"experience is what you get when you don't get what you want." --tori filler

42
"Experie n ce is what you get when you don't get what you want." - -Tori Filler

Upload: bethanie-cooper

Post on 16-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: "Experience is what you get when you don't get what you want." --Tori Filler

"Experience is what you get

when you don't get what

you want." --Tori Filler

Page 2: "Experience is what you get when you don't get what you want." --Tori Filler
Page 3: "Experience is what you get when you don't get what you want." --Tori Filler

Chapter 14 RQ

1. What are the alternative versions of a gene called?

2. An unknown genotype breeding with a recessive is known as a what?

3. _________ is when one gene can have multiple phenotypic effects.

4. A pink offspring from a red parent and a white parent is demonstrating what type of inheritance?

5. Blood types exhibit which type of inheritance pattern?

Page 4: "Experience is what you get when you don't get what you want." --Tori Filler

1. Define the terms character, trait, true-breeding, hybridization, monohybrid

cross, P generation, F1 generation, and F2 generation.

• Character a heritable feature • Trait each variant of a character (ex: colors)• True-breeding self-pollinated plants • Hybridization the crossing of two varieties• Monohybrid cross tracks the inheritance of a

single character (flower color)• P generation the true-breeding parents • F1 generation the 1st set of hybrid offspring• F2 generation the 2nd generation from

allowing the F1 set to self-pollinate

Page 5: "Experience is what you get when you don't get what you want." --Tori Filler
Page 6: "Experience is what you get when you don't get what you want." --Tori Filler

2. List four components of Mendel’s hypothesis that led him to deduce the law

of segregation.

1. Alternative forms of genes are responsible for variations in inherited characters (alleles)

2. For each character, an organism inherits 2 alleles, one from each parent

3. If the 2 alleles differ, one is fully expressed (dominant) and the other is completely masked (recessive)

4. The 2 alleles for each character segregate during gamete production (allele pairs separate during gamete production)

Page 7: "Experience is what you get when you don't get what you want." --Tori Filler
Page 8: "Experience is what you get when you don't get what you want." --Tori Filler

3. Do a Punnett Square to predict the results of a monohybrid cross between pure white and pure

purple flowers and state the phenotypic and genotypic ratios of the F2 generation.

P = purple: p = whiteP PP x pp P pF1 Pp

F2 Pp x Pp P

Phenotypic: 3:1

Genotypic: 1:2:1 p

PP

(purple)

Pp

(purple)

Pp

(purple)

pp

(white)

Page 9: "Experience is what you get when you don't get what you want." --Tori Filler
Page 10: "Experience is what you get when you don't get what you want." --Tori Filler

4. Distinguish between genotype and phenotype; heterozygous and

homozygous; dominant and recessive.

• Genotype an organism’s genetic makeup• Phenotype an organism’s expressed traits• Homozygous 2 identical alleles for a trait

(RR)• Heterozygous 2 different alleles for a trait

(Rr)• Dominant the gene expressed in the

phenotype• Recessive the allele not represented in the

phenotype (masked)

Page 11: "Experience is what you get when you don't get what you want." --Tori Filler

5. How can a testcross be used to determine if a dominant phenotype is

homozygous or heterozygous?

• Testcross the breeding of an organism of unknown genotype with a homozygous recessive

PP x pp or Pp x ppall Pp 2Pp : 2pp

Page 12: "Experience is what you get when you don't get what you want." --Tori Filler
Page 13: "Experience is what you get when you don't get what you want." --Tori Filler

6. Define random event, and explain why it is significant that allele segregation during meiosis and fusion of gametes at fertilization are random

events.

• The outcome of random events are unaffected by the outcome of previous such events

• If we know the genotypes of the parents, we can predict the most likely genotypes of their offspring using the laws of probability

• Probability scale 0 to 1 (0 won’t happen) - probabilities for all possible outcomes of an event must add up to 1

Page 14: "Experience is what you get when you don't get what you want." --Tori Filler

7. What is the law of independent assortment?

• The independent segregation of each pair of alleles during gamete formation (meiosis)

Page 15: "Experience is what you get when you don't get what you want." --Tori Filler
Page 16: "Experience is what you get when you don't get what you want." --Tori Filler

8. How would you use the rule of multiplication to calculate the probability that a particular F2

individual will be homozygous recessive or dominant? How would you use the rule of addition to calculate the probability that a

particular F2 individual will be heterozygous? • Rule of multiplication probability that

independent events will occur simultaneously is the product of their individual probabilities

• Ex: Pp x Pp – what is the probability it will be homozygous recessive (pp)? egg – F1 (Pp) will get p allele = ½

sperm – F1 (Pp) will get p allele = ½

½ x ½ = ¼ chance of (pp)

Page 17: "Experience is what you get when you don't get what you want." --Tori Filler

Addition…

• Rule of addition probability of an event that can occur in 2 or more independent ways is the SUM of the separate probabilities of the different ways.

• Ex: in a cross of 2 heterozygotes (Pp x Pp) what is the probability that the offspring will be heterozygous?egg – recessive allele – ½ sperm – dominant allele – ½ = 1/4

1/2 egg – dominant allele – ½

sperm – recessive allele – ½ = 1/4

Page 18: "Experience is what you get when you don't get what you want." --Tori Filler

9. Use a Punnett Square to predict the results of a sample dihybrid cross and

state the phenotypic and genotypic ratios of the F2 generation.

Samples on board

Page 19: "Experience is what you get when you don't get what you want." --Tori Filler

Using the laws of probability, predict from a trihybrid cross between two individuals that are heterozygous for all three traits, what expected

proportion of the offspring would be:a)     homozygous for the three dominant traits

    PpRrYy x PpRrYy PPRRYY• Treat as 3 separate monohybrid crosses

Pp x Pp – prob. for PP = ¼Rr x Rr – prob. for RR = ¼Yy x Yy – prob. for YY = ¼

• Rule of multiplication (1/4 x 1/4 x 1/4 ) = 1/64 chance of

‘PPRRYY’

Page 20: "Experience is what you get when you don't get what you want." --Tori Filler

b)     heterozygous for all three traits

PpRrYy x PpRrYy PpRrYy• Treat as 3 separate monohybrid crosses

Pp x Pp – prob. for Pp = ½Rr x Rr – prob. for Rr = ½Yy x Yy – prob. for Yy = ½

• Rule of multiplication (1/2 x ½ x ½) = 1/8 chance

of ‘PpRrYy’

Page 21: "Experience is what you get when you don't get what you want." --Tori Filler

c) homozygous recessive for two specific traits and heterozygous for the third

• List the genotype possibilities that are homozygous recessive for 2 traits and heterozygous for 1 trait.

• Use the rule of multiplication to get the probability that one genotype shows

• Use the rule of addition to calculate probabilitypprrYy – ¼ x ¼ x ½ = 1/32ppRryy – ¼ x ½ x ¼ = 1/32 3/32 chance Pprryy – ½ x ¼ x ¼ = 1/32

Page 22: "Experience is what you get when you don't get what you want." --Tori Filler

11. Give an example of incomplete dominance and explain why it is not evidence for the blending theory of

inheritance.• It is the pattern of inheritance in which

the dominant phenotype is not fully expressed in the heterozygote, resulting in a phenotype intermediate between homozygous dominant and homozygous recessive

• Ex: red (RR) and white (rr) = pink (Rr)• Alleles maintain their integrity in the

heterozygote and will separate during gamete formation

Page 23: "Experience is what you get when you don't get what you want." --Tori Filler
Page 24: "Experience is what you get when you don't get what you want." --Tori Filler

12. Explain how the phenotypic expression of the heterozygote is affected

by complete dominance, incomplete dominance, and codominance.

Complete ------Incomplete ------Codominance

• In complete dominance, the AA and Aa look the same

• In incomplete dominance, the A is incompletely dominant and Aa is an intermediate phenotype

• In codominance, there is no dominant allele and the alleles are expressed equally

Page 25: "Experience is what you get when you don't get what you want." --Tori Filler

13. Describe the inheritance of the ABO blood system and explain why the IA and

IB alleles are said to be codominant.

• Blood types A, B, AB, and O• Both A and B antigens are expressed in heterozygotes

Page 26: "Experience is what you get when you don't get what you want." --Tori Filler

14. Define and give examples of pleiotropy.

• Pleiotropy the ability of a single gene to have multiple phenotypic effects

• Ex: hereditary diseases – a single defective gene causes complex sets of symptoms- tigers and siamese cats have a gene for abnormal coloration which also affects the eyes, which end up with a cross-eyed look

Page 27: "Experience is what you get when you don't get what you want." --Tori Filler

15. Explain how epistasis affects the phenotypic ratio for a dihybrid cross.

• Epistasis the interaction between two nonallelic genes in which one modifies the phenotypic expression of the other

• The dihybrid phenotypic ratio will deviate from the usual 9:3:3:1 to 9:3:4

• Ex: BbCc x BbCc 9 Black B _ C _ 3 Brown bbC _ 4 Albino _ _ cc

Page 28: "Experience is what you get when you don't get what you want." --Tori Filler
Page 29: "Experience is what you get when you don't get what you want." --Tori Filler

16. Describe a simple model for polygenic inheritance, and explain why most polygenic

characters are described in quantitative terms.

• It is the model of inheritance in which the additive effect of two or more genes determines a single phenotypic character

• Ex: skin color- 3 genes with dark allele A, B, C contribute one “unit” of darkness to the phenotype* AABBCC very dark * alleles have a cumulative

* aabbcc very light effect so ‘units’ are used *

Page 30: "Experience is what you get when you don't get what you want." --Tori Filler
Page 31: "Experience is what you get when you don't get what you want." --Tori Filler

17. Describe how environmental conditions can influence the phenotypic

expression of a character.

• A single gene may produce a range of phenotypes in various environments

• Ex: blood cell count varies on altitude, activity levels, and infections

• Ex: skin color is multifactorial – depends on many factors (genotype, environmental influences..)

Page 32: "Experience is what you get when you don't get what you want." --Tori Filler
Page 33: "Experience is what you get when you don't get what you want." --Tori Filler

18. Given these family pedigrees, deduce the genotypes for some of the family

members.

Page 34: "Experience is what you get when you don't get what you want." --Tori Filler

19. Describe the inheritance and expression of cystic fibrosis, Tay-Sachs disease, and sickle-cell

disease. • All are recessively inherited disorders• Cystic fibrosis 4% of Caucasians are carriers

- need 2 recessive alleles to occur- 1 in 2500 Caucasians inherit the disease

• Tay-Sachs primarily found among Jewish descent- it is a lipid accumulation in the brain- 1 in 3600 inherit the disease

• Sickle-cell primarily found in African-American descent- 1 in 400 inherit disease- it is the result of a single amino acid substitution in hemoglobin- 1 in 10 is heterozygous, which provides an enhanced resistance to malaria

Page 35: "Experience is what you get when you don't get what you want." --Tori Filler
Page 36: "Experience is what you get when you don't get what you want." --Tori Filler

20. Explain how a lethal recessive gene can be maintained in a population.

• Heterozygotes act as carriers in the population who do not show the lethal recessive

Page 37: "Experience is what you get when you don't get what you want." --Tori Filler

21. Explain why consanguinity increases the probability of homozygosity in

offspring.

• Shared ancestry contributes to the same alleles being passed

• In other words, you are more likely to inherit the same recessive alleles from related parents than from unrelated parents

Page 38: "Experience is what you get when you don't get what you want." --Tori Filler

22. Explain why lethal dominant genes are much more rare that lethal recessive

genes.

• Because heterozygous dominant individuals exhibit the trait

• Homozygous dominants usually spontaneous abort

• Homozygous recessives have the normal phenotype

• They are rarer because they are always expressed (effects are not masked)

Page 39: "Experience is what you get when you don't get what you want." --Tori Filler

23. Give an example of a late-acting lethal dominant in humans and explain

how it can escape elimination.

• If the disorder does not appear until an advanced age after afflicted individuals may have transmitted the lethal gene to their children

• Ex: Huntington’s disease degenerative disease of the nervous system- children of afflicted parent have a 50%

chance of also getting the disease later in life

Page 40: "Experience is what you get when you don't get what you want." --Tori Filler

24. Explain how carrier recognition, fetal testing and newborn screening can be

used in genetic screening and counseling. • Carrier recognition tests are available to check for

heterozygous carriers – can make informed decisions about having children

• Fetal testing - amniocentesis – remove amniotic fluid at 14 – 16 weeks- chorionic villus sampling (off placenta) – can test at 8 – 14 weeks, can know results in 24 hours- ultrasound– create image - fetoscopy – fiberoptic scope in uterus (used when problems are high)

• Newborn screening screen for problems right away- ex: phenylketonuria - 1 in 15,000 inherit this disease - cannot break down the amino acid phenylalanine

Page 41: "Experience is what you get when you don't get what you want." --Tori Filler
Page 42: "Experience is what you get when you don't get what you want." --Tori Filler