fitting copulas to data

Upload: dardo1990

Post on 04-Jun-2018

254 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Fitting Copulas to Data

    1/19

    5.5 5.5.1 5.5.2 5.5.3

    5.5 Fitting Copulas to Data

    Presenter: Yen ju Chao

    April 10, 2012

    Y-J, Chao 5.5 Fitting Copulas to Data

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    2/19

    5.5 5.5.1 5.5.2 5.5.3

    Fitting Copulas to Data

    We have data vectors X1, . . . , Xn with identical distributionfunction F, describing financial loss or financial risk factor

    returns.We write Xt= (Xt,1, . . . ,Xt,d)

    for an individual data vector, andX= (X1, . . . ,Xd)

    for a generic random vector with dfF.

    Fhas continuous margins F1, . . . , Fdand by Sklars Theorem, aunique representation F(x) =C(F1(x1), . . . , Fd(xd)).

    Y-J, Chao 5.5 Fitting Copulas to Data

    http://goforward/http://find/http://goback/
  • 8/13/2019 Fitting Copulas to Data

    3/19

    5.5 5.5.1 5.5.2 5.5.3

    Method-of-Moments using Rank Correlation

    It may be easier to use empirical estimates of either Spearmansor Kendalls rank correlation to infer an estimate for the copulaparameter.(For example:Table 5.5)

    Recall Definition 5.28:For rvs X1 and X2 with marginal dfs F1 and F2 Spermans rho isgiven bys(X1,X2) =(F1(X1),F2(X2)).

    We could estimate S(Xi,Xj) by calculating the usual correlation

    coefficient for the pseudo-observations:{(Fi,n(Xt,i),Fj,n(Xt,j)) :t= 1, . . . , n}, where Fi,n denotes thestandard empirical df for the ith margin.

    Y-J, Chao 5.5 Fitting Copulas to Data

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    4/19

    5.5 5.5.1 5.5.2 5.5.3

    Method-of-Moments using Rank Correlation

    We use rank (Xt,i) to denote the rank ofXt,i in X1,i, . . . ,Xn,i, wecan calculate the correlation coefficient for the rank data

    {(rank(Xt,i), rankXt,j)}, and this gives us the Spermans rankcorrelation coefficient:12

    n(n2

    1)

    nt=1

    (rank(Xt,i) 12

    (n+ 1))(rank(Xt,j) 12

    (n+ 1))

    (5.49)

    Y-J, Chao 5.5 Fitting Copulas to Data

    5 5 5 5 1 5 5 2 5 5 3

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    5/19

    5.5 5.5.1 5.5.2 5.5.3

    Method-of-Moments using Rank Correlation

    Recall Definition 5.27:For rvs X1 and X2 Kendalls tau is given by(X1,X2) =E(sign((X1

    X1)(X2

    X2))), where (X1,X2) is

    independent copy of (X1,X2).

    The standard estimator of Kendalls tau (Xi,Xj) is Kendallsrank correlation coefficient :

    n2

    1 1t

  • 8/13/2019 Fitting Copulas to Data

    6/19

    5.5 5.5.1 5.5.2 5.5.3

    Method-of-Moments using Rank Correlation

    Example 5.52(bivariate Archimedean copulas with a singleparameter).

    We assumed model is of the form F(x1, x2) =C(F1(x1),F2(x2)),

    where is a single parameter to be estimated.We have simple relationships of the form(X1,X2) =f().(asshown in Table 5.5)

    We can calculate a sample value r for Kendalls tau first,

    Then solving the equation r =f() for .For example, Gumbels copula is calibrated by taking= (1 r)1, provided that r 0.

    Y-J, Chao 5.5 Fitting Copulas to Data

    5 5 5 5 1 5 5 2 5 5 3

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    7/19

    5.5 5.5.1 5.5.2 5.5.3

    Method-of-Moments using Rank Correlation

    Example 5.53(calibrating Gauss copulas using Spearmansrho).

    We assumed a meta-Gaussian model for X with CGap

    and we wish toestimate the correlation matrix P. It follows from Theorem 5.36 that

    S(Xi,Xj) = (6/)arcsin1

    2ij ij,

    where the final approximation is very accurate. This suggests weestimate Pby the matrix of pairwise Spearmans rank correlationcoefficient RS.

    Y-J, Chao 5.5 Fitting Copulas to Data

    5 5 5 5 1 5 5 2 5 5 3

    http://find/http://goback/
  • 8/13/2019 Fitting Copulas to Data

    8/19

    5.5 5.5.1 5.5.2 5.5.3

    Method-of-Moments using Rank Correlation

    Example 5.54(calibrating t copulas using Kendalls tau).

    We assumed a meta-t model for Xwith copula Ct,Pand we wish to

    estimate the correlation matrix P. It follows

    (Xi,Xj) = (2/)arcsinij

    so that a possible estimator ofP is the matrix R with component

    given by rij =sin(12rij).

    Y-J, Chao 5.5 Fitting Copulas to Data

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    9/19

    5.5 5.5.1 5.5.2 5.5.3

  • 8/13/2019 Fitting Copulas to Data

    10/19

    5.5 5.5.1 5.5.2 5.5.3

    Method-of-Moments using Rank Correlation

    Algorithm 5.55(eigenvalue method).

    Calculate Q=GLG

    , which will be symmetric and positive

    definite but not a correlation matrix, since its diagonal elementswill not necessarily equal one.

    Return the correlation matrix R=(Q), where denotes thecorrelation matrix operator.,where defined

    () = (())1(())1,(()) := diag(11, . . . ,dd)

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/http://goback/
  • 8/13/2019 Fitting Copulas to Data

    11/19

    5.5 5.5. 5.5.2 5.5.3

    Forming a Pseudo-Sample from the Copula

    We now turn to the estimation of parameteric copulas bymaximum likelihood (ML).

    In this section we describe brifely some general approaches to thefirst step of estimating margins and constructing apseudo sampleof observations from the copula.In the following section we describe how the copula parametersare estimated by ML from pseudo-sample.

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/http://goback/
  • 8/13/2019 Fitting Copulas to Data

    12/19

    Forming a Pseudo-Sample from the Copula

    Let F1, . . . ,Fddenote estimates of the marginal dfs. The

    pseudo-sample from the copula consists of the vectorsU1, . . . ,Un, where

    Ut= (Ut,1, . . . ,Ut,d)

    = (F1(Xt,1), . . . ,Fd(Xt,d))

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    13/19

    Forming a Pseudo-Sample from the Copula

    Possible methods for obtaining the marginal estimate Fi includethe following.

    Parameteric estimation.We choose an appropriate parametric model for the data in questionand fit it.

    Non-parametric estimation with of empirical df.We could estimate Fj using

    Fi,n(x) =

    1

    n+ 1

    nt=1

    I{Xt,ix}

    Extreme value theorey for the tails.Empirical distribution functions are known to be poor estimators of theunderlying distribution in the tails, and the tail are model using ageneralized Pareto distribution, the body of distribution may bemodelled empirically.

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    14/19

    Forming a Pseudo-Sample from the Copula

    Example 5.57.

    Five years of daily log-return data (1996-2000).Intel, Microsoft and General Electric stocks.

    The marginal distributions are estimated empirically (method(2)).

    The pseudo-sample from copula is shown in Figure 5.14.

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    15/19

    Multivariate Archimedean Copulas

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    16/19

    Maximum Likelihood Estimation

    Let C denote a parameter copula, where is the vector ofparameters to be estimated. The MLE is obtained by maximizing

    ln L(;U1 , . . . ,Un) =n

    t=1

    ln c(Ut)

    One could envisage Using the two-stage method to decide on the

    most appropriate cpula family and then estimating all parameters(marginal and copula) in a final fully parametric round ofestimation.

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/http://goback/
  • 8/13/2019 Fitting Copulas to Data

    17/19

    Maximum Likelihood Estimation

    Example 5.58 (fitting the Gaussian copula).

    In the case of a Gaussina copula implies that the log-likelihood is

    ln L(P;U1 , . . . ,Un)

    =n

    t=1

    ln fP(1(Ut,1), . . . ,

    1(Ut,d)) n

    t=1

    dj=1

    ln (1(Ut,j))

    where f will be used to denote the joint density of a randomvector with Nd(0, ) distribution.

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/
  • 8/13/2019 Fitting Copulas to Data

    18/19

    Maximum Likelihood Estimation

    Example 5.58 (fitting the Gaussian copula).

    P= argmaxP

    nt=1ln f(Yt), where Yt,j=

    1(Ui,j) forj=1,. . . , d andPdenotes the set of all possible linear correlationmatricses.The setPcan be constructed asP= {P=(Q) :Q=AA , Alower triangular with ones on the diagonal}An approximate solution to the maximization may be obtained as

    follows: = (1/n)

    nt=1 YtY

    t

    P=()

    Y-J, Chao 5.5 Fitting Copulas to Data

    5.5 5.5.1 5.5.2 5.5.3

    http://find/http://goback/
  • 8/13/2019 Fitting Copulas to Data

    19/19

    Maximum Likelihood Estimation

    Example 5.58 (fitting the Gaussian copula).

    For example 5.57 by full ML, the estimated correlation matrixhas 0.58(INTC-MSFT), 0.34(INTC-GE) and 0.4(MSFT-GE); thelog- likelihood at the maximum is 376.65, using the alternativemethod gives a log likelihood value of 376.62

    Y-J, Chao 5.5 Fitting Copulas to Data

    http://find/