grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative...

14
Supplementary Figure S1: Commonlyobserved shapes in MoS2 CVD. Optical micrographs of various CVD MoS2 crystal shapes found in different growths. a) Mozz triangles and 6point star grown on “clean” Si/SiO2 substrates. Note: the small gold marks are metal alignment marks that were deposited after growth. b) Mozz mirror twin crystal used for electrical devices in Figures 5ij. c) Szz triangles and 5 and 6point stars. d) Hexagons. e) Gearlike polycrystalline structures grown on “dirty” substrates. f) 3point stars grown on “dirty” substrates. ac) show the types of crystals achieved in large grain growth, while df) show the types of crystals grown as a result of dirty substrates or old precursors. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633 NATURE MATERIALS | www.nature.com/naturematerials 1 © 2013 Macmillan Publishers Limited. All rights reserved.

Upload: others

Post on 02-Nov-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

Grains   and   grain   boundaries   in   highly-­crystalline   monolayer   molybdenum  

disulfide  

 

Supplementary  Figure  S1:  Commonly-­observed  shapes  in  MoS2  CVD.    

Optical  micrographs  of  various  CVD  MoS2  crystal  shapes  found  in  different  growths.  

a)  Mo-­‐z-­‐z  triangles  and  6-­‐point  star  grown  on  “clean”  Si/SiO2  substrates.    Note:  the  

small  gold  marks  are  metal  alignment  marks  that  were  deposited  after  growth.  b)  

Mo-­‐z-­‐z  mirror  twin  crystal  used  for  electrical  devices  in  Figures  5i-­‐j.  c)  S-­‐z-­‐z  

triangles  and  5-­‐  and  6-­‐point  stars.  d)  Hexagons.  e)  Gear-­‐like  polycrystalline  

structures  grown  on  “dirty”  substrates.  f)  3-­‐point  stars  grown  on  “dirty”  substrates.  

a-­‐c)  show  the  types  of  crystals  achieved  in  large  grain  growth,  while  d-­‐f)  show  the  

types  of  crystals  grown  as  a  result  of  dirty  substrates  or  old  precursors.  

 

 

Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3633

NATURE MATERIALS | www.nature.com/naturematerials 1

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 2: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

 

 

 

 

 

Supplementary  Figure  S2:  Continuous  sheet  

Figure  S2a-­‐b  show  optical  images  from  two  different,  yet  typical,  samples  similar  to  

Figure  1a.  The  key  difference  between  the  samples  is  the  grain  size.  On  the  top  left  in  

each  image  is  bare  oxide  with  sparse  crystals.    In  both  samples,  CVD  MoS2  crystals  

can  grow  together  to  form  continuous  monolayer  sheets  (bottom  right).  The  

2 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 3: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

gradients  in  nucleation  density  and  grain  size  reflect  the  substrate  proximity  to  the  

solid  MoO3  source.  The  small  gold  and  orange  dots,  indicated  by  a  red  circle,  are  

alignment  marks  placed  after  growth.  Figure  S2c  shows  two  representative  

histograms  of  island  size  (as  the  square  root  of  the  area)  extracted  from  portions  of  

Figure  1a  and  Figure  S2a.    In  the  larger  grain  growths,  such  as  in  Figure  S2b,  the  

triangles  grow  together  more  to  form  aggregates  and  continuous  sheets,  making  

accurate  measurement  of  grain  size  impossible  without  crystalographically  

sensitive  techniques;  For  this  reason  only  isolated  islands  in  smaller-­‐grain  growths  

are  included  in  Figure  S2c,  and  regions  near  continuous  sheets  are  excluded  from  

the  measurement.    The  spread  in  the  histogram    demonstrate  the  wide  range  of  

grain  sizes  and  spatial  inhomogeneity  in  all  of  our  samples.  

 

 

NATURE MATERIALS | www.nature.com/naturematerials 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 4: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

 

Supplementary  Figure  S3:  Raman  spectra  and  mapping    

a)  Raman  spectra  showing  the  E2g1  and  A1g  vibrational  modes1  for  monolayer  (red  

curve)  and  bilayer  (blue  curve)  MoS2  corresponding  with  the  photoluminescence  

spectra  from  Figure  1c.  b-­‐c)  Maps  of  the  peak  position  for  the  two  Raman  modes  for  

monolayer  tilt  boundary  from  Figure  5  where  b)  represents  the  E2g1  mode.  and  c)  

represents  the  A1g  mode.  Both  modes  show  an  upshift  of  1  cm-­‐1  at  the  grain  

boundary.    While  this  shift  may  indicate  a  change  in  strain  or  doping  at  the  

boundary,  it  is  difficult  to  interpret  compared  to  the  more  marked  changes  to  the  

photoluminescence  seen  in  Figure  5  of  the  main  text.  Scale  bar  5  µm.  

4 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 5: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

 

Supplementary  Figure  S4:  High  resolution  images  of  edge  roughness  

a)  Dark  Field  TEM  image  of  a  single  Mo-­‐z-­‐z  triangle  on  a  holey  amorphous  carbon  

substrate.      b-­‐d)  STEM  images  at  increasing  magnifications  from  the  region  inside  

the  red  box  in  a).    In  c),  higher  magnification  reveals  ~  10  nm  edge  roughness  as  

highlighted  by  the  orange  curve.  In  d)  the  MoS2  lattice  is  visible,  as  well  as  atomic  

scale  edge  roughness.  The  non-­‐uniform  background  variation  in  all  images  is  due  to  

the  amorphous  carbon  TEM  grid  support  (the  perforated  sheet  in  a).  

NATURE MATERIALS | www.nature.com/naturematerials 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 6: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

 

Supplementary  Figure  S5:  DF-­TEM  imaging  of  cyclic  twin  

a)  Bright-­‐field  image  of  a  6-­‐pointed  star.  b)  Full  diffraction  pattern  shows  star  has  

no  rotational  boundaries.  c-­‐e)  Dark-­‐field  TEM  images  corresponding  with  the  c)  red,  

d)  blue,  e)  orange    spots  in  the  diffraction  image.    The  red  and  blue  [-­‐1100]  spots  

show  opposite  intensity  because  they  swap  whether  the  ka  or  kb  spot  is  captured  for  

each  region.  The  orange  spot  shows  an  even  intensity  over  the  entire  star;  this  

occurs  because  unlike  the  [-­‐1100]  spots,  the  intensity  of  the  [-­‐2110]  spots  are  6-­‐fold  

symmetric  (See  Figure  1c).  f)  Bright-­‐field  TEM  image  with  overlaid  edge  

orientations  extracted  from  DF-­‐TEM.    The  outer  edges  are  oriented  along  the  Mo-­‐z-­‐z  

direction,  which  demonstrates  that  the  grain  boundaries  are  oriented  along  the  S-­‐z-­‐z  

directions.  

6 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 7: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

 

Supplementary  Figure  S6:  Simulations  of  alternate  mirror-­twin  boundaries  

a)  Geometry  optimized  structure  for  the  experimentally  observed  grain  boundary,  

as  determined  by  DFT  (a).  b)  The  local  DOS  (LDOS)  integrated  in  the  plane  of  the  Mo  

over  a  1.7  eV  window  inside  the  band  gap  of  pristine  MoS2  confirms  the  spatial  

localization  of  mid-­‐gap  states.  c)  The  energy-­‐resolved  density  of  states  for  pristine  

MoS2  (black  curve),  the  DOS  of  the  structure  shown  in  (a)  (red  curve),  and  the  DOS  

projected  just  onto  the  atoms  in  the  grain  boundary  (blue  curve).    In  (c),  we  have  

subtracted  off  the  contribution  to  the  DOS  arising  from  the  unphysical  edge  atoms.    

NATURE MATERIALS | www.nature.com/naturematerials 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 8: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

Analogous  calculations  are  shown  for  an  armchair  grain  boundary  d-­‐f)  and  for  a  zig-­‐

zag  grain  boundary  g-­‐i);  both  which  are  entirely  periodic  in  two  dimensions.    In  

panels  (b),  (e),  and  (h),  the  colorscale  indicates  the  magnitude  of  the  integrated  

LDOS,  from  0  (dark)  to  0.025  bohr-­‐3  (light).  

 

 

Supplementary  Figure  S7:  Time  resolved  photoluminescence  

Time-­‐resolved  photoluminescence  measurements  obtained  by  time-­‐correlated  

single  photon  counting  with  femtosecond  excitation  by  400-­‐nm  laser  pulses.    

Results  for  exfoliated  and  CVD  MoS2  samples  on  oxide  layers,  after  accounting  for  

the  instrument  response  function,  yield  nearly  identical  time  constants  of  

τexfoliated=44  ps,  and  τCVD=42  ps.  The  measured  emission  decay  found  to  varied  

considerably  from  sample  to  sample  for  both  the  exfoliated  and  CVD  grown  

8 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 9: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

materials,  so  the  similarity  of  the  curves  in  this  figure  should  not  be  regarded  as  

having  fundamental  significance.  

Supplementary  Figure  S8:  Electrical  measurements  on  a  tilt  boundary  

a)  Linear  and  b)  logarithmic  electrical  transport  transfer  curves  of  3  FETs  fabricated  

from  the  tilt  boundary  MoS2  island  shown  in  the  inset  of  (a),  which  has  a  tilt  angle  of  

42°  (Scale  bar  10  μm).  The  FETs  containing  the  perpendicular  (black)  and  parallel  

(orange)  boundary  orientation  to  the  flow  of  electrons  are  both  30%  lower  in  

conductance  than  the  pristine  region  (cyan)  in  the  “on”  state  (gate  voltage  =  +70  V).  

NATURE MATERIALS | www.nature.com/naturematerials 9

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 10: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

   

 Supplementary  Methods:  

Electron  Diffraction  Simulation:    

We   calculated   the   diffraction   pattern   for   a   monolayer   of   MoS2   using   Bloch   wave  

simulations   to   account   for   the   complex   scattering   that   allows   the   breaking   of  

Friedel’s   rule   and  produces   this   asymmetry   (Figure   2).   The   asymmetry   of   the  Mo  

and   S   sublattices   separates   the   [-­‐1100]   diffraction   spots   into   two   families   :  ka={(-­‐

1100),   (10-­‐10),   (0-­‐110)}   and   kb=   -­ka.   Our   bloch-­‐wave   simulations   show   that   the    

~10%  higher  intensity  ka  spots  point  toward  the  Mo  sublattice,  as  indicated  by  the  

arrows   in   Figures   2(a-­‐b).   We   double-­‐checked   this   result   with   high-­‐resolution  

imaging  to  confirm  that  the  asymmetric  diffraction  pattern  in  Fig  2(b)  corresponds  

to  the  indicated  orientation  of  the  MoS2  lattice.  

 

Identifying  triangle  edge  terminations:    

Via  TEM  analyses,  we  consistently  observe  that  Mo-­‐z-­‐z  triangles  (Figure  2(b))  have  

sharper  and  straighter  edges  than  S-­‐z-­‐z  triangles  (Figure  2(d)).  This  morphological  

difference  allows  us  to  rapidly  identify  the  crystal  edges  and  orientation  of  triangles  

on  the  growth  substrate  simply  by  optical  microscopy.    In  doing  so,  we  also  observe  

that  all  crystals  from  the  same  growth  run  have  the  same  morphology,  i.e.,  triangles  

from  a  given  run  will  either  be  dominated  by  Mo-­‐z-­‐z  or  by  S-­‐z-­‐z  edges,  a  preference  

we  attribute  to  kinetic  effects.  Both  triangle  morphologies  exhibit  the  same  range  of  

average  sizes  from  30-­‐70  µm.  These  classifications  are  important  for  understanding  

10 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 11: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

growth  dynamics  and  suggest  the  possibility  of  refined  control  of  edge  morphology  

by  tuning  the  CVD  process.    

 

 

DFT  calculations:  

Density   functional   theory   (DFT)   calculations   were   performed   with   the   PW91  

generalized   gradient   approximation   for   the   exchange-­‐correlation   functional   and  

ultrasoft   pseudopotentials,   as   implemented   in   the   Quantum   Espresso   electronic  

structure   package5.     Supercells   were   generated   with   about   10   Å   separation   to  

ensure  negligible  interactions  between  replicas.    Structural  relaxations  were  carried  

out  at  the  gamma  point  until  all  components  of  all   forces  were  less  than  0.001  a.u.    

Pristine   MoS2   (3.12   and   2.32   Å   for   Mo-­‐Mo   and   Mo-­‐S   bond   lengths,   respectively)  

energy   calculations   were   done   with   a   16x16   Monkhorst-­‐type   k-­‐point   grid,  

confirming   the   material's   direct   band   gap   with   a   predicted   energy   of   1.9   eV.  

Preliminary  calculations  employing  a  finer  k-­‐point  grid  for  the  structural  relaxation  

show   minor   quantitative   but   not   qualitative   changes   to   the   grain   boundary  

geometry  and  electron  structure6.  

 

Because   the   direction   of   the   experimentally   observed   8-­‐4-­‐4   grain   boundary   is  

incommensurate  with  the  periodicity  of  the  underlying  crystal,  a  system  periodic  in  

two   dimensions   cannot   be   constructed.     Thus   we   employed   the   system   shown   in  

Figure  S6(a)  which  is  periodic  along  the  direction  of  the  grain  boundary,  but  finite  in  

the  orthogonal  direction  such  that  the  edge,  terminated  by  S  dimers,   is  about  10  Å  

NATURE MATERIALS | www.nature.com/naturematerials 11

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 12: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

away  from  the  grain  boundary.    Energy  calculations  for  this  87-­‐atom  supercell  were  

performed  with  5  k-­‐points  in  the  periodic  direction.    Local  density  of  states  (LDOS)  

analysis,  shown  in  Figure  S6(b)  confirms  that   the  electronic  effects  of   the  artificial  

edges   are   physically   confined   along   the   perimeter   and   so   should   not   affect   the  

properties  along  the  grain  boundary.    These  conclusions  are  also  corroborated  by  a  

negligible   change   in   bond   length,   compared   to   the   bulk,   for   atoms   away   from   the  

grain  boundary.    Analogous  calculations  on  2D  periodic  systems  with  pure  armchair  

and  zig-­‐zag  grain  boundaries,  shown  in  Figure  S6  (d-­‐i)  similarly  yield  mid-­‐gap  states  

localized  along  the  boundary,  further  indicating  that  the  effect  is  generic  and  not  an  

artifact  of  the  finite  strip  size.  

 

Estimating  non-­radiative  recombination:  

Photoluminescence  quenching  commonly  arises  from  defects  in  semiconductors,  

such  as  the  predicted  midgap  states  at  the  boundaries,  which  can  act  as  centers  for  

non-­‐radiative  recombination7.  While  the  amount  of  material  structurally  modified  

by  the  boundary  is  small  compared  with  the  500-­‐nm  laser  spot  size,  the  effect  can  be  

enhanced  by  the  diffusion  of  photogenerated  excitons  to  the  boundary,  which  

effectively  increases  the  boundary  width.  Such  a  process  would  provide  a  natural  

explanation  for  the  strongly  reduced  PL  observed  from  some  boundaries  in  our  

samples,  since  non-­‐radiative  recombination  may  be  more  efficient  in  the  presence  of  

the  localized  structures  and  states  of  the  boundary.    Here  we  estimate  the  potential  

impact  of  this  effect  using  measured  values  for  the  carrier  mobility  and  exciton  

lifetime.      

12 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 13: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

 

The   electrical   measurements   in   this   paper   yielded   an   electron   mobility   of   µe   =   3  

cm2V-­‐1s-­‐1   for   typical   CVD-­‐grown   samples.   From   the   Einstein   relation   for   a  

temperature  of  T  =  300  K,  we  then  obtain  an  electron  diffusivity  of    =  8  

x  10-­‐2   cm2s-­‐1.     Since   the  electron  and  hole  masses  are   similar,  we  assume   that   the  

exciton   diffusivity   is   half   of   the   electron   diffusivity,   i.e.,  Dexc  =  4   x   10-­‐2   cm2s-­‐1.   The  

scattering   mechanisms   for   electrons   and   excitons   need   not   be   the   same,   so   this  

should  only  be  considered  as  an  estimate.    

 

The  characteristic  length  for  diffusion  of  excitons  towards  the  boundary  from  the  2-­‐

D  bulk  material  over  a  time  τ  is  given  by   .    For  a  time  interval  of  τ  =  40  

ps  reported  above  for  the  exciton  lifetime,  we  then  infer  a  diffusion  length  of  L  =  24  

nm.      This  length,  while  not  negligible,  is  small  compared  to  the  500  nm  spot  size  of  

the   excitation   laser.     The   quenching   of   the   PL   by   50%   observed   at   some   grain  

boundaries   must   consequently   rely   primarily,   as   discussed   in   the   main   text,   on  

mechanisms  other  than  exciton  diffusion.  

 

Supplementary  References:  

1   Lee,  C.  et  al.  Anomalous  Lattice  Vibrations  of  Single-­‐  and  Few-­‐Layer  MoS2.  ACS  Nano  4,  2695-­‐2700.  

2   Huang,  P.  Y.  et  al.  Grains  and  grain  boundaries  in  single-­‐layer  graphene  atomic  patchwork  quilts.  Nature  469,  389-­‐392  (2011).  

3   Kim,  K.  et  al.  Grain  Boundary  Mapping  in  Polycrystalline  Graphene.  ACS  Nano  5,  2142-­‐2146  (2011).  

4   Lahiri,  J.,  Lin,  Y.,  Bozkurt,  P.,  Oleynik,  I.  I.  &  Batzill,  M.  An  extended  defect  in  graphene  as  a  metallic  wire.  Nature  Nanotechnology  5,  326-­‐329  (2010).  

NATURE MATERIALS | www.nature.com/naturematerials 13

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 14: Grains and grain boundaries in highly crystalline ... · amorphous carbon ... non-radiative recombination: Photoluminescence quenching commonly arises from defects in semiconductors,

5   Paolo,  G.  et  al.  QUANTUM  ESPRESSO:  a  modular  and  open-­‐source  software  project  for  quantum  simulations  of  materials.  Journal  of  Physics:  Condensed  Matter  21,  395502  (2009).  

6   J.  Kunstmann,  T.  B.,  D.  Reichman.  Unpublished  results.  7   Neamen,  D.  A.  Semiconductor  physics  and  Devices.    (McGraw-­‐Hill,  2002).    

 

14 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3633

© 2013 Macmillan Publishers Limited. All rights reserved.