gpu computation

50
Efficient simulation of quantum dynamics system using GPU Lipeng Chen Division of Materials Science Nanyang Technological University, Singapore

Upload: chen-lipeng

Post on 09-Jan-2017

44 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: GPU computation

Efficient simulation of quantum dynamics system using GPU

Lipeng Chen

Division of Materials Science

Nanyang Technological University, Singapore

Page 2: GPU computation

Schrodinger Equation Liouville equation

1. MCTDH

2. propagator

1. QUAPI

2. HEOM

Page 3: GPU computation

Exciton diffusion in chlorosome antennas

Single molecule spectra

Dissipative effect on the dynamics at a conical intersection

Polaron dynamics of Holstein model

Dynamics of sub-Ohmic spin boson model

Page 4: GPU computation

Natural Light Harvesting Complexes

Fenna-Matthews-Olson (FMO)Trimer complex in green sulfur bacteria 4

Light harvesting system in purple bacteriaLHCII in green plants

Chlorosomes antennas in green sulfur bacteria

Page 5: GPU computation

5

Page 6: GPU computation

Exciton diffusion in chlorosomes antennas

6S. Ganapathy et al, PNAS. 2009, 106 , 8525

Page 7: GPU computation

Variational Parameters

7

Quantum state of the system can be approximated, by the Davydov D1 Ansatz

SchrÖdinger Equation

Dirac-Frenkel time-dependent variational method

Equations of motion for the variational parameters

( ) ( )i t H tt

( ) ( )2iL t H t

t

( ) 0m

m

d L Ldt

Page 8: GPU computation

SMX: Higher performance and efficiency increase processing cores reduce control logic

Dynamic parallelism: spawns new threads without going back to the CPU

Hyper-Q: increases GPU utilization provide streams access to 32 independent hardware work queues or MPI ranks.

KEPLER - The World‘s fastest, most efficient HPC architecture

Page 9: GPU computation
Page 10: GPU computation

30 rings of 18 sites each540 sites in total

Phonon bandwidth: W=0.5Coupling: g=0.4

Page 11: GPU computation
Page 12: GPU computation
Page 13: GPU computation

18 rings with 18 site each (324 sites)

Coherence size: 175 sites

Page 14: GPU computation

1

( )

,

20

( ) ( , ) 0 0

( )( ) [coth (1 cos ) (sin )]2

0 ( )

S

S

H tg tph ph

n m

B

iH tph D

R t e C n m n e m

Dg t d t i t tk T

e n t

Page 15: GPU computation

Single molecule spectra

R Hildner, D Brinks, J. B. Nieder, R. J. Cogdell, N F van Hulst, Science 340, 1448 (2013)

Ultrafast phase coherent excitation of individual LH2 complexes

Emission of single LH2 complexes as a function of delay time

Histogram of the oscillation period T

Page 16: GPU computation

Single molecule spectra

1

2

1 2

1

( )2

[ ( ) ( ) ]( ) ( ) ( )

( ) ( )

( ) ( )

F

i t

i t

H t X t Xt t t

t E t e

t E t e

Field-matter interaction Hamiltonian

Liouville Equation

( ) [ , ]Fd t i H Hdt

( ) { ( )}

( ) 2 ( ) ( )

P t Tr X t

S Im dt t P t

2

1

( ) ( )kk

k

S S

2

1, 1

1 1 10

( )

,

20

( ) ( )

2Re ( ) ( ) ( )

( ) ( , ) 0 0

( )( ) [coth (1 cos ) (sin )]2

S

aba b

ab a b

H tg tph ph

n m

B

S

dt dt t t t R t

R t e C n m n e m

Dg t d t i t tk T

1

1

0 ( )

( ) ( ) exp [ ( ) . .] 0

SiH tph D

D n nq q phn q

e n t

t t n t b H c

D1 dynamics

1 1( ) ( ) ( )

2

( ) 0

( ) 0

D S D

nn

nqnq

iL t H tt t

d L Ldt

d L Ldt

� � � � � � � � � � � � � �

Pump pulse 1Pump pulse 2

Signal

Page 17: GPU computation

Room temperature LHCII absorption spectra

Single molecule signal for 3 values of the exciton-phononcoupling strength (decreasing)

same signals but calculated without the heat bath

Page 18: GPU computation

the effect of the single molecule orientation The effect of disorder

Page 19: GPU computation

Effect of a dissipative environment on the dynamics at a conical intersection

Page 20: GPU computation
Page 21: GPU computation
Page 22: GPU computation
Page 23: GPU computation
Page 24: GPU computation
Page 25: GPU computation
Page 26: GPU computation
Page 27: GPU computation
Page 28: GPU computation
Page 29: GPU computation
Page 30: GPU computation

Polaron dynamics of Holstein model

J: transfer integralN: number of sitesϕ : off-diagonal couplingg: diagonal couplingW: phonon band width

A linear dispersion phonon band is assumed as

0

21 1q

qW

Page 31: GPU computation

Multitude of Davydov D1 and D2 trial states

1D t 2D t

† †2 ,

0

0 ( )exp 0M

Mn i n iq q iq qex ph

n i q

D a t b b

† †1 ,

0

0 ( )exp 0M

Mn i n inq q inq qex ph

n i q

D a t b b

Multi-D2 and multi-D1 Ansatz with the multiplicity number M

Page 32: GPU computation

Measurement of the validity for the trial state

1,2( ) ( )

Mtt i H D

t t t

Page 33: GPU computation

Multi-D1 results in the diagonal coupling case

Case of J=0.5. W=0.5, g=0.1 and ϕ=0

Page 34: GPU computation

Multi-D2 results in the diagonal coupling case

Page 35: GPU computation

In the off-diagonal coupling case with g=W=J=0 and ϕ≠0

Page 36: GPU computation

1,2( ) ( )

( )=max ( )

Mt

ph

t i H D

t t t

tE t

Page 37: GPU computation

Reduced density matrix

Feynman-Vernon influence functional

HEOM treatment of Holstein model

Auxiliary density matrix

Page 38: GPU computation

1

N

q trunq

m N

Terminator

Ntrun

N

3 4 5 6 7 8 9 10

6 455 1820 6188 18564 50388 125970 293930

8 969 4845 20349 74613 245157 735471

9 1330 7315 33649 134596

10 1771 10626 53130 230230

12 2925 20475 118750 593770

16 6545 58905 435897

Total number of hierarchy

1 !! 1 !

trun trun

trun

N N NN N N

Page 39: GPU computation

0.2, 0.5, 0.1, 0J W g

Page 40: GPU computation

0.5, 0.5, 0.1, 0J W g

Page 41: GPU computation

0.2, 0.5, 0.2, 0J W g

Page 42: GPU computation

0.5, 0.5, 0.2, 0J W g

Page 43: GPU computation

Dynamics of sub-Ohmic spin-boson model

Δ: the tunneling constantε: the spin bias λl: the coupling strength of the spin to the bath

 

Page 44: GPU computation

Multi-D1 results v.s D1 results Sub-Ohmic bath s=0.25 Δ=0.1 Relative error

Page 45: GPU computation

Multi-D1 compare with HEOM

Factorized initial condition bath

Page 46: GPU computation

Multi-D1 compare with HEOM

Factorized initial condition bath

Page 47: GPU computation

Multi-D1 compare with PIMC

Polarized initial condition bath

Page 48: GPU computation

Entropy of the system

Factorized initial condition

Page 49: GPU computation

Some useful libraries

Page 50: GPU computation