excess heat in electrolysis experiments at energetics ...lenr-canr.org/acrobat/  · energetics...

Download EXCESS HEAT IN ELECTROLYSIS EXPERIMENTS AT ENERGETICS ...lenr-canr.org/acrobat/  · ENERGETICS TECHNOLOGIES

Post on 01-Oct-2018

212 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • 1

    EXCESS HEAT IN ELECTROLYSIS EXPERIMENTS AT ENERGETICS TECHNOLOGIES

    I. Dardik, T. Zilov, H. Branover, A. El-Boher, E. Greenspan, B. Khachatorov, V. Krakov, S. Lesin, and M. Tsirlin

    Energetics Technologies Ltd.

    Omer, Israellesin@energetics.co.il

    Presented at the11th International Conference on Cold Fusion, ICCF-11

    Marseilles, FranceNovember 1 - 6, 2004

  • 2

    CONTENTS

    1. Presentation objective

    2. SuperWaves used for driving the cell3. Review of glow discharge experiments

    4. Description of ET electrolytic cells5. Pd Cathode and its pretreatment

    6. Excess heat obtained7. Excess tritium

    8. Material analysis

  • 3

    PRESENTATION OBJECTIVES

    1. Review of SuperWave principles2. Review of Glow Discharge Experiments3. Description of 3 ET electrolytic cell experiments

    that resulted in significant excess heat generation:

    Experiment # 56 64a 64b

    Cycle ? 4 1 2Loading time (s) 80 5 16Excess heat (EH) (%) 80 2500 1500Duration of EH (h) 300 17 80Excess energy (EE) (MJ) 3.1 1.1 4.6Specific* EH (W/g Pd) 11 71 62Specific* EE (KeV/Pd atom) 13.5 4.8 20 (24.8)

    * - pertaining to effective part of cathode ( 6 x 0.7 cm )

  • 4

  • 5

    OperatorParameters

    set up

    Superwave form signal generation using LabView software

    Current amplifierExperimental

    system

    Low current

    EC are driving by SuperWaves

  • 6

    t)(sin)(F 02

    00 At =

    ))(sinAt)(1(sin)(F 12

    102

    01 tAt +=

    SuperWaves formation principles

  • 7

    ))](sinA1)((sinAt)[1(sin)(F 22

    212

    102

    02 ttAt ++=

    )))](sinA1)((sinA1)((sinAt)[1(sin)(F 32

    322

    212

    102

    03 tttAt +++=

  • 8

    Glow Discharge Cell

    Cooling Water Output

    Cooling Water Input

    +

    Ground

    Tungsten Wire

    Palladium Layer

    D+ Plasma

    100 mm

    20 mm

    StainlessSteel Body

    Conceptual Design

  • 9

    Cell Assembly

  • 10

    ETG-1

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 2 4 6 8 10 12 14

    Time,h

    En

    erg

    y,k

    J

    Ein Eout Ex ( Excess Energy = Eout - Ein )

    Experimental Results with thin Palladium film (about 1 m) on Stainless Steel Body

    ETG-1

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 2 4 6 8 10 12

    Time, h

    Pow

    er, W

    Pin Pout

    DC

    WavesWaves

    Shut Down

    Maximum Excess Power = 3.7 x Input Power

    Total Excess Energy = 6.7 x Input Energy

  • 11

    Experimental Results with thick Palladium foil (100 m)

    ETG-2

    -20

    020

    40

    6080

    100120140

    160

    180200220

    240260

    280

    10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

    Time,h

    En

    erg

    y,k

    J

    Ein Eout Ex(Excess Energy=Eout-Ein)

    ETG-2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

    Time,hP

    ow

    er,

    W

    Pin Pout

    Maximum Excess Power = 0.8 x Input Power

    Total Excess Energy = 0.8 x Input Energy

  • 12

    Glow Discharge Experiment Cell ETG-2-18

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

    Time, h

    Po

    wer

    , W

    -150

    -100

    -50

    0

    50

    100

    150

    CO

    PE

    , %

    Pin Pout COPE=(Pout-Pin):Pin x 100%

    Excess Heat Generation during 20 days

  • 13

    Energy Production from Cell ETG-2-18

    0

    500

    1000

    1500

    2000

    2500

    0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

    Time,h

    En

    erg

    y, k

    J

    Ein Eout Eex

    Excess Energy during 20 days

  • 14

    Energy Output after shutting down of GD Cell ETG-3-22

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 2 4 6 8Time, hr

    E, k

    JHeat After Death

    Thermal Energy Stored in GD Cell SS body (m*cp*? T)

    Eout

  • 15

    A AC

    T4T5

    Teflon

    AluminaAluminum

    Recombiner

    Electrolyte

    ET Electrolytic Cell

    EC is inside a Teflon beaker that is placed inside an isoperibolic calorimeter

    0.1M LiOD in low tritium content D2O (230 ml)

  • 16

    Electrolytic Cell

    Three cells are immersed in a constant temperature water bath of +2.50C 0.250C

  • 17

    Cathode & Pre-treatment

    50 m Pd foil, prepared by

    Dr. Vittorio Violante (ENEA Frascatti, Italy)

    Annealed at 870oC in vacuum for 1h

    Etched:

    - in Nitric Acid 65-67%; 1 min

    - in Aqua Regia 1:1 water solution; 1 min

    Rinsed:

    - D2O four times

    - Ethanol 95% twice

    - Ethanol Absolute once

    Dried:

    in vacuum at ambient temperature for 24 h

    60 m

    m

    7 mm

  • 18

    05

    1015202530354045505560657075

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

    Delta T

    Pow

    er

    Typical Calibration Curve for Electrolytic Cell Calorimeter

  • 19

    Block diagramPC

    Analyzing, displaying, printout

    LCR

    Amplifier Temperatures (5)Current,Voltage

    Cathode resistance

    Wave form

    Current Superwave

    Cell

    Water bath

    Temperature

    Data Logger

    Measured Parameters:

    - Input Current

    - Input Voltage

    - Wall Temperatures

    T4 and T5- Resistance of cathode for monitoring loading (four probe AC method)

  • 20

    Study of Influence of Modulations on Loading

    1st level of modulation Constant parametersChangeable parameters

  • 212nd level of modulation

    Changeable parameters Constant parameters

    Study of Influence of Modulations on Loading

  • 223rd level of modulationChangeable parameters Constant parameters

    Study of Influence of Modulations on Loading

  • 23

    1st levelof modulation

    2nd level ofmodulation

    3rd level ofmodulation

    Of-line RR0 versus time for Foil N056 (Dr.Violante)

    1.

    Study of Influence of Modulations on Loading

  • 24Of-line RR0 versus time for Foil N056 (Dr.Violante)

    2.

    Study of Influence of Modulations on Loading

  • 25Of-line RR0 versus time for Foil N056 (Dr.Violante)

    3.

    Study of Influence of Modulations on Loading

  • 26

    Diagram loading versus level of modulation

    1.6

    1.65

    1.7

    1.75

    1.8

    1.85

    1 2 3 3 2 1 1 2 3 3 2 1 2 3 2 1 2 3 3

    Level of modulation

    Cur

    rent

    den

    sity

    , mA

    /cm

    2

    0

    10

    20

    30

    40

    50

    60

    RR

    0

    RR0 j

    Foil N056 (Dr.Violante)

    Study of Influence of Modulations on Loading

  • 27

    Diagram loading versus level of modulation

    1.7

    1.75

    1.8

    1.85

    1.9

    1.95

    2

    1 2 3 3 2 1 1 2 3 3 2 1 2 3 2 1 2 3 3 3 3

    Level of Modulation

    RR

    0

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Cur

    rent

    den

    sity

    , mA

    /cm

    2

    RR0 j

    Foil N051 (Dr.Violante)

    Study of Influence of Modulations on Loading

  • 28

    Excess Power; Exp. # 56

    Excess Power of up to ~3.5 watts; Average ~2.7 watts for ~300 h

    300 h

    Average Pout ~6.9 watts

    Average Pinet ~3.9 watts

    COPE=(Pout-Pinet):Pinet (6.9-3.9):3.9 0.8

  • 29

    Excess Energy; Exp. # 56

    Excess energy of ~3.1 MJ

  • 30

    Excess Power; Exp. # 64a

    Pout=K?T

    Pinet=Iin*Vin P dis

    Excess Power of up to 34 watts; Average ~20 watts for 17 h

    17 h

    Average Pinet ~0.74 watts

    Average Pout ~20 watts

    COPE=(Pout-Pinet):Pinet (20-0.74):0.74 25

  • 31

    Input Energy~0.033MJ

    Output Energy

    Excess Energy

    Excess energy of ~1.1 MJ

    Excess Energy; Exp. # 64a

  • 32

    Temperature Evolution, Exp. # 64a

    A AC

    T4T5

    T1

    T2

    T3

    T4

    T5Tbath

  • 33

    ?T=T4-T5

    Average Current Density = 7.09 mA/cm2

    Cell Voltage, V

    Current & Voltage; EXP. # 64a

  • 34Loading is relatively low (~0.8)

    R/Ro & Power; EXP. # 64a

  • 35

    Excess Power; Exp. # 64b

    Excess Power of up to 32 watts; Average ~12 watts for 80 h

    COPE=(Pout-Pinet):Pinet (12-0.72):0.72 15

    Average Pout ~12 watts

    Average Pinet ~0.72 watts

    80 h

  • 36Excess energy of ~4.6 MJ

    Excess Energy; Exp. # 64b

    Energy production from Cell ETE-4-64, second run

    0.00E+00

    5.00E+05

    1.00E+06

    1.50E+06

    2.00E+06

    2.50E+06

    3.00E+06

    3.50E+06

    4.00E+06

    4.50E+06

    5.00E+06

    0 10 20 30 40 50 60 70 80 90 100

    Time, h

    Ene

    rgy,

    Jou

    le

    Ein Eout Ex=Eout-Ein

  • 37

    A AC

    T4T5

    T1

    T2

    T3

    Temperature Evolution, Exp. # 64b

    T4T5

    Tbath

  • 38

    ?T, Current Density & Voltage ; EXP. # 64b

    ?T=T4-T5

    Average Current Density = 8.37 mA/cm2

    Cell Voltage

Recommended

View more >