grand lake habs

58
Harmful Algal Blooms and Grand Lake: Causes, Concerns, and Management Eugene Braig, Program Director, Aquatic OSU Extension, School of Environment and Natural

Upload: lakeimprovement

Post on 17-Aug-2015

429 views

Category:

Science


4 download

TRANSCRIPT

Page 1: Grand Lake HABs

Harmful Algal Blooms and Grand Lake:

Causes, Concerns, and Management

Eugene Braig, Program Director, Aquatic Ecosystems

OSU Extension, School of Environment and Natural Resources

Page 2: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Harmful Algal Blooms in Ponds

• What is this stuff!?• What causes it?• Concerns• Management strategies

Page 3: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Harmful Algal Blooms in Ponds

• What is this stuff!?• What causes it?• Concerns• Management strategies

Page 4: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Cyanobacteria are ordinarily responsible for harmful algal blooms (HABs).

• Not true algae: Cyanobacteria are often called “blue-green” algae.

• They are now recognized as bacteria that contain chlorophyll and are capable of photosynthesis.

• Cells of most species grow together in colonies.• Most are capable of fixing their own nitrogen from

the atmosphere using specialized cells called heterocytes.• Without the need for N compounds as nutrients, P

enrichment can favor cyanobacteria blooms.• A bloom is simply an abundant or excessive

growth of algae or cyanobacteria.

What is this stuff!?

Page 5: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

What is this stuff!?

Page 6: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

The major HAB players

• Microcystis• Colonies of small, spherical, bright

green globs that vary buoyancy to seek optimal light conditions.

• Can turn the water column green or form large green slicks on the surface.

• Patches of turquoise and white foaminess often appear.

• Cannot fix nitrogen.• The most common in Ohio ponds,

Grand Lake, and western Lake Erie waters (the “Mike” of “Annie, Fannie, and Mike”).

Photo credit: Me!

Photo credit: Jim

Crawford, Ohio EPA

Page 7: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Planktothrix (some planktonic species used to be known as Oscillatoria)• Colonies of planktonic filaments

that distribute through the water.

• Often appears as classic “blue-green” water.

• Can be associated with an oily-looking surface film.

• Cannot fix nitrogen.• Recently very common to

Ohio’s reservoirs and inland waters including Grand Lake.

Photo credit: Linda Merchant-Masonbrink, Ohio EPA

The major HAB players

Page 8: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Oscillatoria (and related benthic species)• Colonies of rather globby-looking

filaments growing on pond substrates.

• Often form mats along the bottom that float to the surface later in the growing season.

• Lacks specialized cells but still fixes nitrogen from the atmosphere.

• Very common to shallow waters of ponds and relatively tolerant of low-light conditions.

The major HAB players

Photo credit: Frank Gibbs

Page 9: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Aphanizomenon• Colonies of planktonic filaments that

often bundle together and look like tiny grass clippings.

• Fixes atmospheric nitrogen in heterocytes.

• Sometimes sold as a dietary supplement. However, the supplement is not regulated and may contain cyanobacterial toxins. Consumers beware!

• The second of three historically dominant species in Lake Erie (the “Fannie” of “Annie, Fannie, and Mike”).

Photo credit: Dr. John Lehman, University of Michigan

The major HAB players

Page 10: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Lyngbya (the outdated name Plectonema is still sometimes used)• Colonies of clustered filaments,

usually visible to the naked eye.• Often form dense mats along the

bottom that float to the surface later in the growing season.

• Lacks specialized cells but still fixes nitrogen from the atmosphere.

• One of Ohio’s recently problematic species (specifically Lyngbya wollei), especially on Maumee Bay near Toledo.

Photo credits: Dr. Thomas

Bridgeman, University of Toledo

The major HAB players

Page 11: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Cylindrospermopsis• Colonies of planktonic filaments

that distribute through the water column.

• Fixes nitrogen and can be distinguished from Planktothrix by teardrop-shaped heterocytes.

• A recent invader to Ohio’s Lake Erie waters and Buckeye Lake.

Photo credit: David Patterson and Bob Andersen, Provasoli-Guillard Center

The major HAB players

Page 12: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Anabaena• Colonies of hair-like filaments.• Can be planktonic or form mats

along the bottom or near shore.• Fixes atmospheric nitrogen in

heterocytes.• The third of three historically

dominant species in Lake Erie (the “Annie” of “Annie, Fannie, and Mike”).

Photo credit: Stephen Hager

The major HAB players

Page 13: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Nostoc• Colonies of filaments that usually

clump into a green, gelatinous, “marble-like” ball.

• Fixes atmospheric nitrogen in heterocytes.

• Sometimes sold as a dietary supplement. However, the supplement is not regulated and may contain cyanobacterial toxins. Consumers beware!

Photo credit: Paul James

The major HAB players

Page 14: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

What it is not

Duckweeds or watermeal (photo credit: Mick Micacchion, Ohio EPA)

Filamentous green algae: Cladophora (photo credit: Sairah Malkin, University of Waterloo)

Planktonic diatoms (photo credit: Kannan and Lenca 2012)

Page 15: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Harmful Algal Blooms in Ponds

• What is this stuff!?• What causes it?• Concerns• Management strategies

Page 16: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Available resources (from the perspective of green stuff that lives in freshwater):• Water.• Physical habitat (the water column itself or

substrate/sediment).• Sunlight (to fuel photosynthesis) and heat

energy.• Nutrients.

What causes it?

Page 17: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

What causes it?• Primary nutrients: C and N.

– Carbon (C) tends to be abundant as carbonate (CO32−:

especially in the presence of limestone substrates) and carbon dioxide (CO2: a byproduct of respiration).

– Nitrogen largely present as dissolved nitrogen gas (N2), nitrate (NO3-), ammonia/ammonium (NH4+), nitrite (NO2-), and organics. Unionized ammonia (NH3) is both uncommon and toxic.

• Nitrogen cycle is bacteria driven; moves toward nitrification in the presence of O2: ammonia → nitrite → nitrate.

• Carbon and nitrogen are abundant enough to not commonly be limiting to freshwater systems.

Page 18: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Primary nutrients: P.– Solid/precipitate/particulate forms of phosphorus (P)

are not readily available as nutrients.– Dissolved/soluble forms and especially phosphate

(PO4) tend to be retained by landscape, are ordinarily present in low concentrations in water, and thus are almost always limiting.

• Productivity algae and cyanobacteria responds directly to dissolved reactive (DRP)/soluble reactive P (SRP) concentrations.

– P is much more soluble in the absence of oxygen.

What causes it?

Page 19: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Kalff, J. 2002. Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ.

Internal sources of excessive P

(…where DO is dissolved oxygen)

Page 20: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Primary nutrients: P.– A useful metric: the N:P ratio (A big player in

presence of HABs).• In natural systems, 16:1 (the “Redfield ratio”) is a

benchmark; too far below can indicate P enrichment and make problems.

– The role of nutrient richness and temperature: • That threshold is higher in warm and/or nutrient

enriched systems like many ponds: problems often evident below 20:1.

What causes it?

Page 21: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

(Heidelberg University, National Center for Water Quality Research and Joe Conroy, The Ohio State University as cited in Ohio EPA Div. of Surface Water. 2010. Ohio Lake Erie Phosphorus Task Force Final Report. Ohio EPA, Columbus.)

What causes it?

Page 22: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

2011

• The Microcystis–Anabaena bloom of 2009 was the largest in recent years in our sampling region (Tom Bridgeman, University of Toledo, 2012).

• …until 2011!

What causes it?

Page 23: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Photo: MERIS Satellite Image

October 9, 2011

Page 24: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

(National Oceanic & Atmospheric Admin. Lake Erie HAB Bulletin, 11 October 2011)

Page 25: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

(National Oceanic & Atmospheric Admin. Lake Erie HAB Bulletin, 11 July 2012.)

Page 26: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

0 30 60 90 120 150 180 210 240 270 300 330 3600

200

400

600

800

1000

1200

Dissolved Reactive Phosphorus (metric tons)

Day of Year

Dissolved P loading in 2011 and ’12

(Heidelberg University, National Center for Water Quality Research)

2011

2012

Page 27: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Page 28: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

A summary of contributing factors• First and foremost: The presence of

excessive nutrients. Excessive nutrient loads and low N:P ratios favor HABs.

• Low water levels / low rainfall (can concentrate nutrients).

• Excessive runoff of nutrients with surface waters (a problem on large watersheds, like Lake Erie or Grand Lake).

• Lack of competition for nutrients (i.e., no vascular plants).

• Calm water.• Warm water temperatures.• Selective grazing by zooplankton and

mussels.• Progression of seasons.

What causes it?

Page 29: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Harmful Algal Blooms in Ponds

• What is this stuff!?• What causes it?• Concerns• Management strategies

Page 30: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

First, a contrast: “true” algaeSome major groups of planktonic freshwater algae:• Diatoms

– Glass (silica) cell wall.– High lipid content (i.e., nutritional for zooplankton).– Cool-water blooms typical (even in winter).

• Green Algae– Closely related to higher plants.– Rarely bloom.– Less lipid, but still nutritious.

(modified from Chaffin 2013)

Page 31: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

(modified from Aqua Link, Inc.)

(“algae”)

(energy)

Blue-green Algae/Cyanobacteria

Page 32: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

HABs can:• Pollute ponds and recreational

areas with scums.• Cause taste and odor problems

in drinking water and fish tissue.• Reduce oxygen levels through the

diel cycle or population crashes.• Cause processing problems for

water processing…

Concerns

Microcystis (photo credit: Dr. Thomas Bridgeman, University of Toledo)

Page 33: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• …and HABs have the capability to produce toxins.– These toxins can cause health

problems for animals and humans, particularly if ingested.

– The presence of a HAB-forming organism does not necessarily mean toxin is being produced. Microcystis (photo credit: Dr.

Thomas Bridgeman, University of Toledo)

Concerns

Page 34: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Off-flavor compounds

• Geosmin imparts a “muddy” flavor/odor and…

• 2-Methylisoborneol (MIB), a “musty” one to water and fish.– Predictors of taste and odor

compounds:• Presence of a cyanobacteria

bloom.• Positive correlations to

temperature• negative correlations to seasonal

wind velocity.

(Flick 2011…and only included because this erudite caption to accompany a dude with a shrimp up his nose is inherently funny.)

Page 35: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Off-flavor compounds: human detection thresholds

Geosmin (ppb) MIB (ppb)

Water1 0.015 0.035

Lean fish (Channel Catfish)2 0.2 0.5

Oily fish (trout)3,4 1.2–1.5 0.5–0.8

1 Howgate (2004)2 Grimm et al. (2004)3,4 Persson (1980), Robertson and Lawton (2003)

Rules of thumb:• Easily detected in water (yucky!).• For recreational fishing ponds, more problematic with larger fish.• Fattier tissues (like trouts) hold increased concentrations for longer

times.• In spite of lower concentration, much more easily detected in leaner

fish (e.g., black basses, sunfishes, catfishes, and Yellow Perch).

Page 36: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Cyanobacterial toxins• Neurotoxins: affect the central nervous system, causing tingling,

dizziness headaches etc. Cumulative effects of some over time can lead to dementia or degenerative disorders (e.g., saxitoxins and anatoxin-a).

• Hepatotoxins: affect the liver, causing gastrointestinal symptoms. These are the most publicized affects of HABs and sometimes attributed with livestock deaths (e.g., microcystins and cylindrospermopsin).

• Dermatotoxins: affect the skin, causing rashes and itching (“seaweed dermatitis”) or allergic reactions (e.g., Lyngbyatoxin-a).

• Ohio’s common cyanobacteria are known to produce toxins in all these categories.

Page 37: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Reference Dose = amount that can be ingested orally by a person, above which a toxic effect may occur, on a milligram per kilogram body weight per day basis.

Toxicity of Algal Toxins Relative to Other Toxic Compounds

found in Water

Dioxin (0.000001 mg/kg-d)

Microcystin LR (0.000003 mg/kg-d)

Saxitoxin (0.000005 mg/kg-d)

PCBs (0.00002 mg/kg-d)Cylindrospermopsin (0.00003 mg/kg-d)Methylmercury (0.0001 mg/kg-d)Anatoxin-A (0.0005 mg/kg-d)

DDT (0.0005 mg/kg-d)

Selenium (0.005 mg/kg-d)

Alachlor (0.01 mg/kg-d)Cyanide (0.02 mg/kg-d)Atrazine (0.04 mg/kg-d)Fluoride (0.06 mg/kg-d)Chlorine (0.1 mg/kg-d)Aluminum (1 mg/kg-d)Ethylene Glycol (2 mg/kg-d)

Botulinum toxin A (0.001 mg/kg-d)

Toxin Reference Doses

Page 38: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Reference Dose = amount that can be ingested orally by a person, above which a toxic effect may occur, on a milligram per kilogram body weight per day basis.

Toxicity of Algal Toxins Relative to Other Toxic Compounds

found in Water

Dioxin (0.000001 mg/kg-d)

Microcystin LR (0.000003 mg/kg-d)

Saxitoxin (0.000005 mg/kg-d)

PCBs (0.00002 mg/kg-d)Cylindrospermopsin (0.00003 mg/kg-d)Methylmercury (0.0001 mg/kg-d)Anatoxin-A (0.0005 mg/kg-d)

DDT (0.0005 mg/kg-d)

Selenium (0.005 mg/kg-d)

Alachlor (0.01 mg/kg-d)Cyanide (0.02 mg/kg-d)Atrazine (0.04 mg/kg-d)Fluoride (0.06 mg/kg-d)Chlorine (0.1 mg/kg-d)Aluminum (1 mg/kg-d)Ethylene Glycol (2 mg/kg-d)

Botulinum toxin A (0.001 mg/kg-d)

Toxin Reference Doses

Page 39: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Common Ohio cyanobacterial taxa and toxins that may be produced

Cyanobacteria genus

Dermatoxins Hepatotoxins Neurotoxins

Cylindro-spermopsin* Microcystins* Anatoxin-a* Saxitoxin*

Anabaena X X X X X

Aphanizomenon X X X

Cylindrospermopsis X X X

Lyngbya X X X

Microcystis X X

Nostoc X

Planktothrix X X X X

* Toxins for which the Ohio EPA may test in public waters.

Page 40: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Cyanobacterial toxinsMicrocystins, liver toxins produced by Microcystis and several other cyanobacteria, is the only cyanobacterial toxin well enough studied to have guidelines issued by the World Health Organization (2003).

• Increased monitoring of drinking water at microcystin concentrations > 1 ppb (μg/L).

• Risk to adult health from recreational contact with microcystin moderate at concentrations of 4–20 ppb.

• Ohio Environmental Protection Agency can post contact advisories at 6 ppb to protect children.

Page 41: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Cyanobacterial toxicity

• “In comparing the available indications of hazards from cyanotoxins with other water-related health hazards, it is conspicuous that cyanotoxins have caused numerous fatal poisonings of livestock and wildlife, but no human fatalities due to oral uptake have been documented.”

• WHO. Chorus, & Bartram, eds. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Routledge, London.

Page 42: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Detections on Grand Lake

• Microcystin detections now persist throughout the year (extremely low in winter months).

• First 2015 microcystin detection above recreational advisory threshold (6 ppb): – 18 February, 7.5 ppb at Celina water intake.

• Highest 2015 microcystin detection to date: – 15 June, 162 ppb at Windy Point Beach.Ohio EPA (2015)

Page 43: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Detections on Grand Lake27 July: 100.1 ppb microcystins at campground beach.

Ohio EPA (2015)

Page 44: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• Toxins highest in internal organs, but also can be found in fillets in small concentrations.

• Cyanotoxins actively eliminated by the liver: likely do not bioaccumulate from lower trophic levels into predatory fish (Ibelings and Chorus 2007).

• Microcystin can be taken into muscle tissue of fish with exposure, but is eliminated within hours to days (e.g., Wilson et al. 2008).

• However, black crappie fillets collected by the Ohio EPA on Grand Lake St. Marys in June 2011 did contain microcystin (Schmidt et al. 2013).

• At a minimum, remove skin from fillets and wash thoroughly prior to cooking with water from a municipal water supply.

Bottom line…

Cyanobacterial toxins in fish tissue

Page 45: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Harmful Algal Blooms in Ponds

• What is this stuff!?• What causes it?• Concerns• Management strategies

Page 46: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Management strategies

• Management by cliché:– Approx. 1 proverbial g of prevention is of

similar value to 1 proverbial kg of cure!

• i.e., Prevention or at least reducing the likelihood of bloom issues is much more valuable than treatment.

Page 47: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Management strategies: prevention

• …Is much easier on small waters with small (especially single-owner) watersheds.

• Large sites with diverse, legitimate watershed uses (including food production/agriculture) become much more challenging.

Page 48: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Management within large watersheds by promoting voluntary action

Ohio Lake Erie Phosphorus Task Force II: Final Report (Nov. 2013)• 20 recommendations in total, mostly concerning

nutrient management strategies in watershed soils, that apply equally well to Grand Lake.

• The challenging bottom line:– Both springtime and annual target loads of P and

soluble P target reduced by 40% from all sources.

http://www.epa.state.oh.us/dsw/lakeerie/index.aspx

Page 49: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Management within large watersheds via regulation

Watersheds in distress (OAC 1501:15-5-19 & 20, Dec. 2010):• Designated by Ohio Dept. of Agriculture's Chief.• Applies to those who produce, apply, or receive

350 tons or 100,000 gallons of manure per year.• Requires nutrient management plans including soil

testing “in accordance with the ‘Field Office Technical Guide.’”

• To date, Grand Lake is the only designated watershed.

Page 50: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Management within large watersheds via regulation

Commercial fertilizer applicator certification (Ohio S.B. 150, enacted August 2014):• Applies to anybody who applies fertilizer to 50 or

more acres.• Certification needs to be in place by September

2017.• Certification requires application form, $30

application fee, and training every three years.• Augments pesticide licensing program: fee waived

for those with current pesticide applicator license.

Page 51: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Management within large watersheds via regulation

Agricultural pollution abatement program (Ohio S.B. 1, introduced 2 February, passed Senate 18 February, passed House 25 March, and enacted 3 July 2015):• Transfers much enforcement authority to the Ohio

Department of Agriculture and improves ability to make and enforce rules.

• Bans the application of manure or fertilizer to frozen or saturated soil or when rain is forecasted (exceptions for injection/incorporation).

• Applies the same standards to smaller agricultural operations as to the large (with possibility for temporary exemptions to July 2014).

Page 52: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Management within large watersheds via regulation

Agricultural pollution abatement program (Ohio S.B. 1, introduced 2 February, passed Senate 18 February, passed House 25 March, and enacted 3 July 2015):• Requires water treatment to monitor phosphorus

discharges (December 2016).• Forbids open-lake disposal of dredge materials within

Lake Erie (with permitted exemptions possible: July 2020).

• Revises permitted use of Healthy Lake Erie Fund.• Designates Environmental Protection Agency to

coordinate harmful algal bloom response and protocols.

Page 53: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

“The futuristic view”

• Approach anybody claiming to predict the future with extreme skepticism!

• If we continue to load the system with nutrients, I expect cyanobacteria will continue to be a prominent feature of the aquatic community.

• Given the nature of the Grand Lake watershed, recovery will still likely take some years.

Page 54: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

“The futuristic view”• Personally, sadly, I’m always skeptical of society’s

willingness to effect change without being regulated.• The general public is likely to continue to misinterpret

facts, downplay their personal role in the issue (lawn care, suburban development, etc.), and point the fingers of scapegoatery at the agriculture industry in spite of their own fondness for food.

• The agriculture industry is likely to feel put upon by the scientific and management communities even when proverbial fingers aren’t actually being pointed.

Page 55: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

• State of Ohio clearing house for HAB info: Ohio EPA sample results, advisory status at ODNR public lakes, and filing illness reports with ODH: ohioalgaeinfo.com.• Including current revision of Ohio’s HAB

Response Strategy.• Good visual catalog of blooms for

comparison.

Additional sources of info

Page 56: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Additional sources of info

• HAB fact sheet: free from Ohio Sea Grant or OSU-SENR Extension agents:• Co-written by personnel from Ohio Sea Grant, OSU-SENR

Extension, Ohio Dept. of Natural Resources-Division of Wildlife, and Ohio Environmental Protection Agency.

• http://ohioseagrant.osu.edu/_documents/publications/FS/FS-091-2011%20Harmful%20Algal%20Blooms%20In%20Ohio%20Waters.pdf

Page 57: Grand Lake HABs

OHIO STATE UNIVERSITY EXTENSION

Questions?

Page 58: Grand Lake HABs

Harmful Algal Blooms and Grand Lake

Eugene Braig,

Program Director,

Aquatic Ecosystems

614-292-3823

[email protected]