax+599 9 737 6225

New Zealand Hilti (New Zealand) Ltd., Auckland Phone +64 9 571 9995 Fax +64 9 571 9942

Nicaragua Fijaciones de Nicaragua, Managua Phone+505 270 4567 Fax+505 278 5331

Nigeria Top Brands Import Ltd., Hilti Division Ikeja Phone +234 1 817 97 601 Fax+234 1 496 22 00

Norway Motek AS, Oslo Phone+47 230 52 500 Fax+47 22 640 063

Oman Bin Salim Enterprices LLC, Hilti Division, Muscat Phone+968 245 63078 Fax+968 245 61193

Pakistan Hilti Pakistan (Pvt) Ltd Lahore Phone +9242 111144584 Fax +9242 37500521

Palestine Shaer United Co. for Modern Technology, Beit Jala Phone+970 2 276 5840 Fax+970 2 274 7355

Panama Cardoze & Lindo, Ciudad de Panamá Phone+507 274 9300 Fax+507 267 1122

Peru Química Suiza SA, Lima Phone+511 211 4000 Fax+511 211 4050

Philippines Hilti (Philippines) Inc., Makati City Phone+632 784 7100 Fax+632 784 7101

Poland Hilti (Poland) Sp. z o.o., Warsaw Phone +48 320 5500 Fax +48 22 320 5500

Portugal Hilti (Portugal), Produtos e Servicos, Lda., Matosinhos – Senhora Da Hora, Phone +351 229 568 100 Fax+35122 9568190

Puerto Rico Hilti Caribe, Inc., Hato Rey, Phone+1-787 281 6160 Fax+1 787 281 6155

Qatar Hilti Qatar Doha Phone+974 4425022 Fax+974 435 6098

Romania Hilti Romania S.R.L., Otopeni Phone+40 213523000

Russia Hilti Distribution Ltd., Moscow Phone+7 495 792 52 52 Fax+7 495 792 52 53

République de Djibouti Les Etablissements TANI, Djibouti Phone +235 35 03 37 Fax+235 35 23 33

Saudi Arabia TFT Ltd Jeddah Phone +9662 6983660 Fax +9662 6974696

Page 69: Hilti Rebar 2

Hilti worldwide

11 / 2010

749

Senegal Senegal-Bois, Dakar Phone+2218 323527 Fax+2218 321189

Serbia Montenegro Hilti SMN d.o.o., Belgrade Phone +381-11-2379-515 Fax+381-11-2379-514

Singapore Hilti Far East Private Ltd., Singapore Phone+65 6777 7887, Fax+65 6777 3057

Slovakia Hilti Slovakia spol. s r.o., Bratislava Phone+421 248 221 211 Fax+421 248 221 255

Slovenja Hilti Slovenija d.o.o., Trzin Phone+386 1 56809 33 Fax+386 1 56371 12

South Africa Hilti (South Africa) (Pty) Ltd., Midrand Phone+2711 2373000 Fax+2711 2373111

Spain Hilti Española S.A., Madrid Phone+3491 3342200 Fax+3491 3580446

Sri Lanka Hunter & Company Ltd.,Hilti Division Phone+94 114713352 Fax +94 114723208

St. Lucia Williams Equipment Ltd, Castries Phone +1 758 450-3272 Fax+1 758-450-4206

St.Maarten, N.A. Carfast Holding N.V., Cole Bay Phone +599 544 4760 Fax +599-544-4763

Sudan PEMECO INDUSTRIAL SUPPLIES CO. LTD. Khartoum Phone+249 15 517 5031 Fax+249 15 517 5032

Sweden Hilti Svenska AB, Arlöv Phone+46 40 539 300 Fax+46 40 435 196

Switzerland Hilti (Schweiz) AG, Adliswil Phone+41 844 84 84 85 Fax+41 844 84 84 86

Syria Al-Safadi Brothers Co., Hilti Division Damascus Phone+96311 6134211 Fax+96311 6123818

Taiwan Hilti Taiwan Co., Ltd., Taipei Phone+886 2 2357 9090 Fax+886 2 2397 3730

Tanzania Coastal Steel Industrial Limited, Hilti Division, Dar es Salaam Phone+255 222865662 Fax+255 222865692

Thailand Hilti (Thailand) Ltd., Bangkok Metropolis Phone+66 2 751 4123 Phone-2-751 4127 Fax+66 2 751 4116

Trinidad and Tobago Agostini's Fastening Systems Ltd., TT- Port of Spain Phone+1 868 623 2236 Fax+1 868 624 6751

Tunisia Permetal SA, Tunis C.U.N Phone+216 71 766 911 Fax+216 71 766 807

Turkey Hilti Insaat Malzemeleri Tic .A.S., Umraniye/Istanbul Phone+90 216 528 6800 Fax+90 216 528 6898

Turkmenistan Zemmer Legal, Ashgabat

Uganda Casements (Africa) Ltd., Kampala Phone+25641 234000 Fax+25641 234301

Ukraine HILTI (Ukraine) Ltd., Kyiv Phone +380 44 390 5566 Fax+380 44 390 5565

United Arab Emirates Hilti Emirates L.L.C. Phone+9714 8854445 Fax+9714 8854405

USA Hilti, Inc.,Tulsa Phone (866) 445-8827 Fax 1-800-879-7000

Uruguay Seler Parrado, S.A., Montevideo Phone+598 2 902 3515 Fax+598 2 902 0880

Uzbekistan BNZ Industrial Support, Tashkent Phone +998 90 186 2792 Fax +99871 361

Venezuela Inversiones Hilti de Venezuela, S.A., Caracas Phone+58 -212-2034200 Fax+58-212-2034310

Vietnam Hilti AG Representative Office, Ho Chi Minh City Phone+84 8 930 4091 Fax+84 8 930 4090

Yemen Nasser Ziad Establishment, Hilti Division, Sana’a Phone+9671 275238 Fax+9671 272854

Zambia BML Electrical Limited, Kitwe Phone+260 (2) 226644

Zimbabwe Glynn's Bolts (Pvt.) Ltd., Harare Phone+2634 754042-48 Fax+2634 754049