high voltage circuit breakers. - energobos voltage circuit breakers. mirsad kapetanovic high voltage...

14
High voltage circuit breakers. Mirsad Kapetanovic Sarajevo, 2011

Upload: lybao

Post on 02-Jul-2018

731 views

Category:

Documents


91 download

TRANSCRIPT

High voltage circuit breakers.

Mirsad Kapetanovicwww.kema.com

High voltage circuit b

reakers.M

irsad Kapetanovic

KE_boek [omslag2010]_15.indd 1 09-03-2010 16:51:02

High voltage circuit breakers.

Mirsad Kapetanovicwww.kema.com

High voltage circuit b

reakers.M

irsad Kapetanovic

KE_boek [omslag2010]_15.indd 1 09-03-2010 16:51:02

Sarajevo, 2011

High voltage circuit breakers.

Mirsad Kapetanovicwww.kema.com

High voltage circuit b

reakers.M

irsad Kapetanovic

KE_boek [omslag2010]_15.indd 1 09-03-2010 16:51:02

Price: € 150.00 (BAM 296.35)

Publisher: ETF − Faculty of Electrotechnical Engineering, Sarajevo

Author: Prof. dr. Mirsad Kapetanović

Reviewers: Prof. dr. Kemo Sokolija Prof. dr. Mensur Hajro

Prof. dr. René Peter Paul Smeets

Chief Editor: Prof. dr. René Peter Paul Smeets

Translation: Maja Kapetanović, M.Sc

Proofreading: Scott Wilson

Cover design: JTP Creative Marketing of KEMA – JTP Branding & Marketing

DTP: Mahir Sokolija

Printed and bound in Bosnia and Herzegovina by BEMUST, Sarajevo

CIP – Katalogizacija u publikacijiNacionalna i univerzitetska bibliotekaBosne i Hercegovine, Sarajevo

621.316.542.027.3(075.8)

KAPETANOVIĆ, Mirsad

High voltage circuit breakers / Mirsad Kapetanović ; [translation Maja Kapetanović]. – Sarajevo : Faculty of Electrotechnical Engineering, 2011. – 648 str. : ilustr. ; 25 cm

Izv. stv. nasl.: Visokonaponski prekidači. – Bibliografija: str. 623-641.

ISBN 978-9958-629-39-6

COBISS.BH-ID 18490886

Copyright © 2011 Author.Telephone: + 387 61 194 987E-mail (for orders): [email protected]

All rights reserved. This work is protected under international copyright laws, treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any infor-mation storage or retrieval system, without the express written permission of the author.Positions and opinions advanced in this book are those of the author and not necessarily those of KEMA.

Mirsad Kapetanović

High Voltage Circuit Breakers.

Editorial Committee:René Peter Paul Smeets (KEMA / Eindhoven University)

Lou van der Sluis (Delft University)Piet Knol (KEMA)

Sarajevo, 2011

UNIVERZITET

UVEJARAS U

MCMXLIX SI SN

EO

VEIARAS MUROIDUTS

SAT

ISR

EVI

NU

5

Table of Content.

Foreword _______________________________________________ 13

Acknowledgment ________________________________________ 15

1 UnderstandingSwitchingDevices _______________________ 17 1.1 The Purpose of Switching Devices ________________________ 20 1.2 Definitions of Switching Devices _________________________ 20 1.2.1 Disconnectors ________________________________ 20 1.2.2 Earthing Switches _____________________________ 21 1.2.3 High-speed Earthing Switches _____________________ 22 1.2.4 Switches ___________________________________ 22 1.2.5 Make Switches _______________________________ 22 1.2.6 Contactors __________________________________ 22 1.2.7 Fuses ___________________________________ 23 1.2.8 Spark Gaps __________________________________ 23 1.2.9 Surge Arresters _______________________________ 23 1.2.10 Fault Current Limiters __________________________ 24 1.2.11 Starters ___________________________________ 24 1.2.12 Switching Regulators ___________________________ 24 1.2.13 Electrical Relays ______________________________ 24 1.2.14 Circuit Breakers _______________________________ 25 1.2.15 Disconnecting Circuit Breakers ____________________ 25

2 TheElectricArcinGases _______________________________ 27 2.1 Basic Processes and Physical Characteristics of the Arc_________ 29 2.1.1 Electron Emission Mechanisms from Metal Surfaces _____ 33 2.1.2 Carriers of Current in the Arc _____________________ 36 2.1.3 Energy Balance on Contacts ______________________ 37 2.1.4 Mechanisms of Contact Erosion ___________________ 39 2.1.5 Experimental Results of Contact Erosion Studies ________ 42 2.1.6 Classes of Contact Materials ______________________ 48

6

High Voltage Circuit Breakers.

2.1.6.1 High-conductivity Metals and Alloys __________ 48 2.1.6.2 Chemically Resistant Metals and Alloys ________ 51 2.1.6.3 Refractory Metals _______________________ 52 2.1.6.4 Sintered Materials ______________________ 52 2.1.7 Properties of Contact Materials ____________________ 52 2.2 The Direct-Current Arc ________________________________ 56 2.2.1 Volt-Ampere Characteristics of Gas-Discharges ________ 56 2.2.2 DC Arc-Quenching _____________________________ 58 2.3 The Alternating-Current Arc ____________________________ 62 2.3.1 Volt-Ampere Characteristics of AC Arcs ______________ 62 2.3.2 Thermal and Dielectric Breakdown Regions ___________ 64 2.3.3 Arc-conductivity, Power and Energy Dissipation in the Arc Column _ 66

3 ArcModeling _________________________________________ 69 3.1 P-T (or Black-Box) Arc Models ___________________________ 71 3.1.1 Mayr and Cassie Equations _______________________ 72 3.1.2 General Form of Dynamic Arc Equation ______________ 75 3.1.3 Survey on Arc Models and Related Parameters _________ 76 3.1.4 Practical Application of P-T Arc Models ______________ 83 3.1.5 Evaluation of Arc Parameters _____________________ 85 3.1.6 Numerical Treatment ___________________________ 89 3.1.7 Validity Check ________________________________ 90 3.1.8 Current Zero Measurement _______________________ 92 3.1.8.1 Current Measurement ____________________ 92 3.1.8.2 Voltage Measurement ____________________ 96 3.1.8.3 Processing Raw Measured Data into Arc Current and Arc Voltage _____________ 96 3.1.8.4 Performance of a Current Measurement System __ 98 3.2 Physical Arc Models __________________________________ 100 3.2.1 General System of Equations of Physical Arc Models _____ 102 3.2.2 Simplified Physical Arc Model with Enthalpy Flow _______ 105 3.2.2.1 Additional Assumptions ___________________ 105 3.2.2.2 System of Equations _____________________ 106 3.2.2.3 Thermodynamic Characteristics of SF

6 Plasma __ 109

3.2.2.4 Time Dependency of Arc Current ____________ 110 3.2.2.5 Determining the Cross-Section and Arc Voltage __ 110 3.2.2.6 Determination of the Pressure Distribution Along the Arc Axis ______________________ 112

7

Table of Content.

3.2.2.7 State Equation of SF6 Gas

in Stationary and Steady Flow Conditions ______ 118 3.2.2.8 Expressions for Computation of Thermodynamic Characteristics of SF

6 Gas _________________ 119

3.3 Computer Simulation of HV SF6 Circuit Breakers’ Operations _____ 122

3.3.1 Computer Procedure ___________________________ 122 3.3.2 Characteristic Quantities ________________________ 124 3.3.3 Extinction Window _____________________________ 125 3.4 Other Tools for Arc Modeling ____________________________ 126 3.4.1 Arc Diameter and Arc Temperature _________________ 127 3.4.2 Arc Voltage in Gas and Vacuum ____________________ 128 3.4.3 Cold Voltage Characteristic _______________________ 132 3.4.4 Limiting Curves _______________________________ 136 3.4.5 Chopping Number _____________________________ 139 3.4.6 Electrical Endurance of Circuit Breakers ______________ 142

4 TheVacuumArc _______________________________________ 155 4.1 Understanding the Vacuum Arc __________________________ 157 4.1.1 Cathode and Anode Sheath _______________________ 158 4.1.2 The Diffuse and Constricted Vacuum Arc _____________ 160 4.1.2.1 The Diffuse Arc ________________________ 161 4.1.2.2 The Constricted Arc _____________________ 164 4.2 Vacuum Arc Control by Magnetic Field _____________________ 165 4.2.1 The Radial Magnetic Field Principle _________________ 166 4.2.2 The Axial Magnetic Field Principle __________________ 168

5 Arc-QuenchingMedia __________________________________ 173 5.1 Air ______________________________________________ 178 5.1.1 Arc-Quenching by Arc Elongation in Air ______________ 179 5.1.2 Arc-Quenching by Air-Magnetic Blowing _____________ 183 5.1.3 Arc-Quenching by Compressed Air _________________ 187 5.2 Mineral Oil ________________________________________ 189 5.2.1 Arc-Quenching in Bulk-Oil Circuit Breakers ___________ 190 5.2.2 Arc-Quenching in Minimum-Oil Circuit Breakers _______ 194 5.3 Sulfur Hexafluoride (SF

6) _______________________________ 196

5.3.1 Physical Properties ____________________________ 196 5.3.2 SF

6 Decomposition Products ______________________ 201

5.3.3 Environmental Effects of SF6 ______________________ 206

8

High Voltage Circuit Breakers.

5.3.3.1 Ozone Depletion ________________________ 206 5.3.3.2 Greenhouse Effect ______________________ 208 5.3.3.3 Ecotoxicology and Potential Effects on Health ___ 213 5.3.4 SF

6 Substitutes _______________________________ 214

5.4 SF6/N

2 Mixtures _____________________________________ 216

5.5 Vacuum __________________________________________ 219 5.5.1 Preserving High Vacuum _________________________ 224 5.5.2 Use of Vacuum at Higher Voltages __________________ 225 5.5.3 Contact Materials in Vacuum ______________________ 227

6 SwitchingDutiesandTransients _________________________ 233 6.1 Types of Loads _____________________________________ 235 6.1.1 Resistive Load ________________________________ 236 6.1.2 Capacitive Load _______________________________ 237 6.1.3 Inductive Load ________________________________ 238 6.1.3.1 Large Inductive Currents: Short circuits ________ 239 6.1.3.2 Small Inductive Currents __________________ 241 6.2 Short-circuit Currents _________________________________ 242 6.2.1 Relation Between Short-circuit Current and Voltage ______ 243 6.2.2 Percentage DC Component _______________________ 244 6.2.3 RMS and Peak Values of Asymmetrical Current _________ 246 6.3 Transient Recovery Voltage (TRV) _________________________ 250 6.3.1 Definition of TRV ______________________________ 250 6.3.2 Single-Frequency TRV Waveform ___________________ 252 6.3.3 Double-Frequency TRV Waveform __________________ 253 6.3.4 Two-Parameter Envelopes of TRV __________________ 254 6.3.5 Four-Parameter Envelopes of TRV __________________ 256 6.3.6 TRV in Circuits with Distributed Circuit Elements ________ 257 6.3.7 IEEE/ANSI TRV Waveshapes ______________________ 260 6.3.8 TRV in a Three-Phase Network ____________________ 262 6.3.9 First-Pole-to-Clear Factor ________________________ 265 6.3.10 Short-Line Fault TRV ___________________________ 266 6.3.11 Initial Transient Recovery Voltage (ITRV) ______________ 274 6.3.12 TRV, ITRV and SLF _____________________________ 276 6.3.14 Effect of Short-circuit Current Asymmetry on TRV _______ 281 6.3.15 Effect of Arc Voltage on TRV ______________________ 285 6.3.16 Effect of Current Chopping on TRV __________________ 286 6.3.17 Effect of Post-Arc Current on TRV __________________ 286 6.3.18 Effect of Depression on TRV ______________________ 287

9

Table of Content.

6.4 Transients During Switching of Capacitive Currents ___________ 288 6.4.1 Capacitive Circuits _____________________________ 288 6.4.2 Example of Successful Capacitive Current Interruption ____ 289 6.4.3 Example of Capacitive Current Interruption in Case of a Restrike __ 292 6.4.4 Voltage Escalation by Successive Restrikes ___________ 293 6.4.5 Chopping of Small Capacitive Currents_______________ 294 6.4.6 The Influence of Circuit Breakers’ Characteristics on the Switching of Capacitive Currents ______________ 295 6.4.7 The Influence of Load and Source Side Impedances _____ 298 6.4.8 Capacitive Current Interruption in Three-Phase Circuits ___ 299 6.4.9 Energization of Capacitor Banks ___________________ 301 6.4.10 Energization and Re-Energization of Overhead Lines _____ 304 6.5 Transients During Switching of Small Inductive Currents ________ 306 6.5.1 Chopping of Small Inductive Currents _______________ 307 6.5.2 No-Load Transformer Switching ___________________ 308 6.5.3 Shunt Reactor Switching ________________________ 310 6.5.4 Reignition Phenomenon _________________________ 313 6.5.5 Overvoltages During Shunt Reactor Switching __________ 316 6.6 Non-Standardized Switching Duties _______________________ 321 6.6.1 Transformer and Series Reactor Limited Faults _________ 321 6.6.1.1 Transformer Limited Faults ________________ 321 6.6.1.2 Series Reactor Limited Faults _______________ 324 6.6.2 Short-circuit Currents Without Current Zeros __________ 325 6.6.3 Evolving Fault – Inductive Case ____________________ 329 6.6.4 Evolving Fault – Capacitive Case ___________________ 330 6.6.5 Parallel Switching of Short-circuit Currents ____________ 331 6.7 Means of Protection Against Overvoltages __________________ 334 6.7.1 Closing Resistors and Their Function ________________ 336 6.7.2 Surge Arresters _______________________________ 338 6.7.2.1 Valve Type Surge Arresters ________________ 339 6.7.2.2 Metal Oxide Surge Arresters _______________ 340

7 OperatingPrinciplesandDesignsofCircuitBreakers ________ 345 7.1 Requirements of Circuit Breakers ________________________ 347 7.2 Classification of Circuit Breakers _________________________ 348 7.2.1 Oil Circuit Breakers ____________________________ 354 7.2.2 Air Circuit Breakers ____________________________ 358 7.2.3 SF

6 Circuit Breakers ____________________________ 362

10

High Voltage Circuit Breakers.

7.2.3.1 Double Pressure SF6 Circuit Breakers _________ 365

7.2.3.2 Single-Pressure Puffer Type SF6 Circuit Breakers _ 365

7.2.3.3 Self-Blast Single Pressure SF6 Circuit Breakers __ 373

7.2.3.4 Double Motion Principle __________________ 379 7.2.3.5 Double Speed Principle ___________________ 384 7.2.3.6 SF

6 Circuit Breakers with Magnetic Arc Rotation _ 387

7.2.4 Vacuum Circuit Breakers ________________________ 388 7.3 Operating Mechanisms ________________________________ 394 7.3.1 Pneumatic Operating Mechanisms _________________ 397 7.3.2 Hydraulic Operating Mechanisms __________________ 399 7.3.3 Spring Operating Mechanisms ____________________ 401 7.3.4 Electro-Magnetic Drives _________________________ 403 7.3.5 Motor Drives _________________________________ 405 7.4 Maintenance and Condition Monitoring of Circuit Breakers _______ 406 7.4.1 Choice of Monitored Parameters ___________________ 409 7.4.2 Interpretation of Characteristics Monitored ____________ 412

8 ControlledSwitching __________________________________ 415 8.1 Principles of Controlled Switching ________________________ 418 8.1.1 Controlled Opening ____________________________ 419 8.1.2 Controlled Closing _____________________________ 420 8.2 Functional Requirements for Circuit Breakers ________________ 421 8.2.1 Mechanical Characteristics _______________________ 421 8.2.2 Electrical Characteristics ________________________ 423 8.3 Practical Applications of Controlled Switching ________________ 425 8.3.1 Controlled Switching of Shunt Capacitor Banks _________ 426 8.3.2 Controlled Switching of Unloaded Overhead Lines _______ 429 8.3.3 Controlled Switching of Shunt Reactors ______________ 430 8.3.4 Controlled Switching of Unloaded Transformers _________ 432 8.4 Reliability Aspects ___________________________________ 436 8.5 Benefits and Economic Aspects __________________________ 439

9 Short-circuitandSwitchingTests ________________________ 443 9.1 High-Power Laboratories ______________________________ 445 9.2 Direct and Indirect Tests _______________________________ 449 9.2.1 Direct Three-Phase Tests ________________________ 449 9.2.2 Direct Single-Phase Tests ________________________ 452 9.3 Synthetic Tests _____________________________________ 455 9.3.1 Intervals During the Interrupting Process _____________ 457

11

Table of Content.

9.3.2 Intervals During the Making Process ________________ 459 9.3.3 Types of Synthetic Test Methods ___________________ 460 9.3.3.1 Current Injection Methods _________________ 461 9.3.3.2 Voltage Injection Methods _________________ 465 9.3.3.3 Three-Phase Synthetic Test Methods _________ 467 9.3.3.4 Synthetic Circuits for Testing UHV Breakers _____ 468 9.3.4 Arc Prolongation Circuit _________________________ 473 9.3.5 Voltage of the Current Supply Circuit ________________ 474 9.4 Examples of Short-circuit and Switching Tests _______________ 475 9.4.1 Information to be Included in Test Documents __________ 478 9.4.2 Short-Time Withstand Current and Peak Withstand Current Test __ 480 9.4.3 Terminal Fault Tests ____________________________ 483 9.4.3.1 Test Duty T10__________________________ 484 9.4.3.2 Test Duty T30__________________________ 488 9.4.3.3 Test Duty T60__________________________ 491 9.4.3.4 Test Duty T100s ________________________ 495 9.4.3.5 Test Duty T100a ________________________ 511 9.4.4 Critical Current Test Duty ________________________ 521 9.4.5 Single-Phase and Double-Earth Fault Tests ____________ 521 9.4.6 Short-Line Fault Tests __________________________ 524 9.4.6.1 Test Duty L90 _________________________ 525 9.4.6.2 Test Duty L75 _________________________ 538 9.4.6.3 Test Duty L60 _________________________ 541 9.4.7 Out-of-Phase Tests ____________________________ 541 9.4.7.1 Test Duty OP1 _________________________ 541 9.4.7.2 Test Duty OP2 _________________________ 542 9.4.8 Capacitive Current Switching Tests _________________ 548 9.4.8.1 Line-Charging Current Switching Tests ________ 550 9.4.8.2 Cable-Charging Current Switching Tests _______ 552 9.4.8.3 Capacitor Bank Current Switching Tests _______ 558 9.4.9 Inductive Load Switching Test _____________________ 559 9.4.10 Electrical Endurance Tests _______________________ 571 9.4.11 Assessment of Condition After Test _________________ 575 9.4.11.1 No-Load Operations _____________________ 575 9.4.11.2 Inspection ____________________________ 575

10SelectionofHigh voltageCircuitBreakers _________________ 579 10.1 Rated Characteristics Selection __________________________ 581 10.1.1 Rated Voltage ________________________________ 583

12

High Voltage Circuit Breakers.

10.1.2 Rated Insulation Level __________________________ 584 10.1.3 Rated Frequency ______________________________ 587 10.1.4 Rated Normal Current __________________________ 589 10.1.5 Rated Short-Time Withstand Current ________________ 592 10.1.6 Rated Peak Withstand Current ____________________ 592 10.1.7 Rated Duration of Short Circuit ____________________ 593 10.1.8 Rated Short-circuit Making Current _________________ 593 10.1.9 Rated Short-circuit Breaking Current ________________ 594 10.1.10 TRV Related to the Rated Short-circuit Breaking Current __ 596 10.1.11 Rated Characteristics for Short-Line Faults ____________ 601 10.1.12 Rated Characteristics for Out-of-Phase ______________ 602 10.1.13 Rated Operating Sequence _______________________ 603 10.1.14 Rated Time Quantities __________________________ 603 10.1.15 Rated Supply Voltage and Frequency of Auxiliary and Control Circuits ____________________________ 605 10.1.16 Mechanical Endurance (Class M1 and M2) ___________ 606 10.1.17 Restrike Performance and Capacitive Current Switching Ratings (Class C1 and C2) __ 607 10.1.18 Inductive Load Current Switching Ratings _____________ 608 10.1.19 Electrical Endurance (Class E1 and E2) ______________ 610 10.2 Selection of Service Conditions __________________________ 611 10.2.1 Normal Service Conditions _______________________ 612 10.2.1.1 Normal Service Conditions for Indoor Installation __ 612 10.2.1.2 Normal Service Conditions for Outdoor Installation __ 613 10.2.2 Special Service Conditions _______________________ 613 10.2.2.1 Altitude ______________________________ 614 10.2.2.2 Pollution _____________________________ 616 10.2.2.3 Ambient Temperature ____________________ 617 10.2.2.4 Air Humidity ___________________________ 617 10.2.2.5 Ice _________________________________ 618 10.2.2.6 Wind ________________________________ 618 10.2.2.7 Earthquake ___________________________ 618 10.3 Selection of the Circuit Breaker Type ______________________ 619

References _______________________________________________ 623

Epilogue _________________________________________________ 643

ListofAbbreviations _______________________________________ 647

13

Foreword.

In 2003, Prof. Mirsad Kapetanović presented his book ”Visokonaponski Prekidači” (“High voltage circuit breakers” in the Bosnian language) to the international experts from CIGRE Study Committee A3 (High Voltage Equipment) at its meeting in Sarajevo.

For almost 35 years, Prof. Kapetanović has been active in the research, development and testing of high voltage circuit breakers for Energoinvest, Sarajevo and belongs to the inner circle of “passionate circuit breaking devotees”.

I was immediately struck by the depth and detailed coverage of all aspects of break-ing and switching, even without mastering the Bosnian language.

In 2008, KEMA invited Prof. Kapetanović to prepare an updated and expanded edition of this work, in English. An editorial committee, consisting of Prof. Lou van der Sluis (Delft University), Mr. P. Knol (KEMA) and I (KEMA) supervised the process.

This work gives an overview of the present state of the art of circuit breaking: cover-ing its history, the relevant physics of the switching arc, the effects of switching in power systems, the technology and last but not least, testing.

In addition, many of KEMA’s proprietary test techniques and methods of presenting test results in reports are described in this edition.

Regularly relying on KEMA for certification and research tests for his designs, Prof. Kapetanović's team has a relationship with KEMA that has been built over decades. We learned to appreciate intense discussions on many occasions; questioning at length many well-established principles in testing, e.g. the equivalence of synthetic and direct testing. Prof. Kapetanović was eager to adapt new technologies offered by KEMA, e.g. the current zero technology, to verify the models used in the design of breakers. As a professor at the Faculty of Electrical Engineering of the University of Sarajevo, he is disseminating this knowledge to his students and with this book, to a much larger audience.

Testing is solidly built upon the three pillars: standards, competent specialists and adequate test-facilities. Only through this support can testing provide quality verifica-tion of component performance.

14

High Voltage Circuit Breakers.

As the world market leader in the field of testing and certification of high voltage equipment, KEMA has strived to maintain this firm position since 1927.

The goal of this book is to make the reader aware that high voltage circuit breakers are not “plug and play” devices, and that each specific application has its specialties.

Guidance through this extended field of technology is the true mission of the author, the editorial committee and KEMA.

Prof. dr. René SmeetsKEMA T&D Testing Services

ArnhemOctober 31, 2010

High voltage circuit breakers.

Mirsad Kapetanovicwww.kema.com

High voltage circuit b

reakers.M

irsad Kapetanovic

KE_boek [omslag2010]_15.indd 1 09-03-2010 16:51:02

High voltage circuit breakers.

Mirsad Kapetanovicwww.kema.com

High voltage circuit b

reakers.M

irsad Kapetanovic

KE_boek [omslag2010]_15.indd 1 09-03-2010 16:51:02

Sarajevo, 2011

High voltage circuit breakers.

Mirsad Kapetanovicwww.kema.com

High voltage circuit b

reakers.M

irsad Kapetanovic

KE_boek [omslag2010]_15.indd 1 09-03-2010 16:51:02