high-voltage nanoimprint lithography of refractory metal films dr. john a. dagata

8
High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Upload: milton-richard

Post on 19-Jan-2018

222 views

Category:

Documents


0 download

DESCRIPTION

Technology SPM oxidation of silicon [Appl. Phys. Lett (1990)] Electric field induces a water meniscus between the probe tip and substrate Everything oxidizes above 10 8 V/m 500 nm 200 nm 100 nm Major drawback is low throughput

TRANSCRIPT

Page 1: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

High-voltage nanoimprint lithography of refractory metal films

Dr. John A. Dagata

Page 2: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Benefits of nanoimprint lithography:

Wafer-scale fabrication of micro/nanostructures

Stamp – curable resist - thermal or laser energy source

Advantages of incorporating an electric field:

Induces a wide range of chemical reaction and mass transport mechanisms

Beyond standard fab materials processing

Functionalize organics localize nanoparticles oxidize metal films

Page 3: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Technology •SPM oxidation of silicon [Appl. Phys. Lett. 56 2001 (1990)]•Electric field induces a water meniscus between the probe tip and substrate•Everything oxidizes above 108 V/m

500 nm 200 nm 100 nm

Major drawback is low throughput

Page 4: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Si

SPM tip

V dc _ +

Si

Stamp 15 - 20V _ +

Pressure

Water

Water meniscus

Si

SPM tip

V dc _ +

Si

Stamp 15 - 20V _ +

Pressure

Water

Water meniscus

NTT Japan 2003-2008 silicon

Univ Bologna-IMMUniv Bologna-Univ Barcelona

Italy/Spain 20032003-2008

siliconMn12 SMMs

Weizmann Inst. Israel 2003-2006 SAMs

NIST – Univ Akron USA 2004-2006 Refractory metal films

Tsing-hua Univ Taiwan 2006 Gold nanoparticles

Overcome the throughput problem by extending a serial concept to a parallel one:

Page 5: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Commercial Applications:

Photonic waveguides and crystals •Optical communications

Nanoelectromechanical systems•Sensors/actuators

Biochips100 µm 100 µm

Stamp

Oxide50 µm

Stamp Oxide

100 µm 100 µm

Stamp

Oxide50 µm

Stamp Oxide

100 µm 100 µm100 µm 100 µm

Stamp

Oxide50 µm

Stamp Oxide

ZrN/ZrO

Page 6: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Application:

Fabrication of MRI calibration prototypes

FeNSi

Si stamp

FeN

Distance (µm)

Z D

ata

( nm

)

0

43.25

86.5

129.75

173 nm

0 12 24 36 48 60 µm

1

1

20 nm 10 µm

SPMiron thin-film phantom

1000 um100 um

optical

MRI

10 um

MFM

SPM

Page 7: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Collaboration Opportunities:

CRADASBIR

For technical details see the poster:

High-voltage nanoimprint lithography of refractory metal filmsN. Farkas, et al.

Page 8: High-voltage nanoimprint lithography of refractory metal films Dr. John A. Dagata

Contact Information:John A. Dagata

Precision Engineering DivisionManufacturing Engineering Laboratory

National Institute of Standards & Technology100 Bureau Drive MS 8212

Gaithersburg MD 20899-8212301-975-3597 tel.301-869-0822 fax

[email protected]