forecasting two-photon absorption based on one-photon properties

9
Forecasting two- photon absorption based on one-photon properties Mikhail Drobizhev, Zhiyong Suo, Aleks Rebane E. Scott Tarter, Benjamin D. Reeves, Brenda Spangler Fanqing Meng, Charles W. Spangler Craig J. Wilson, Harry L. Anderson Department of Physics, Montana State University, Bozeman, MT Sensopath Technologies, Inc., Bozeman, MT MPA Technologies, Inc., Bozeman, MT Department of Chemistry, University of Oxford, Mansfield, Oxford, UK Nikolay Makarov, Department of Physics, Montana State University

Upload: jeff

Post on 10-Jan-2016

70 views

Category:

Documents


0 download

DESCRIPTION

Forecasting two-photon absorption based on one-photon properties. Nikolay Makarov , Department of Physics, Montana State University. Mikhail Drobizhev, Zhiyong Suo, Aleks Rebane E. Scott Tarter, Benjamin D. Reeves, Brenda Spangler Fanqing Meng, Charles W. Spangler - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Forecasting two-photon absorption based on one-photon properties

Forecasting two-photon absorption based on

one-photon properties

Mikhail Drobizhev, Zhiyong Suo, Aleks RebaneE. Scott Tarter, Benjamin D. Reeves, Brenda Spangler

Fanqing Meng, Charles W. SpanglerCraig J. Wilson, Harry L. Anderson

Department of Physics, Montana State University, Bozeman, MTSensopath Technologies, Inc., Bozeman, MT

MPA Technologies, Inc., Bozeman, MTDepartment of Chemistry, University of Oxford, Mansfield, Oxford,

UK

Nikolay Makarov,Department of Physics, Montana State University

Page 2: Forecasting two-photon absorption based on one-photon properties

Outline

• Motivation

• Experiments

• Calculations

• Conclusions

Page 3: Forecasting two-photon absorption based on one-photon properties

Motivation: Why to predict?

Which one is better? Why?

HH

N

N

N

N

N

N

N

N

NH

N

NH N

N

N

N

N

Cl

C l C l

C l

N

NC

N

NC

N

NC

N

NC

N HN

NNHCl

Cl

N

N

N

N HN

NNH

N

N

Page 4: Forecasting two-photon absorption based on one-photon properties

Motivation: What can quantum chemistry do?

2

222

2

423

2 gi

ee

nc

f

m mmg

mgfmjg

0, E0, 0

1, E1, 1

m, Em, m

?2?,,, gE mkjii

C. Katan, S. Tretiak, M.H.V. Werts, A.J. Bain, R.J. Marsh, N. Leonczek, N. Nicolaou, E. Badaeva, O. Mongin, M. Blanchard-Desce,“Two-photon transitions in quadrupolar and branched chromophores: experiment and theory”, J. Phys. Chem. B 2007, 111, 9468-9483

Page 5: Forecasting two-photon absorption based on one-photon properties

Experiments: Setup

Jobin Yvon Triax 550

Wavelength control

PCLabView

LNCCD

sample

L1

M1

F1

300 600 1200l/mm-1

Laser system

Coherent VERDI 64W CW 532nm

Coherent MIRA 9000.5W 795nm 150fs

Coherent LEGEND Regen. Amplifier1.1W 1kHz 795nm 150fs

TOPAS-C0.3W 1kHz 125fs

OSAFROGCorre-lator

Pulse characterization

Filter wheel

CCD camera control and DAQ

Digital Oscilloscope Ref. Channel DAQ GPIB

USB Serial

Intensity control

Ref. detector

sample

Hamamatsu Streak Camera C5680

Perkin-Elmer Lambda900Spectrophotometer

Perkin-Elmer LS 50BLuminescence Spectrometer

L2

Page 6: Forecasting two-photon absorption based on one-photon properties

Experimental Results

0.0 0.1 0.2 0.3 0.4 0.50

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

pe

nta

na

l

2-c

hlo

rob

uta

ne

iso

bu

tyl a

ceta

te

iso

bu

tyl i

sob

ytyr

ate

bu

tyl e

the

r

n-o

cta

ne

Sto

kes

Sh

ift, c

m-1

f(D)

1 4 5 10

0 1 2 3 4 5 6 7

1E-3

0.01

0.1

1

12, 1.14 ns

11, 0.86 ns

9, 3.11 ns

6, 1.46 ns

4, 1.28 ns

1, 1.71 ns

No

rma

lize

d f

luo

resc

ent i

nte

nsity

Time, ns

560 580 600 620 640 660 680 700 720 740

0

50

100

15018000 17000 16000 15000 14000

Wavelength, nm

2, G

M

11,

M-1cm

-1

1.25104

0

2.5104

3.75104

5104

2, G

M 2

, GM

3

300 320 340 360 380 400 420 440

0

20

40

60

80

10032000 30000 28000 26000 24000

, M

-1cm

-1

1104

0

2104

3104

4104

Frequency, cm-1Frequency, cm-1

2, G

M

1

300 320 340 360 380 400 420 4400

20

40

60

80

100

32000 30000 28000 26000 24000

, M

-1cm

-1

1.25104

0

2.5104

3.75104

5104

300 320 340 360 380 400 420 440

0

20

40

60

80

10032000 30000 28000 26000 24000

Wavelength, nm

2, G

M

5

, M

-1cm

-1

1.25104

0

2.5104

3.75104

500 520 540 560 580 600 620 640 660 680 700

0

10

20

30

40

50

6020000 19000 18000 17000 16000 15000

2, G

M

10

, M

-1cm

-1

1104

0

2104

3104

4104

Frequency, cm-1

2, G

M

14

280 300 320 340 360 380 4000

100

200

300

400

50034000 32000 30000 28000 26000

, M

-1cm

-1

1104

0

2104

3104

4104

Page 7: Forecasting two-photon absorption based on one-photon properties

Calculations: How to?

2201

4

2

01

1

24

3

fn

h

flFM

FFM

Dfahc S

3

2

01

12

12

D

DDf

AN

Ma

4

33

1

4.04

33

r

kTa

II

IIr

2||

||

21cos215

22 22

01

2

012

44

2 gnch

f

0

1

01

1

0

12

3

3

22

22

n

nf

nf OL

Second order perturbation theory:

Local field factors:

Lorentz Onsager

Dipole moments:

Linear absorption,fluorescence

Solvatochromicshifts

Molecule density Fluorescence anisotropy

Page 8: Forecasting two-photon absorption based on one-photon properties

Calculations: Results

0 100 200 300

0

100

200

300

7

2 11

69

1

8

54

3

12

10

2,

GM

2, GM

25

22 2

01

2

012

44

2 gnch

fa

0 100 200 300

0

100

200

300

2, GM

11 2

12

10

5

416

97

8

3

2,

GM

14

2

12201

14

23

01202 1096.0

PAPA

PAPASb

fnDf

nfa

R2

For molecule density (=1) For anisotropy

2(a) 2

(b) 2(a) 2

(b)

fL 0.8 3.3 1.4 1.4

fO 0.6 1.8 0.8 0.9

Page 9: Forecasting two-photon absorption based on one-photon properties

Conclusions

See poster for details

• We show that the perturbation theory applied for two-level system quantitatively predicts the 2PA cross sections in dipolar molecules, provided that the necessary molecular parameters such as transition- and permanent dipole moments are independently measured.• In most cases, the discrepancy between theory and experiment was less than 20%, and always less than 50%. This is the first time that such direct quantitative correspondence is demonstrated for a wide range of dipolar molecules.• The overall significance of this work demonstrates a practical way how a set of relatively straightforward linear spectroscopic measurements can be used to study and predict nonlinear 2PA properties.

AcknowledgementsThe work was supported by AFOSR.