extreme overbalance, propellant or extreme underbalance · extreme overbalance, propellant. or ....

29
When and how EOP, Propellant or EUP could effectively improve the well’s perforation Extreme Overbalance, Propellant OR Extreme Underbalance

Upload: vodung

Post on 19-Jul-2018

283 views

Category:

Documents


2 download

TRANSCRIPT

When and how EOP, Propellant or EUP could effectively improve the well’s perforation

Extreme Overbalance,Propellant

OR Extreme Underbalance

1865, Tin torpedos filled with gunpowder, later with nitroglycerin 1910, the single-knife casing ripper 1948, shaped charges 1970s, under-balance 1980s propellant 1993, extreme over-balance

The first 130 years of perforating

petro

sol

Overbalanced CompletionBefore Flowing

Cement

Casing

Mud-damaged zone

Virgin formation

Charge debris

Crushed and compactedlow-permeability zone

Overbalanced CompletionAfter Flowing

Part of low-permeability zonestill exits

Perforation partially pluggedwith charge debris

Ideal Underbalanced Completion

Immediately After FlowingLow-permeability zone andcharge debris expelled bysurge of formation fluid

Perforation Clean Up Concepts

petro

sol

• Overbalanced perforating creates a crushed zone with substantial flow restrictions

• Underbalanced perforating helps to remove debris and crushed formation fragments from the perforation tunnel

• Cleanup efficiency is a function of applied differential pressure and transient flow velocities in the rock

Perforation Clean Up Concepts

petro

sol

• Why EOP The remaining reservoir pressure or underbalance is insufficient to

effectively clean the perforations The formation competence is questionable and the risk of sticking

perforating assemblies is greater, sufficient underbalance pressure is notpossible

• To address the perforation damage in these cases, extremeoverbalance perforating technique has been applied EOP is a near-wellbore stimulation technique EOP perforating also provides perforation breakdown in preparation for

other stimulation methods; and therefore, eliminates the need forconventional perforation breakdown methods

• The Extreme Overbalance Perforating technique was developedindependently by Oryx Energy and ARCO

Extreme Overbalance Perforations (EOP)

petro

sol

EOP Technique• Pressuring the wellbore with compressible gases

(the gases have a high level of stored energy) above relatively small volumes of liquid

• Typically Nitrogen is pressured up to levels significantly higher than the formation break-down pressure

• The formation is instantaneously exposed by perforating the casing or shearing a plug placed in the tubing bottom

• Compressed N2 provides the energy to drive the wellbore fluid into the formation to create short fractures around the wellbore

• Proppant carriers have also been incorporated into the perforation assembly to introduce proppantsinto the flow path as the gun detonates.

petro

sol

• Energy stored in tubular creates shock wave opposite

perforated zone.

• Energy impact and injection rates are significantly higher

than during hydraulic fracturing.

• Overbalance pressure needs to be above 1.4 psi/ft.

• Expansion of N2 creates short fractures.

• Fracture propagation and width are function of pressure

sustenance above fracture initiation pressure.

• EOP fracture initiation pressure is always higher.

EOP Fundamentals

petro

sol

• Effectiveness of EOP is a function of: Type of fluid across target formation

Size of tubular (i.e., amount of finite energy available)

Length of perforated interval, size, and gun phasing

In-situ stress, σ, and permeability, k

Applied overbalance pressure gradient

Effectiveness of EOP

petro

sol

• Opening existing (damaged or plugged) perforations

• Removal/bypass of skin damage and fines migration

• Stimulation of well where other treatments are impractical

• Pre-stimulation to permit reservoir evaluation tests

• Upfront hydraulic fracturing operation

• Stimulation of intervals with proximity to water/gas layers

EOP Candidate Selection

petro

sol

• More than 500 jobs performed: 88% showed negative skin after EOP• Most treated reservoirs with k < 10md• Maximum treated interval length 300 ft• Success depends on overbalance gradient > 1.4 psi/ft• If reservoir does not respond to EOP, it will not respond to more

expensive treatments.• Reserves do not increase but are recovered in a shorter time• Clean fluids are a key to technique• 80% of fractured wells showed lower fracture pressures• Decline in use to less than 100 jobs a year (TCP operations are more

than 8,000 per year)

EOP Results Worldwide

petro

sol

• In a real case, two jobs with EOP were performed• Neither of the jobs resulted in a commercial success:

In first case the perforation guns went off prematurely and forcedcompletion brine into the formation – the well never producedanything measureable.

In second case EOP surge did increase production from 1.5MMscfd to 2.4 MMscfd. Based on pressure transient test, skinreduced from 33 to 18. No long term test results available.

• The jobs proved that EOB with surface and downhole pressures of15,000 psi and 19,000psi were operationally possible.

• Cost for EOP much higher than conventional methods, economicjustification is still questionable????

Field Experience of EOP

petro

sol

• Safety: High pressure gas at surface (well depth), well hardware andequipment ratings

• Logistics - Nitrogen and pumping units• Very high instantaneous flow rate….may exceed 100 bbl/min• Very high surface pressure…. has to be increased to more than 10,000

psi• Liquid cushion ….up to maximum of 1000 ft• Minimize fluid volume inside tubing, preferably 100% N2 to reduce

friction losses• Erosional effects are significantly higher• Large diameter perforations and perforation phasing are more

important than penetration…completion limitations for various gunoptions

• Pressure buildup before and after EOP• EOP creates multiple fractures near the wellbore…if no fracture is

created, perforations are plugged….completely

EOP Limitations and Issues

petro

sol

Propellant

petro

sol

• It is an Oxidizer and a Fuel

• It burns very quickly

• It generates gas

• Post-perforation Propellant Pulse System delivers the maximum energy produced to the formation to enhance near wellbore treatments

• the generated pressure pulse is powerful enough to break the formation

• Conveyable on wireline, tubing, or coiled tubing, it is run stand-alone or in combination with a perforating gun system for a one-step process

What is a Propellant?

petro

sol

• Invented late 1970’s (DynaFrac by Chuck Godfrey of

Physics International)

• Extensively studied by Sandia (US DOE) Predicted fractures of 100’s feet

• Extensively evaluated by Mobil and other majors

1980’s and discarded as an acceptable stimulation

technique

History of Propellants

petro

sol

• Expanding bubble increases localized pressure• This in turn fractures the rock

What Propellant Does??

petro

sol

Propellant Pulse

petro

sol

• Energy application rates and resulting fracture patterns for various fracture –stimulation technologies

Fracture Patterns for Various Techniques

petro

sol

• Performs a mini fracture on the formation by: Using a high energy pressure wave to drive a fluid piston into the

formation to initiate a fracture Short non-propped, bi-wing fracture created

• Potential short-term increase in production rates• Results can determine whether conventional frac job is needed or not• Fractures tend to stay in zone (zonal isolation)• Fracture past wellbore/formation damage• Fracture past perforation damage• Potential communication with natural fractures

Propellant Uses

petro

sol

• At its peak 1,000 jobs per year comparedto more than 40,000 hydraulic stimulationjobs per year

Propellant Results

petro

sol

• Pressures at least 1.4 psi/ft or .6 plus frac gradient• Intervals up to 300 feet (< 50 feet most common)• Fluids in wellbore can vary• Completion brine

Acid - mini acid wash Resin - for sand control (more failures than successes) Minimum liquid column required for propellants to prevent tool

movement and to initiate propellant NO liquid to surface for propellants otherwise wellhead will be blown

off

• Risk of completion damage such as unseating packers or splitting casing

• Will destroy hydraulic cement bond

Propellant Operations

petro

sol

• Safety

No liquid to surface

Well hardware and equipment ratings

Splitting casing

Packer movement

Collapsing guns with propellant sleeves

• Formation damage

If no fracture initiated, perforations are plugged

Propellant Limitations

petro

sol

Extreme Under-balance

petro

sol

• Perforation cleanup occurs in about the first 10 msec from generation

of perforation tunnel (SPE 30081).

• Optimum underbalance to achieve clean perforations is a function of

permeability, porosity, reservoir strength and type /size of charge

(SPE 30081).

• Less than optimum underbalance results in variable perforation

damage skin and variable flow rate/perforation (SPE 22809 & SPE

28554)

Under-balance Perforation; Some Fundamentals

petro

sol

• EUP jobs were performed employing modular gun system. This

technique takes the underbalance perforating to the extreme.

• The wells perforated with virtually no hydrostatic pressure (about 50

psi) at the perforated interval

• In addition well is open at the choke to the pit

• No problem of sand influx reported

• Very encouraging 5-fold increase in MCFD/md-ft was reported (in low

producers)

Field Experience with EUP

petro

sol

• More than 800 EOB Jobs have been reported, most of these in US andCanada

• While there have been notable success, EOB is not a globalreplacement for underbalance perforating

• It is rather a complementary process for specific applications: Lack of engineering design tools can inhibit treatment success Uncertain reliability, results Operationally complexity and cost

• Convergence with propellant technology may provoke key to success: Same principle, superior dynamics as EOB Operationally simple and low in cost

• 2,000-3,000 psi dynamic underbalance pressure possible with PUREand Combo PURE gun system

• Field experience with EUP has been very encouraging

Conclusion

petro

sol

• Extreme overbalance pressure perforations are not feasible,

and hence not recommended at current state of its technology

• For Post Perforating Propellant Pulse Stimulation right

candidate selection is crucial

• PURE perforation system (or Equivalent technology) for Wells

having higher bottom hole pressure i.e. 1,000 – 1,400 psi

• Extreme under balance perforation technique to be tried on

the candidates, where creating underbalance is virtually

impossible

Take Away

petro

sol

• Poveda et al. (2013) “Case History_Combining Extreme Overbalance and Dynamic Underbalance Perforating Techniques in Ecuador” SPE-166420-MS

• Wang et al. (2003) “Successful Application of Combining Extreme Overbalance Perforating and Alcoholic Retarded Acid Technique in Abnormal High Pressure Gas Reservoir ” SPE-82272-MS

• Ghalambor et al. (1998) “Performance Evaluation of Extreme Overbalanced Perforating” SPE-39459-MS

• Azari et al. (1997) “Well Testing and Evaluation of Tubing-Conveyed Extreme Overbalanced Perforating” SPE-37326-MS

• L.A Behrmann (1996) “Underbalance Criteria for Minimum Perforation Damage” SPE-30081-PA

• Mason et al. (1994) “Block Tests Model the Near-Wellbore in a Perforated Sandstone” SPE-28554-MS

• Behrmann et al. (1991) “Measurement of Additional Skin Resulting From Perforation Damage” SPE-22809-MS

Further Reading…

Need More…

Thank Youfor assistance, queries or

comments, reach us:

[email protected]@petrosol.co

Visit our website:http://www.petrosol.co