ethanol- ethyl acetate mixture

Download Ethanol- Ethyl Acetate Mixture

If you can't read please download the document

Upload: keith-vincent-ybas-burca

Post on 03-Dec-2015

82 views

Category:

Documents


6 download

DESCRIPTION

About ethanol and ethyl acetate vle

TRANSCRIPT

  • 1

    1. About the Report

    The mixture of interest is the ethanol ethyl acetate system which is commonly

    encountered in petrochemical industries, specifically, after esterification reactions. The main

    objective of this work is to predict the behavior of the binary mixture without doing experiments.

    Diagrams relating the liquid concentration with other properties of the binary mixture were

    constructed and from these diagrams, the behavior of the mixture was estimated. The estimations

    that were established in this paper were aligned with chemical and physical concepts. The

    activity coefficient models that were chosen for the predictions were based from the

    recommendations of the book, , Biochemical, and Engineering Thermodynamics,

    Fourth Edition by Stanley I. Sandler. In this paper, properties with 1 as a subscript refer to

    ethanol while properties with 2 as a subscript are for ethyl acetate. In the industry, this mixture is

    usually found with other components such as water and acetic acid but for simplicity, only the

    binary mixture of ethanol and ethyl acetate was studied throughout the report.

  • 2

    2. The Components of the Binary Mixture

    Ethanol

    Ethanol is a clear, colorless, volatile and flammable liquid at room temperature that has a

    slightly distinct odor. Its chemical formula is CH3CH2OH and it is also commonly called as ethyl

    alcohol or drinking alcohol. It is moderately polar with a polarity index of 5.2 and its boiling

    point at atmospheric pressure is 78.37oC.

    Figure 2.1. Molecular structure of ethanol

    In the industry, it is most commonly produced by the fermentation of starches with the

    presence of a catalyst, such as yeast. The production of ethanol through fermentation is one of

    the earliest reactions to be discovered; it has already been used for at least 8000 years in the

    Middle East and 9000 years in China. Corn, wheat and some fruits are the most common sources

    of starches used in the production of ethanol. The production of ethanol by fermentation can be

    represented by the equation,

    C6H12O6 2CH3CH2OH + 2CO2

    Probably, the most practical applications of ethanol are in the manufacture of

    disinfectants and alcoholic beverages. Beers contain 4 up to 6 vol% ethanol, wines 7 to 15 vol%

    ethanol while champagnes may contain ethanol ranging from 8 to 14 vol%. It is estimated that

    the world manufactures 60 million metric tons of ethanol annually because of its increasing

    demand in the manufacture of many other substances. However, most of the ethanol used in the

    industries is denatured so it cannot be used as a drinking beverage. A fraction of that whole

    volume will be used to react with other substances to form other useful substances such as

    acetaldehyde, acetic acid and including ethyl acetate while a large portion of that volume is used

    as a supplement for automobile gasoline; this mixture of ethanol and gasoline is commonly

    known as gasohol. It is medically proven that ethanol is a neurotoxic psychoactive drug and can

    cause a physiological disorder known as alcohol intoxication if taken internally in an ample

    amount.

  • 3

    Ethyl Acetate

    Ethyl acetate is a colorless liquid at room temperature with a chemical formula of

    C4H8O2. It has a fragrant fruity odor and it is considered as a fire hazard. Ethyl acetate is also a

    moderately polar solvent with a polarity index of 4.4 and its boiling point at atmospheric

    pressure is 77.1oC.

    Figure 2.2. Molecular structure of ethyl acetate

    In the industry, ethyl acetate is most commonly synthesized using the Fischer

    esterification reaction of acetic acid and ethanol. This esterification reaction is usually catalyzed

    by a strong acid such as sulfuric acid and is shown by the following equation.

    CH3CH2OH + CH3COOH CH3COOCH2CH3 + H2O

    Ethyl acetate is commonly used as a solvent in paints, lacquers, coatings and adhesives. It

    is estimated that the world produces more than 1.3 million tons of ethyl acetate annually.

    Because of its low toxicity level, fragrance and cost, manufacturers have used ethyl acetate to

    replace some aromatic compounds found in paints that can lead to serious harm to humans and to

    the environment. Ethyl acetate can also enhance the properties of octane in gasoline. It is also

    commonly used in cosmetics, particularly in perfumes and nail polishers. Ethyl acetate is also

    used as artificial fruit essences, fragrance enhancers and artificial flavors in ice creams and cakes

    and in decaffeination of coffee beans and tea leaves. Substantial amounts of ethyl acetate are also

    used in manufacturing polyester and BOPP films used in packaging and in the treatment of

    aluminum foils.

    Other uses of ethyl acetate include its application in the manufacture of artificial leather,

    cleaning fluids, adhesives, photographic films and plates. However, several institutions have

    regulated the use of ethyl acetate because aside from it being a fire hazard, frequent exposure to

    ethyl acetate can cause irritations in the skin, eyes, nose and throat, and sometimes causes

    dizziness and unconsciousness.

    H+

  • 4

    3. The Binary Mixture

    As mentioned before, the ethanol ethyl acetate mixture is a product of the Fischer

    esterification reaction during the production of ethyl acetate. The reaction proceeds at

    approximately 65% yield at room temperature. The reaction is generally reversible so the

    formation of ethyl acetate is favored when a large excess of ethanol is present as a solvent, by the

    The rate of Fischer esterification reaction is very low at low temperatures so in industries,

    this reaction is done by heating under reflux to increase the rate of reaction. But it should be

    made sure that the temperature of the reflux does not exceed the boiling point of ethanol which is

    78.37oC because as it turns into a gas, the reaction will not proceed to higher conversions. The

    resulting mixture which contains the ethanol ethyl acetate mixture can have a temperature

    ranging from room temperature to approximately 70oC depending on the desired treatment after

    the reaction. The reaction is usually done in constant and atmospheric pressures.

    Figure 3.1. A typical Fischer esterification reaction set-up for laboratory scales

    Another industrial use of the ethanol ethyl acetate mixture is in the drug purification

    procedures for a drug called meloxicam. Meloxicam is commonly used a non-steroidal non-

    inflammatory drug and it is also an approved drug used as treatments for osteoarthritis and

    rheumatism. Other studies also claim that meloxicam has an antioxidizing property. The

    solvation of this drug is usually done at temperatures ranging from room temperature to 40oC.

  • 5

    4. Vapor Liquid Equilibrium

    The vapor liquid equilibrium (VLE) is a condition of a mixture containing two phases,

    one is a liquid phase and one vapor phase, in which the two phases are in dynamic equilibrium

    with each other. Dynamic equilibrium is when the rate of evaporation of the volatile components

    towards the vapor phase is equal to the rate of condensation of those components to the liquid

    phase, resulting in a zero rate of accumulation or reduction of the amount of each phase.

    The vapor-liquid equilibrium is a significant subject for many engineering process

    applications. One of the most basic principles used in mixture separation processes is that the

    compositions of each phase in a mixture in equilibrium are different from each other. This

    implies that a particular component in the mixture can favorably be concentrated on one phase

    over the other, thus, separation can be done easily. This principle is useful in a wide variety of

    separation processes, for instance, distillation.

    The vapor pressure is defined as the pressure of the vapor in equilibrium above the liquid.

    It is a measure of how readily the molecules in the liquid phase escape into the vapor phase. The

    most common correlation used in determining the vapor pressure of a pure component is the

    Antoine Equation (which is shown below). Values of the Antoine coefficients are found in

    Appendix B, Table 6.B.2.

    In the Antoine equation, Pvap

    refers to the vapor pressure, T to temperature and A, B and

    C are the Antoine coefficients. The vapor pressure of each component can then be used to

    calculate for the equilibrium pressure of the mixture and from the equilibrium pressure, the

    composition in the vapor phase.

    P refers to the equilibrium pressure of the mixture, xi is the mole fraction of component i,

    is the activity coefficient for the component i and yi is the vapor composition of the

    component i.

    The activity coefficients take into account the nonideal behavior of the mixture. Models

    are used to estimate the values of these activity coefficients at certain conditions. Table 9.11-1 of

    the book, Fourth Edition by

    Stanley I. Sandler, recommends the activity coefficient models suitable for the different types of

    mixtures.

  • 6

    5. Mixt ure Equilibrium Behavior

    The ethanol ethyl acetate mixture is studied at its typical conditions in the industries,

    that is, from 25oC to 70

    oC at atmospheric pressure or 1.013 bar. The HPLC

    by Paul Sadek, ethanol and ethyl acetate are completely miscible with each

    other, with polarity indices of 5.2 and 4.4 respectively (see Appendix B, Figure 6.B.1), so

    therefore the mixture forms a single phase only at atmospheric conditions.

    Ethanol and ethyl acetate are both moderately polar liquids but ethanol is usually

    considered as a strongly polar liquid while ethyl acetate, on the other hand, as a weakly polar

    liquid. According to Fourth

    Edition by Stanley I. Sandler, all of the activity coefficient models give good correlations but

    the UNIQUAC gives the best results for more nonideal mixtures. In this paper, Margules, van

    Laar, Wilson and the UNIFAC (which is based from UNIQUAC) models will be used to predict

    the vapor-liquid equilibrium behavior of the binary mixture of interest.

    The Margules, van Laar and Wilson parameters and the equations for the models were

    abs

    Maloney. It was assumed that the acitivity coefficient model parameters are constant for the

    whole temperature range used in this report since no information about the temperature rang was

    given in the source. The equations of the models are shown below while the parameters used are

    shown in Appendix A, Table 6.B.1. For the UNIFAC Model, the values of the activity

    coefficients were determined using the Modified UNIFAC Software by Stanley I. Sandler.

    Table 5.1. Activity Coefficient Models used in the Report*

    *Abstracted from James O. Maloney, Eighth Edition, 2008.

  • 7

    The P xy Plot

    The first behavior to be estimated is the dependence of the mixture equilibrium to the

    liquid composition of the mixture. The P-xy diagram shows the relationship of the mixture

    equilibrium pressure with the liquid composition and the vapor composition and consequently,

    tells -xy plots at

    different temperatures, 25oC, 40

    oC, 60

    oC and 70

    oC, were constructed separately. P-x and P-y

    plots containing the results of all the models were constructed prior to constructing the P-xy

    diagrams for comparison of the models used. Details about the results of the calculations in

    attaining the P-xy plots are shown in Appendix A.

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    0.17

    0.19

    0.21

    0.23

    0.25

    0.27

    0.29

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    Figure 5.1. P-x diagrams at T = 298.15 K

    Figure 5.2. P-x diagrams at T = 313.15 K

  • 8

    0.46

    0.51

    0.56

    0.61

    0.66

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1

    Ideal

    Margules Model

    Van Laar Model

    0.73

    0.78

    0.83

    0.88

    0.93

    0.98

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1

    Ideal

    Margules Model

    Van Laar Model

    Figure 5.5. P-y diagrams at T = 298.15 K

    Figure 5.3. P-x diagrams at T = 333.15 K

    Figure 5.4. P-x diagrams at T = 343.15 K

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    y1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

  • 9

    0.17

    0.19

    0.21

    0.23

    0.25

    0.27

    0.29

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    y1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    0.46

    0.51

    0.56

    0.61

    0.66

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    y1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    0.73

    0.78

    0.83

    0.88

    0.93

    0.98

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    y1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    Figure 5.6. P-y diagrams at T = 313.15 K

    Figure 5.7. P-y diagrams at T = 333.15 K

    Figure 5.8. P-y diagrams at T = 343.15 K

  • 10

    As seen from Figures 5.1 and 5.2, the models show similar shapes of the curves. All

    models agree that at temperatures from 25oC to 70

    oC, the ethanol ethyl acetate mixture deviates

    Law. This indicates that the binary mixture of interest is a nonideal

    solution because of the nonlinear dependence of mixture equilibrium pressure with the liquid

    composition. In a molecular thermodynamic view, hydrogen bonds are present within like

    molecules however, hydrogen bonds can also form between ethanol and ethyl acetate molecules

    so upon mixing, they attract to each other causing like molecules to break away more easily and

    consequently, translates into an increase in the vapor pressure of the resulting mixture. This

    positive deviation also indicates that mixing ethanol and ethyl acetate is an endothermic process.

    This is also confirmed by the activity coefficients having values greater than 1.

    As can be seen from the diagrams, Wilson and the Modified UNIFAC models display

    different deviations from ideality than Margules and van Laar models. This is because the

    Margules and van Laar models assume completely random mixtures because of the similarity in

    molecular sizes and shape, however, in the molecular level, the ethyl acetate molecule can be

    considered as significantly larger than the ethanol molecules. This difference in sizes is taken

    into account in the Wilson and UNIFAC models and might be the reason why a different

    deviation from ideality is predicted by these models. Another factor is that the parameters are

    generally a function of temperature but for simplicity, it was assumed constant for the

    temperature range except for the Modified UNIFAC Model.

    The following diagrams are the P xy diagrams and will be used to describe further the

    behavior of the ethanol ethyl acetate binary mixture.

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    y1

    x

    y

    Figure 5.9. P-xy diagram at T = 298.15 K using the Margules Model

  • 11

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    Figure 5.10. P-xy diagram at T = 298.15 K using the van Laar Model

    Figure 5.11. P-xy diagram at T = 298.15 K using the Wilson Model

    Figure 5.12. P-xy diagram at T = 298.15 K using the UNIFAC Model

  • 12

    0.17

    0.19

    0.21

    0.23

    0.25

    0.27

    0.29

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.17

    0.19

    0.21

    0.23

    0.25

    0.27

    0.29

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.17

    0.19

    0.21

    0.23

    0.25

    0.27

    0.29

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    Figure 5.13. P-xy diagram at T = 313.15 K using the Margules Model

    Figure 5.14. P-xy diagram at T = 313.15 K using the van Laar Model

    Figure 5.15. P-xy diagram at T = 313.15 K using the Wilson Model

  • 13

    0.46

    0.51

    0.56

    0.61

    0.66

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.46

    0.51

    0.56

    0.61

    0.66

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    Figure 5.17. P-xy diagram at T = 333.15 K using the Margules Model

    0.17

    0.19

    0.21

    0.23

    0.25

    0.27

    0.29

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    Figure 5.18. P-xy diagram at T = 333.15 K using the van Laar Model

    Figure 5.16. P-xy diagram at T = 313.15 K using the Modified UNIFAC Model

  • 14

    0.46

    0.51

    0.56

    0.61

    0.66

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.46

    0.51

    0.56

    0.61

    0.66

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.73

    0.78

    0.83

    0.88

    0.93

    0.98

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    Figure 5.19. P-xy diagram at T = 333.15 K using the Wilson Model

    Figure 5.20. P-xy diagram at T = 333.15 K using the Modified UNIFAC Model

    Figure 5.21. P-xy diagram at T = 343.15 K using the Margules Model

  • 15

    0.73

    0.78

    0.83

    0.88

    0.93

    0.98

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.73

    0.78

    0.83

    0.88

    0.93

    0.98

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    0.73

    0.78

    0.83

    0.88

    0.93

    0.98

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x

    y

    Figure 5.24. P-xy diagram at T = 343.15 K using the UNIFAC Model

    Figure 5.23. P-xy diagram at T = 343.15 K using the van Laar Model

    Figure 5.22. P-xy diagram at T = 343.15 K using the van Laar Model

  • 16

    As seen from the diagrams, the ethanol ethyl acetate mixtures forms an azeotrope at

    certain conditions which is indicated by the maximum pressure in which the P x and P y

    curves converge; the liquid phase has an equal composition with the vapor phase. The azeotropes

    formed are all minimum boiling azeotropes as indicated by the maximum in vapor pressure,

    This is another indication

    that the mixture is nonideal.

    The formation of the azeotrope also indicates that the ethanol ethyl acetate mixture

    cannot be separated through distillation if there is a desired level of purity. This azeotropic

    formation and their very close boiling points explain why the separation of the ethanol ethyl

    acetate binary mixture is of great interest of several researchers. In the industries, the

    conventional ways of separation of these azeotropic mixtures, for example pressure swing

    distillation and extractive distillation, require additional unit operations such as an addition of a

    third component or an entrainer to modify some properties of the mixture, which means a higher

    cost and energy requirement. Newer approaches, such as ultrasonic assisted distillation and

    pervaporation using preferential adsorption, have suggested ways on how to intensify the

    separation process without the expense of a higher cost.

    The following diagrams combine all the P-xy diagrams in one plot for each model to

    show a relationship between the vapor pressure of the mixture and the temperature.

    0.07

    0.17

    0.27

    0.37

    0.47

    0.57

    0.67

    0.77

    0.87

    0.97

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    y at 343.15K

    x at 343.15K

    x at 333.15K

    y at 333.15K

    x at 313.15K

    y at 313.15K

    y at 298.15K

    x at 298.15K

    Figure 5.25. P-xy diagram at different temperatures using the Margules Model

  • 17

    Figure 5.27. P-xy diagram at different temperatures using the Wilson Model

    Figure 5.26. P-xy diagram at different temperatures using the van Laar Model

    0.07

    0.17

    0.27

    0.37

    0.47

    0.57

    0.67

    0.77

    0.87

    0.97

    0.00 0.20 0.40 0.60 0.80 1.00

    P (

    ba

    r)

    x1, y1

    x at 298.15 K

    y at 298.15 K

    x at 313.15 K

    x at 333.15 K

    y at 333.15 K

    y at 313.15 K

    x at 343.15 K

    y at 343.15 K

    0.07

    0.17

    0.27

    0.37

    0.47

    0.57

    0.67

    0.77

    0.87

    0.97

    1.07

    0.00 0.50 1.00

    P (

    ba

    r)

    x1, y1

    z at 343.15

    y at 343.15

    x at 333.15

    y at 333.15

    x at 313.15

    y at 313.15

    x at 298.15

    y at 298.15

  • 18

    As seen from the diagrams, generally, an increase in the temperature increases the vapor

    pressure of the mixture. This must be true because an increase in the temperature would also

    mean an increase in the total kinetic energy of the system, which shifts the equilibrium favoring

    the formation of the vapor phase, the more entropic phase. A change in temperature also changes

    the azeotropic composition. As seen from the diagram, the trend for the azeotropic composition

    is an increasing ethanol composition with increasing temperature. This is because as the

    ease, meaning a larger increase

    in the mixture vapor pressure. This would also imply that increasing the temperature would mean

    a more nonideal behavior for the ethanol ethyl acetate binary mixture.

    0.07

    0.17

    0.27

    0.37

    0.47

    0.57

    0.67

    0.77

    0.87

    0.97

    0.00 0.50 1.00

    P (

    ba

    r)

    x1, y1

    x at 343.15 K

    y at 343.15 K

    x at 333.15 K

    y at 333.15 K

    x at 313.15 K

    y at 313.15 K

    x at 298.15 K

    y at 298.15 K

    Figure 5.28. P-xy diagram at different temperatures using the UNIFAC Model

  • 19

    The y x Plot

    The y-x diagrams indicate how large the difference is between the liquid composition and

    the vapor composition of the mixture. A larger difference between the two compositions would

    mean that it is easier to separate the two components by distillation. This phenomenon was

    explained in part 4 of this paper. Appendix A shows the results of the calculations for the

    construction of the y x plots.

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    x = y

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    x = y

    Figure 5.29. y-x diagram at T = 25oC using the different models

    Figure 5.30. y-x diagram at T = 40oC using the different models

  • 20

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    x = y

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    Ideal

    Margules Model

    Van Laar Model

    Wilson Model

    Modified UNIFAC

    x = y

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    298.15

    313.15

    333.15

    343.15 K

    x = y

    Figure 5.31. y-x diagram at T = 60oC using the different models

    Figure 5.32. y-x diagram at T = 70oC using the different models

    Figure 5.33. y-x diagram at different temperatures using the Margules model

  • 21

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    298.15 K

    313.15 K

    333.15 K

    343.15 K

    x = y

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    298.15 K

    313.15 K

    333.15 K

    343.15 K

    x = y

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    0.000 0.200 0.400 0.600 0.800 1.000

    y 1

    x1

    298.15 K

    313.15 K

    333.15 K

    343.15 K

    x = y

    Figure 5.34. y-x diagram at different temperatures using the van Laar model

    Figure 5.35. y-x diagram at different temperatures using the Wilson model

    Figure 5.36. y-x diagram at different temperatures using the Modified UNIFAC

    model

  • 22

    As seen from figures 5.29 to 5.32, all of the models show similar results at all

    temperatures. The formation of an azeotrope in the ethanol ethyl acetate is confirmed by the y-

    x diagram at the point when the y line intersects with the x line. This diagram indicates whether

    the mixture is separable by distillation because of the difference in the liquid and vapor

    composition. There is a point when the liquid and vapor composition is equal so this confirms

    further that the ethanol ethyl acetate mixture cannot be separated by distillation.

    As seen from figures 5.33 to 5.36, all the models agree that as the temperature decreases,

    the azeotrope that forms becomes richer in ethyl acetate. This agrees with the previous

    interpretations of the P xy diagrams. This changing of the azeotropic composition is caused by

    their vapor pressures to the temperature is different, forming different azeotropic compositions at

    different temperatures.

    The T xy Plot

    The T xy diagram shows the dependency relationship between the liquid and vapor

    compositions with the temperature of the mixture, at a constant pressure. Diagrams for constant

    pressure of 1.01325 bar are constructed in this paper because the mixture is usually encountered

    at atmospheric conditions in the industries. The binary mixture of the ethanol ethyl acetate was

    modeled in terms of the T xy plot using the four models used in the previous sections. The

    results of the calculations are shown in Appendix A.

    71.00

    72.00

    73.00

    74.00

    75.00

    76.00

    77.00

    78.00

    79.00

    0.00 0.20 0.40 0.60 0.80 1.00

    T (

    C)

    x1, y1

    x

    y

    Figure 5.37. T-xy diagram at P = 1.01325 using the Margules Model

  • 23

    72.00

    73.00

    74.00

    75.00

    76.00

    77.00

    78.00

    79.00

    0.00 0.20 0.40 0.60 0.80 1.00

    T (

    C)

    x1, y1

    x

    y

    71.00

    72.00

    73.00

    74.00

    75.00

    76.00

    77.00

    78.00

    79.00

    0.00 0.20 0.40 0.60 0.80 1.00

    T (

    C)

    x1, y1

    x

    y

    72.00

    73.00

    74.00

    75.00

    76.00

    77.00

    78.00

    79.00

    0.00 0.20 0.40 0.60 0.80 1.00

    T (

    C)

    x1, y1

    x

    y

    Figure 5.38. T-xy diagram at P = 1.01325 using the van Laar Model

    Figure 5.39. T-xy diagram at P = 1.01325 using the Wilson Model

    Figure 5.40. T-xy diagram at P = 1.01325 using the UNIFAC Model

  • 24

    As can be seen from the graphs, all of the models agree that a minimum boiling azeotrope

    forms for the ethanol ethyl acetate binary mixture. This coincides with the interpretations in the

    previous sections. It can be noticed that the T xy diagrams look the same with the P xy

    diagrams at constant temperature of 343.15 K, just turned upside down. The T xy diagram

    confirms that a maximum in mixture equilibrium pressure forms a minimum in temperature at

    approximately similar composition in the P xy diagram. The purpose of the T x diagram as

    shown in Figure 5.41 is to show the preciseness of the estimates of the models used. Margules,

    van Laar and the UNIFAC models have very close estimates while the estimate of the Wilson

    model varies from the other three models. For the construction of the T xy diagram using the

    UNIFAC model, the activity coefficients used are the computed values at 343.15 K. It was

    assumed that the activity coefficients were constant at the temperature range predicted by the

    previous models since the range was not that high.

    For the purpose of investigation of the effect of pressure, a pressure of 2 bar was chosen

    and T xy diagrams were constructed and were compared to the T xy diagrams at P = 1.01325

    bar. Figure 5.42 shows the T xy diagram of the ethanol ethyl acetate system at 1.01325 bar

    and 2 bar.

    As seen from Figure 5.42, all the models agree that an increase in temperature means an

    increase in the mixture equilibrium temperature. It can also be noticed that a lower pressure

    favors the formation of an azeotrope that is richer in ethyl acetate.

    71.00

    72.00

    73.00

    74.00

    75.00

    76.00

    77.00

    78.00

    79.00

    0.00 0.20 0.40 0.60 0.80 1.00

    T (

    C)

    x1

    x - Margules

    x - van Laar

    x - Wilson

    x - Modified UNIFAC

    Figure 5.41. T x curves at P = 1.01325 using all the models

  • 25

    Figure 5.42. T xy curves at P = 1.01325 and P = 2 bar using (a) Margules Model, (b)

    van Laar Model, (c) Wilson Model, and (d) UNIFAC Model

  • 26

    6. APPENDIX

  • 27

    APPENDIX A Results of the VLE Calculations

    Table 6.A.1. Results of P xy and y x calculations using the Margules Model

    x1 25oC 40oC 60oC 70oC

    P (bar) y1 P(bar) y1 P(bar) y1 P (bar) y1

    0.0000 2.1119 1.0000 0.1261 0.0000 0.2506 0.0000 0.5579 0.0000 0.7892 0.0000

    0.0250 2.0459 1.0004 0.1270 0.0318 0.2536 0.0361 0.5682 0.0423 0.8078 0.0470

    0.0500 1.9827 1.0016 0.1278 0.0612 0.2562 0.0693 0.5775 0.0807 0.8246 0.0893

    0.0750 1.9223 1.0037 0.1284 0.0886 0.2585 0.0999 0.5857 0.1157 0.8398 0.1275

    0.1000 1.8646 1.0066 0.1290 0.1141 0.2605 0.1283 0.5931 0.1478 0.8535 0.1623

    0.1250 1.8095 1.0105 0.1293 0.1380 0.2621 0.1546 0.5996 0.1773 0.8658 0.1941

    0.1500 1.7569 1.0152 0.1296 0.1604 0.2635 0.1792 0.6053 0.2046 0.8768 0.2233

    0.1750 1.7067 1.0210 0.1298 0.1816 0.2646 0.2023 0.6103 0.2300 0.8866 0.2503

    0.2000 1.6589 1.0277 0.1298 0.2016 0.2655 0.2239 0.6146 0.2537 0.8953 0.2753

    0.2250 1.6132 1.0355 0.1298 0.2206 0.2661 0.2444 0.6183 0.2759 0.9030 0.2986

    0.2500 1.5698 1.0443 0.1297 0.2387 0.2666 0.2638 0.6214 0.2968 0.9097 0.3205

    0.2750 1.5284 1.0543 0.1295 0.2560 0.2669 0.2822 0.6240 0.3166 0.9155 0.3411

    0.3000 1.4890 1.0654 0.1293 0.2726 0.2669 0.2999 0.6260 0.3354 0.9204 0.3605

    0.3250 1.4516 1.0779 0.1290 0.2886 0.2669 0.3168 0.6276 0.3533 0.9247 0.3790

    0.3500 1.4160 1.0916 0.1286 0.3041 0.2666 0.3331 0.6288 0.3705 0.9281 0.3967

    0.3750 1.3822 1.1066 0.1281 0.3192 0.2662 0.3489 0.6295 0.3870 0.9309 0.4136

    0.4000 1.3502 1.1232 0.1276 0.3340 0.2657 0.3643 0.6298 0.4030 0.9331 0.4300

    0.4250 1.3199 1.1412 0.1270 0.3485 0.2650 0.3794 0.6297 0.4187 0.9346 0.4459

    0.4500 1.2912 1.1609 0.1264 0.3628 0.2641 0.3942 0.6293 0.4340 0.9356 0.4614

    0.4750 1.2641 1.1823 0.1256 0.3771 0.2631 0.4089 0.6285 0.4490 0.9359 0.4766

    0.5000 1.2385 1.2055 0.1249 0.3913 0.2620 0.4235 0.6273 0.4640 0.9357 0.4916

    0.5250 1.2144 1.2307 0.1240 0.4056 0.2607 0.4382 0.6258 0.4789 0.9350 0.5066

    0.5500 1.1918 1.2579 0.1231 0.4201 0.2593 0.4530 0.6239 0.4938 0.9337 0.5216

    0.5750 1.1706 1.2873 0.1221 0.4350 0.2577 0.4680 0.6216 0.5089 0.9318 0.5366

    0.6000 1.1507 1.3191 0.1210 0.4502 0.2559 0.4834 0.6189 0.5243 0.9293 0.5519

    0.6250 1.1322 1.3534 0.1198 0.4659 0.2540 0.4993 0.6157 0.5401 0.9262 0.5676

    0.6500 1.1149 1.3904 0.1185 0.4824 0.2518 0.5157 0.6121 0.5565 0.9224 0.5837

    0.6750 1.0990 1.4303 0.1171 0.4996 0.2494 0.5330 0.6080 0.5735 0.9179 0.6004

    0.7000 1.0843 1.4733 0.1156 0.5179 0.2468 0.5512 0.6033 0.5913 0.9127 0.6178

    0.7250 1.0708 1.5197 0.1140 0.5375 0.2438 0.5705 0.5980 0.6101 0.9066 0.6362

    0.7500 1.0585 1.5698 0.1121 0.5586 0.2406 0.5913 0.5921 0.6302 0.8995 0.6557

    0.7750 1.0474 1.6237 0.1101 0.5816 0.2370 0.6137 0.5853 0.6518 0.8914 0.6765

    0.8000 1.0375 1.6820 0.1079 0.6069 0.2330 0.6383 0.5778 0.6752 0.8821 0.6990

    0.8250 1.0288 1.7448 0.1055 0.6349 0.2286 0.6653 0.5693 0.7007 0.8715 0.7235

    0.8500 1.0212 1.8127 0.1028 0.6664 0.2237 0.6954 0.5597 0.7289 0.8594 0.7503

    0.8750 1.0147 1.8860 0.0998 0.7021 0.2182 0.7292 0.5488 0.7604 0.8457 0.7800

    0.9000 1.0095 1.9652 0.0965 0.7431 0.2121 0.7678 0.5366 0.7957 0.8300 0.8131

    0.9250 1.0053 2.0509 0.0928 0.7909 0.2052 0.8121 0.5229 0.8359 0.8122 0.8505

    0.9500 1.0024 2.1437 0.0886 0.8475 0.1975 0.8640 0.5074 0.8821 0.7920 0.8932

    0.9750 1.0006 2.2441 0.0840 0.9158 0.1889 0.9256 0.4898 0.9361 0.7690 0.9424

    1.0000 1.0000 2.3530 0.0789 1.0000 0.1792 1.0000 0.4700 1.0000 0.7429 1.0000

  • 28

    Table 6.A.2. Results of P xy and y x calculations using the van Laar Model

    x1 25oC 40oC 60oC 70oC

    P (bar) y1 P(bar) y1 P(bar) y1 P (bar) y1

    0.0000 2.1119 1.0000 0.1261 0.0000 0.2506 0.0000 0.5579 0.0000 0.7892 0.0000

    0.0250 2.0446 1.0004 0.1270 0.0317 0.2536 0.0361 0.5682 0.0423 0.8078 0.0470

    0.0500 1.9804 1.0017 0.1278 0.0611 0.2562 0.0693 0.5774 0.0806 0.8245 0.0892

    0.0750 1.9193 1.0038 0.1284 0.0884 0.2585 0.0998 0.5856 0.1155 0.8397 0.1274

    0.1000 1.8611 1.0067 0.1289 0.1139 0.2604 0.1281 0.5930 0.1475 0.8533 0.1620

    0.1250 1.8056 1.0106 0.1293 0.1377 0.2620 0.1543 0.5994 0.1770 0.8655 0.1937

    0.1500 1.7528 1.0154 0.1296 0.1601 0.2634 0.1789 0.6051 0.2042 0.8765 0.2229

    0.1750 1.7025 1.0211 0.1297 0.1812 0.2645 0.2019 0.6100 0.2295 0.8862 0.2498

    0.2000 1.6547 1.0279 0.1298 0.2012 0.2654 0.2235 0.6143 0.2532 0.8948 0.2747

    0.2250 1.6091 1.0356 0.1298 0.2201 0.2660 0.2439 0.6180 0.2754 0.9024 0.2981

    0.2500 1.5658 1.0445 0.1297 0.2382 0.2665 0.2633 0.6210 0.2963 0.9090 0.3199

    0.2750 1.5246 1.0544 0.1295 0.2555 0.2667 0.2817 0.6236 0.3160 0.9148 0.3405

    0.3000 1.4855 1.0656 0.1292 0.2721 0.2668 0.2993 0.6256 0.3348 0.9197 0.3600

    0.3250 1.4483 1.0779 0.1289 0.2881 0.2667 0.3163 0.6272 0.3528 0.9239 0.3785

    0.3500 1.4131 1.0915 0.1285 0.3037 0.2664 0.3327 0.6283 0.3700 0.9274 0.3962

    0.3750 1.3796 1.1065 0.1280 0.3188 0.2660 0.3485 0.6290 0.3866 0.9301 0.4132

    0.4000 1.3479 1.1229 0.1275 0.3336 0.2655 0.3640 0.6293 0.4027 0.9323 0.4296

    0.4250 1.3179 1.1408 0.1269 0.3482 0.2648 0.3791 0.6292 0.4184 0.9338 0.4456

    0.4500 1.2895 1.1603 0.1263 0.3626 0.2639 0.3940 0.6288 0.4337 0.9347 0.4612

    0.4750 1.2626 1.1815 0.1255 0.3769 0.2629 0.4088 0.6279 0.4489 0.9351 0.4765

    0.5000 1.2373 1.2045 0.1248 0.3913 0.2618 0.4235 0.6268 0.4639 0.9349 0.4916

    0.5250 1.2135 1.2294 0.1239 0.4057 0.2605 0.4382 0.6252 0.4789 0.9341 0.5067

    0.5500 1.1911 1.2563 0.1230 0.4203 0.2591 0.4531 0.6233 0.4940 0.9328 0.5217

    0.5750 1.1700 1.2854 0.1220 0.4352 0.2575 0.4683 0.6210 0.5092 0.9309 0.5369

    0.6000 1.1503 1.3169 0.1209 0.4505 0.2557 0.4837 0.6183 0.5247 0.9285 0.5522

    0.6250 1.1319 1.3509 0.1197 0.4663 0.2537 0.4997 0.6151 0.5405 0.9254 0.5680

    0.6500 1.1148 1.3876 0.1184 0.4828 0.2516 0.5162 0.6115 0.5569 0.9216 0.5841

    0.6750 1.0990 1.4271 0.1170 0.5002 0.2492 0.5335 0.6074 0.5740 0.9171 0.6009

    0.7000 1.0843 1.4698 0.1155 0.5185 0.2465 0.5518 0.6028 0.5919 0.9119 0.6184

    0.7250 1.0709 1.5159 0.1138 0.5382 0.2436 0.5711 0.5975 0.6107 0.9058 0.6368

    0.7500 1.0587 1.5657 0.1120 0.5593 0.2404 0.5919 0.5916 0.6308 0.8988 0.6563

    0.7750 1.0476 1.6194 0.1100 0.5823 0.2368 0.6144 0.5849 0.6524 0.8907 0.6772

    0.8000 1.0377 1.6775 0.1078 0.6076 0.2328 0.6389 0.5773 0.6758 0.8815 0.6996

    0.8250 1.0289 1.7402 0.1054 0.6356 0.2284 0.6659 0.5689 0.7013 0.8710 0.7241

    0.8500 1.0213 1.8081 0.1027 0.6670 0.2235 0.6959 0.5593 0.7295 0.8590 0.7508

    0.8750 1.0149 1.8815 0.0997 0.7026 0.2181 0.7297 0.5486 0.7608 0.8453 0.7804

    0.9000 1.0096 1.9611 0.0964 0.7435 0.2120 0.7681 0.5365 0.7961 0.8298 0.8135

    0.9250 1.0054 2.0473 0.0927 0.7912 0.2051 0.8124 0.5228 0.8361 0.8121 0.8508

    0.9500 1.0024 2.1409 0.0886 0.8477 0.1975 0.8642 0.5073 0.8823 0.7919 0.8933

    0.9750 1.0006 2.2425 0.0840 0.9159 0.1889 0.9256 0.4898 0.9361 0.7690 0.9425

    1.0000 1.0000 2.3530 0.0789 1.0000 0.1792 1.0000 0.4700 1.0000 0.7429 1.0000

  • 29

    Table 6.A.3. Results of P xy and y x calculations using the Wilson Model

    x1 25oC 40oC 60oC 70oC

    P (bar) y1 P(bar) y1 P(bar) y1 P (bar) y1

    0.0000 2.5160 1.0000 0.1261 0.0000 0.2506 0.0000 0.5579 0.0000 0.7892 0.0000

    0.0250 2.4022 1.0006 0.1278 0.0371 0.2552 0.0422 0.5725 0.0493 0.8145 0.0548

    0.0500 2.2970 1.0023 0.1291 0.0702 0.2592 0.0794 0.5852 0.0922 0.8368 0.1020

    0.0750 2.1995 1.0052 0.1303 0.0999 0.2626 0.1126 0.5963 0.1300 0.8564 0.1431

    0.1000 2.1092 1.0093 0.1312 0.1269 0.2654 0.1424 0.6059 0.1636 0.8736 0.1794

    0.1250 2.0253 1.0145 0.1319 0.1514 0.2678 0.1694 0.6142 0.1937 0.8886 0.2116

    0.1500 1.9474 1.0209 0.1325 0.1740 0.2698 0.1940 0.6214 0.2209 0.9018 0.2406

    0.1750 1.8749 1.0284 0.1329 0.1948 0.2714 0.2166 0.6275 0.2457 0.9133 0.2669

    0.2000 1.8073 1.0371 0.1331 0.2142 0.2727 0.2375 0.6328 0.2685 0.9233 0.2908

    0.2250 1.7443 1.0471 0.1333 0.2323 0.2737 0.2570 0.6372 0.2895 0.9320 0.3128

    0.2500 1.6856 1.0584 0.1333 0.2493 0.2744 0.2752 0.6409 0.3090 0.9395 0.3332

    0.2750 1.6307 1.0709 0.1333 0.2655 0.2749 0.2923 0.6439 0.3273 0.9459 0.3522

    0.3000 1.5794 1.0848 0.1331 0.2808 0.2752 0.3085 0.6463 0.3446 0.9513 0.3700

    0.3250 1.5315 1.1001 0.1329 0.2955 0.2753 0.3240 0.6482 0.3609 0.9558 0.3869

    0.3500 1.4867 1.1169 0.1326 0.3096 0.2752 0.3389 0.6496 0.3765 0.9595 0.4029

    0.3750 1.4448 1.1352 0.1322 0.3233 0.2749 0.3532 0.6505 0.3915 0.9624 0.4182

    0.4000 1.4056 1.1551 0.1318 0.3367 0.2744 0.3671 0.6509 0.4060 0.9646 0.4330

    0.4250 1.3689 1.1768 0.1312 0.3498 0.2738 0.3807 0.6509 0.4201 0.9662 0.4473

    0.4500 1.3345 1.2002 0.1306 0.3627 0.2730 0.3941 0.6505 0.4339 0.9671 0.4613

    0.4750 1.3024 1.2256 0.1300 0.3756 0.2721 0.4074 0.6498 0.4475 0.9674 0.4751

    0.5000 1.2724 1.2531 0.1292 0.3885 0.2710 0.4207 0.6486 0.4610 0.9671 0.4887

    0.5250 1.2444 1.2828 0.1284 0.4015 0.2698 0.4340 0.6470 0.4746 0.9662 0.5023

    0.5500 1.2182 1.3149 0.1275 0.4147 0.2684 0.4474 0.6450 0.4882 0.9647 0.5160

    0.5750 1.1938 1.3495 0.1265 0.4282 0.2667 0.4612 0.6426 0.5021 0.9626 0.5298

    0.6000 1.1711 1.3869 0.1254 0.4421 0.2649 0.4753 0.6398 0.5162 0.9599 0.5439

    0.6250 1.1501 1.4273 0.1242 0.4566 0.2629 0.4899 0.6365 0.5308 0.9564 0.5583

    0.6500 1.1305 1.4710 0.1229 0.4718 0.2607 0.5051 0.6326 0.5460 0.9522 0.5733

    0.6750 1.1125 1.5182 0.1215 0.4878 0.2582 0.5211 0.6282 0.5618 0.9473 0.5889

    0.7000 1.0959 1.5692 0.1199 0.5048 0.2554 0.5382 0.6232 0.5786 0.9414 0.6054

    0.7250 1.0807 1.6245 0.1182 0.5232 0.2524 0.5564 0.6175 0.5964 0.9346 0.6228

    0.7500 1.0668 1.6845 0.1162 0.5431 0.2489 0.5760 0.6110 0.6155 0.9268 0.6414

    0.7750 1.0543 1.7496 0.1141 0.5650 0.2451 0.5975 0.6037 0.6362 0.9177 0.6615

    0.8000 1.0431 1.8203 0.1117 0.5892 0.2408 0.6211 0.5953 0.6588 0.9073 0.6833

    0.8250 1.0332 1.8974 0.1091 0.6163 0.2360 0.6473 0.5859 0.6838 0.8953 0.7073

    0.8500 1.0245 1.9814 0.1062 0.6471 0.2305 0.6769 0.5751 0.7117 0.8815 0.7339

    0.8750 1.0172 2.0732 0.1029 0.6824 0.2244 0.7106 0.5629 0.7431 0.8657 0.7638

    0.9000 1.0111 2.1737 0.0992 0.7237 0.2175 0.7496 0.5490 0.7791 0.8476 0.7976

    0.9250 1.0063 2.2840 0.0950 0.7727 0.2097 0.7953 0.5331 0.8207 0.8267 0.8365

    0.9500 1.0028 2.4053 0.0903 0.8321 0.2009 0.8500 0.5149 0.8697 0.8027 0.8818

    0.9750 1.0007 2.5391 0.0850 0.9058 0.1908 0.9166 0.4940 0.9283 0.7749 0.9354

    1.0000 1.0000 2.6870 0.0789 1.0000 0.1792 1.0000 0.4700 1.0000 0.7429 1.0000

  • 30

    Table 6.A.4. Results of P xy and y x calculations at 25oC and 40oC using the UNIFAC Model

    x1 25oC 40oC

    P (bar) y1 P (bar) y1

    0.0000 2.8974 1.0000 0.1261 0.0000 2.5390 1.0000 0.2506 0.0000

    0.0250 2.7379 1.0007 0.1284 0.0420 2.4213 1.0006 0.2553 0.0425

    0.0500 2.5921 1.0029 0.1304 0.0784 2.3124 1.0024 0.2594 0.0799

    0.0750 2.4588 1.0064 0.1319 0.1103 2.2113 1.0054 0.2628 0.1131

    0.1000 2.3366 1.0113 0.1332 0.1384 2.1176 1.0096 0.2657 0.1428

    0.1250 2.2245 1.0176 0.1342 0.1635 2.0350 1.0150 0.2681 0.1700

    0.1500 2.1214 1.0254 0.1350 0.1860 1.9496 1.0216 0.2700 0.1941

    0.1750 2.0266 1.0345 0.1356 0.2064 1.8743 1.0294 0.2716 0.2164

    0.2000 1.9392 1.0451 0.1360 0.2250 1.8042 1.0385 0.2729 0.2370

    0.2250 1.8587 1.0571 0.1363 0.2421 1.7390 1.0489 0.2738 0.2561

    0.2500 1.7843 1.0706 0.1364 0.2579 1.6782 1.0605 0.2745 0.2739

    0.2750 1.7156 1.0857 0.1365 0.2727 1.6216 1.0736 0.2750 0.2906

    0.3000 1.6520 1.1024 0.1364 0.2867 1.5688 1.0880 0.2752 0.3065

    0.3250 1.5932 1.1207 0.1362 0.2999 1.5196 1.1039 0.2752 0.3216

    0.3500 1.5388 1.1407 0.1360 0.3125 1.4737 1.1213 0.2751 0.3360

    0.3750 1.4884 1.1625 0.1357 0.3246 1.4309 1.1402 0.2747 0.3500

    0.4000 1.4418 1.1862 0.1353 0.3364 1.3911 1.1608 0.2743 0.3636

    0.4250 1.3985 1.2118 0.1348 0.3480 1.3539 1.1830 0.2736 0.3769

    0.4500 1.3585 1.2395 0.1342 0.3594 1.3193 1.2071 0.2728 0.3900

    0.4750 1.3215 1.2693 0.1336 0.3708 1.2871 1.2330 0.2718 0.4031

    0.5000 1.2872 1.3014 0.1328 0.3823 1.2572 1.2610 0.2706 0.4162

    0.5250 1.2555 1.3360 0.1320 0.3939 1.2294 1.2910 0.2693 0.4294

    0.5500 1.2262 1.3731 0.1311 0.4058 1.2036 1.3232 0.2678 0.4429

    0.5750 1.1992 1.4130 0.1301 0.4181 1.1797 1.3578 0.2662 0.4567

    0.6000 1.1744 1.4557 0.1290 0.4309 1.1576 1.3948 0.2643 0.4710

    0.6250 1.1516 1.5016 0.1278 0.4444 1.1372 1.4345 0.2622 0.4858

    0.6500 1.1307 1.5508 0.1264 0.4586 1.1185 1.4769 0.2598 0.5014

    0.6750 1.1116 1.6035 0.1249 0.4739 1.1014 1.5224 0.2572 0.5179

    0.7000 1.0942 1.6599 0.1232 0.4904 1.0857 1.5710 0.2543 0.5356

    0.7250 1.0785 1.7205 0.1214 0.5084 1.0716 1.6231 0.2511 0.5545

    0.7500 1.0644 1.7853 0.1193 0.5281 1.0588 1.6787 0.2475 0.5750

    0.7750 1.0518 1.8549 0.1169 0.5500 1.0473 1.7383 0.2435 0.5974

    0.8000 1.0407 1.9295 0.1144 0.5745 1.0372 1.8020 0.2390 0.6221

    0.8250 1.0310 2.0094 0.1115 0.6021 1.0284 1.8702 0.2341 0.6496

    0.8500 1.0226 2.0952 0.1082 0.6338 1.0208 1.9431 0.2285 0.6804

    0.8750 1.0157 2.1973 0.1048 0.6694 1.0144 2.0212 0.2224 0.7153

    0.9000 1.0100 2.2861 0.1005 0.7133 1.0092 2.1048 0.2155 0.7552

    0.9250 1.0056 2.3922 0.0960 0.7644 1.0051 2.1943 0.2078 0.8016

    0.9500 1.0025 2.5063 0.0909 0.8262 1.0023 2.2902 0.1993 0.8560

    0.9750 1.0006 2.6288 0.0853 0.9028 1.0006 2.3930 0.1898 0.9210

    1.0000 1.0000 2.7605 0.0789 1.0000 1.0000 2.5031 0.1792 1.0000

  • 31

    Table 6.A.5. Results of P xy and y x calculations at 60oC and 70oC using the UNIFAC Model

    x1 60oC 70oC

    P (bar) y1 P (bar) y1

    1.0000 2.1971 1.0000 0.5579 0.0000 2.0679 1.0000 0.7892 0.0000

    1.0007 2.1155 1.0050 0.5715 0.0435 1.9987 1.0004 0.8069 0.0460

    1.0029 2.0388 1.0019 0.5789 0.0828 1.9333 1.0017 0.8228 0.0873

    1.0064 1.9667 1.0043 0.5876 0.1180 1.8714 1.0039 0.8371 0.1246

    1.0113 1.8988 1.0077 0.5952 0.1499 1.8128 1.0070 0.8499 0.1585

    1.0176 1.8349 1.0121 0.6019 0.1791 1.7574 1.0109 0.8613 0.1895

    1.0254 1.7748 1.0175 0.6076 0.2059 1.7050 1.0158 0.8714 0.2180

    1.0345 1.7182 1.0239 0.6126 0.2307 1.6555 1.0217 0.8804 0.2445

    1.0451 1.6649 1.0314 0.6168 0.2537 1.6086 1.0285 0.8884 0.2690

    1.0571 1.6148 1.0399 0.6204 0.2753 1.5642 1.0363 0.8953 0.2920

    1.0706 1.5676 1.0496 0.6234 0.2955 1.5222 1.0451 0.9013 0.3137

    1.0857 1.5231 1.0604 0.6258 0.3146 1.4826 1.0549 0.9065 0.3341

    1.1024 1.4813 1.0724 0.6277 0.3328 1.4451 1.0659 0.9109 0.3536

    1.1207 1.4419 1.0856 0.6291 0.3501 1.4096 1.0780 0.9146 0.3721

    1.1407 1.4049 1.1001 0.6300 0.3668 1.3762 1.0913 0.9176 0.3899

    1.1625 1.3701 1.1159 0.6306 0.3829 1.3446 1.1058 0.9200 0.4072

    1.1862 1.3374 1.1331 0.6307 0.3986 1.3148 1.1216 0.9218 0.4238

    1.2118 1.3066 1.1517 0.6305 0.4140 1.2867 1.1387 0.9230 0.4402

    1.2395 1.2778 1.1719 0.6298 0.4291 1.2603 1.1572 0.9236 0.4562

    1.2693 1.2508 1.1936 0.6288 0.4441 1.2355 1.1772 0.9237 0.4720

    1.3014 1.2255 1.2170 0.6275 0.4590 1.2121 1.1988 0.9233 0.4876

    1.3360 1.2019 1.2422 0.6258 0.4739 1.1902 1.2219 0.9223 0.5033

    1.3731 1.1798 1.2693 0.6236 0.4890 1.1697 1.2469 0.9208 0.5191

    1.4130 1.1592 1.2983 0.6211 0.5044 1.1506 1.2736 0.9187 0.5350

    1.4557 1.1401 1.3294 0.6182 0.5201 1.1327 1.3023 0.9160 0.5512

    1.5016 1.1224 1.3627 0.6148 0.5363 1.1162 1.3330 0.9128 0.5678

    1.5508 1.1060 1.3984 0.6109 0.5531 1.1008 1.3659 0.9088 0.5849

    1.6035 1.0910 1.4365 0.6066 0.5706 1.0866 1.4011 0.9043 0.6026

    1.6599 1.0772 1.4774 0.6017 0.5890 1.0736 1.4388 0.8990 0.6211

    1.7205 1.0646 1.5210 0.5961 0.6085 1.0617 1.4791 0.8928 0.6405

    1.7853 1.0532 1.5677 0.5899 0.6293 1.0509 1.5223 0.8859 0.6610

    1.8549 1.0429 1.6176 0.5829 0.6517 1.0411 1.5684 0.8779 0.6828

    1.9295 1.0338 1.6710 0.5752 0.6758 1.0325 1.6178 0.8690 0.7061

    2.0094 1.0259 1.7281 0.5665 0.7022 1.0248 1.6706 0.8588 0.7313

    2.0952 1.0190 1.7892 0.5568 0.7311 1.0182 1.7271 0.8474 0.7587

    2.1973 1.0132 1.8546 0.5460 0.7631 1.0127 1.7876 0.8346 0.7887

    2.2861 1.0084 1.9245 0.5339 0.7989 1.0081 1.8523 0.8202 0.8218

    2.3922 1.0047 1.9994 0.5205 0.8393 1.0046 1.9217 0.8041 0.8585

    2.5063 1.0021 2.0795 0.5054 0.8852 1.0020 1.9960 0.7859 0.8998

    2.6288 1.0005 2.1654 0.4887 0.9382 1.0005 2.0757 0.7656 0.9465

    2.7605 1.0000 2.2575 0.4700 1.0000 1.0000 2.1611 0.7429 1.0000

  • 32

    Table 6.A.5. Results of P xy and y x calculations for ideal solutions

    x1 25oC 40oC 60oC 70oC

    P (bar) y1 P(bar) y1 P(bar) y1 P (bar) y1

    0.0000 0.1261 0.0000 0.2506 0.0000 0.5579 0.0000 0.7892 0.0000

    0.0250 0.1249 0.0158 0.2488 0.0180 0.5557 0.0211 0.7880 0.0236

    0.0500 0.1237 0.0319 0.2470 0.0363 0.5535 0.0425 0.7869 0.0472

    0.0750 0.1226 0.0483 0.2452 0.0548 0.5513 0.0639 0.7857 0.0709

    0.1000 0.1214 0.0650 0.2435 0.0736 0.5491 0.0856 0.7846 0.0947

    0.1250 0.1202 0.0821 0.2417 0.0927 0.5469 0.1074 0.7834 0.1185

    0.1500 0.1190 0.0994 0.2399 0.1121 0.5447 0.1294 0.7823 0.1425

    0.1750 0.1178 0.1172 0.2381 0.1317 0.5425 0.1516 0.7811 0.1664

    0.2000 0.1167 0.1353 0.2363 0.1517 0.5403 0.1740 0.7799 0.1905

    0.2250 0.1155 0.1537 0.2345 0.1719 0.5381 0.1965 0.7788 0.2146

    0.2500 0.1143 0.1726 0.2328 0.1925 0.5359 0.2192 0.7776 0.2388

    0.2750 0.1131 0.1918 0.2310 0.2134 0.5337 0.2422 0.7765 0.2631

    0.3000 0.1119 0.2115 0.2292 0.2346 0.5315 0.2653 0.7753 0.2875

    0.3250 0.1108 0.2315 0.2274 0.2561 0.5293 0.2886 0.7742 0.3119

    0.3500 0.1096 0.2520 0.2256 0.2780 0.5271 0.3121 0.7730 0.3364

    0.3750 0.1084 0.2729 0.2238 0.3002 0.5249 0.3358 0.7718 0.3609

    0.4000 0.1072 0.2943 0.2220 0.3228 0.5227 0.3596 0.7707 0.3856

    0.4250 0.1060 0.3162 0.2203 0.3458 0.5205 0.3837 0.7695 0.4103

    0.4500 0.1049 0.3386 0.2185 0.3691 0.5183 0.4080 0.7684 0.4351

    0.4750 0.1037 0.3615 0.2167 0.3928 0.5161 0.4325 0.7672 0.4600

    0.5000 0.1025 0.3849 0.2149 0.4169 0.5140 0.4572 0.7661 0.4849

    0.5250 0.1013 0.4088 0.2131 0.4415 0.5118 0.4822 0.7649 0.5099

    0.5500 0.1001 0.4333 0.2113 0.4664 0.5096 0.5073 0.7637 0.5350

    0.5750 0.0990 0.4584 0.2095 0.4917 0.5074 0.5327 0.7626 0.5602

    0.6000 0.0978 0.4841 0.2078 0.5175 0.5052 0.5582 0.7614 0.5854

    0.6250 0.0966 0.5105 0.2060 0.5438 0.5030 0.5840 0.7603 0.6107

    0.6500 0.0954 0.5375 0.2042 0.5704 0.5008 0.6101 0.7591 0.6361

    0.6750 0.0942 0.5651 0.2024 0.5976 0.4986 0.6363 0.7579 0.6616

    0.7000 0.0931 0.5935 0.2006 0.6253 0.4964 0.6628 0.7568 0.6872

    0.7250 0.0919 0.6226 0.1988 0.6534 0.4942 0.6895 0.7556 0.7128

    0.7500 0.0907 0.6524 0.1971 0.6821 0.4920 0.7165 0.7545 0.7385

    0.7750 0.0895 0.6831 0.1953 0.7112 0.4898 0.7437 0.7533 0.7643

    0.8000 0.0883 0.7145 0.1935 0.7410 0.4876 0.7712 0.7522 0.7902

    0.8250 0.0872 0.7468 0.1917 0.7712 0.4854 0.7989 0.7510 0.8161

    0.8500 0.0860 0.7800 0.1899 0.8021 0.4832 0.8268 0.7498 0.8421

    0.8750 0.0848 0.8141 0.1881 0.8335 0.4810 0.8550 0.7487 0.8682

    0.9000 0.0836 0.8492 0.1863 0.8655 0.4788 0.8835 0.7475 0.8944

    0.9250 0.0824 0.8853 0.1846 0.8982 0.4766 0.9122 0.7464 0.9207

    0.9500 0.0813 0.9224 0.1828 0.9314 0.4744 0.9412 0.7452 0.9470

    0.9750 0.0801 0.9606 0.1810 0.9654 0.4722 0.9705 0.7441 0.9735

    1.0000 0.0789 1.0000 0.1792 1.0000 0.4700 1.0000 0.7429 1.0000

  • 33

    Table 6.A.6. Results of T xy calculations at P = 1.01325 bar using the Margules Model

    x1 T (C) y1

    0.0000 2.1119 1.0000 77.0629 0.9647 1.0132 0.0000

    0.0250 2.0459 1.0004 76.3493 0.9376 0.9896 0.0473

    0.0500 1.9827 1.0016 75.7313 0.9146 0.9696 0.0895

    0.0750 1.9223 1.0037 75.1947 0.8950 0.9524 0.1274

    0.1000 1.8646 1.0066 74.7281 0.8783 0.9376 0.1616

    0.1250 1.8095 1.0105 74.3223 0.8640 0.9250 0.1929

    0.1500 1.7569 1.0152 73.9697 0.8517 0.9141 0.2215

    0.1750 1.7067 1.0210 73.6638 0.8411 0.9047 0.2479

    0.2000 1.6589 1.0277 73.3992 0.8321 0.8967 0.2725

    0.2250 1.6132 1.0355 73.1713 0.8244 0.8898 0.2953

    0.2500 1.5698 1.0443 72.9763 0.8178 0.8839 0.3167

    0.2750 1.5284 1.0543 72.8108 0.8123 0.8790 0.3369

    0.3000 1.4890 1.0654 72.6720 0.8077 0.8748 0.3561

    0.3250 1.4516 1.0779 72.5574 0.8039 0.8714 0.3743

    0.3500 1.4160 1.0916 72.4650 0.8008 0.8687 0.3917

    0.3750 1.3822 1.1066 72.3931 0.7985 0.8666 0.4085

    0.4000 1.3502 1.1232 72.3403 0.7967 0.8650 0.4247

    0.4250 1.3199 1.1412 72.3053 0.7956 0.8640 0.4405

    0.4500 1.2912 1.1609 72.2873 0.7950 0.8635 0.4559

    0.4750 1.2641 1.1823 72.2856 0.7949 0.8634 0.4711

    0.5000 1.2385 1.2055 72.2999 0.7954 0.8638 0.4861

    0.5250 1.2144 1.2307 72.3300 0.7964 0.8647 0.5011

    0.5500 1.1918 1.2579 72.3759 0.7979 0.8661 0.5162

    0.5750 1.1706 1.2873 72.4380 0.7999 0.8679 0.5314

    0.6000 1.1507 1.3191 72.5170 0.8025 0.8702 0.5468

    0.6250 1.1322 1.3534 72.6137 0.8057 0.8731 0.5627

    0.6500 1.1149 1.3904 72.7293 0.8096 0.8765 0.5790

    0.6750 1.0990 1.4303 72.8655 0.8141 0.8806 0.5960

    0.7000 1.0843 1.4733 73.0242 0.8194 0.8854 0.6138

    0.7250 1.0708 1.5197 73.2079 0.8256 0.8909 0.6326

    0.7500 1.0585 1.5698 73.4194 0.8328 0.8973 0.6525

    0.7750 1.0474 1.6237 73.6622 0.8411 0.9047 0.6738

    0.8000 1.0375 1.6820 73.9406 0.8507 0.9132 0.6968

    0.8250 1.0288 1.7448 74.2593 0.8618 0.9230 0.7218

    0.8500 1.0212 1.8127 74.6245 0.8746 0.9344 0.7493

    0.8750 1.0147 1.8860 75.0431 0.8896 0.9476 0.7795

    0.9000 1.0095 1.9652 75.5235 0.9070 0.9629 0.8132

    0.9250 1.0053 2.0509 76.0757 0.9274 0.9807 0.8511

    0.9500 1.0024 2.1437 76.7120 0.9513 1.0016 0.8941

    0.9750 1.0006 2.2441 77.4468 0.9796 1.0261 0.9432

    1.0000 1.0000 2.3530 78.2982 1.0132 1.0552 1.0000

  • 34

    Table 6.A.7. Results of T xy calculations at P = 1.01325 bar using the van Laar Model

    x1 T (C) y1 x1

    0.0000 2.1119 1.0000 77.0629 0.9647 1.0132 0.0000 1.0000

    0.0250 2.0446 1.0004 76.3500 0.9376 0.9897 0.0473 0.9527

    0.0500 1.9804 1.0017 75.7336 0.9147 0.9696 0.0894 0.910609

    0.0750 1.9193 1.0038 75.1991 0.8952 0.9525 0.1272 0.872823

    0.1000 1.8611 1.0067 74.7349 0.8786 0.9379 0.1614 0.838633

    0.1250 1.8056 1.0106 74.3316 0.8643 0.9253 0.1925 0.807478

    0.1500 1.7528 1.0154 73.9812 0.8521 0.9144 0.2211 0.778903

    0.1750 1.7025 1.0211 73.6774 0.8416 0.9051 0.2475 0.752535

    0.2000 1.6547 1.0279 73.4148 0.8326 0.8971 0.2719 0.728065

    0.2250 1.6091 1.0356 73.1886 0.8250 0.8903 0.2948 0.705231

    0.2500 1.5658 1.0445 72.9950 0.8184 0.8845 0.3162 0.683811

    0.2750 1.5246 1.0544 72.8307 0.8129 0.8796 0.3364 0.663611

    0.3000 1.4855 1.0656 72.6929 0.8084 0.8755 0.3555 0.644465

    0.3250 1.4483 1.0779 72.5792 0.8046 0.8721 0.3738 0.626223

    0.3500 1.4131 1.0915 72.4875 0.8016 0.8694 0.3912 0.608752

    0.3750 1.3796 1.1065 72.4161 0.7992 0.8673 0.4081 0.591931

    0.4000 1.3479 1.1229 72.3636 0.7975 0.8657 0.4244 0.575648

    0.4250 1.3179 1.1408 72.3290 0.7964 0.8647 0.4402 0.559797

    0.4500 1.2895 1.1603 72.3112 0.7958 0.8642 0.4557 0.544281

    0.4750 1.2626 1.1815 72.3098 0.7957 0.8641 0.4710 0.529001

    0.5000 1.2373 1.2045 72.3242 0.7962 0.8646 0.4861 0.513863

    0.5250 1.2135 1.2294 72.3543 0.7972 0.8654 0.5012 0.498772

    0.5500 1.1911 1.2563 72.4003 0.7987 0.8668 0.5164 0.483631

    0.5750 1.1700 1.2854 72.4624 0.8007 0.8686 0.5317 0.46834

    0.6000 1.1503 1.3169 72.5412 0.8033 0.8710 0.5472 0.452792

    0.6250 1.1319 1.3509 72.6378 0.8065 0.8738 0.5631 0.436874

    0.6500 1.1148 1.3876 72.7531 0.8104 0.8773 0.5795 0.420461

    0.6750 1.0990 1.4271 72.8889 0.8149 0.8813 0.5966 0.403418

    0.7000 1.0843 1.4698 73.0470 0.8202 0.8860 0.6144 0.385591

    0.7250 1.0709 1.5159 73.2298 0.8263 0.8915 0.6332 0.366806

    0.7500 1.0587 1.5657 73.4402 0.8335 0.8979 0.6531 0.346864

    0.7750 1.0476 1.6194 73.6816 0.8417 0.9052 0.6745 0.325533

    0.8000 1.0377 1.6775 73.9583 0.8513 0.9137 0.6975 0.302542

    0.8250 1.0289 1.7402 74.2751 0.8623 0.9235 0.7224 0.277567

    0.8500 1.0213 1.8081 74.6379 0.8751 0.9348 0.7498 0.250219

    0.8750 1.0149 1.8815 75.0539 0.8900 0.9479 0.7800 0.220027

    0.9000 1.0096 1.9611 75.5316 0.9073 0.9631 0.8136 0.18641

    0.9250 1.0054 2.0473 76.0811 0.9276 0.9809 0.8514 0.148645

    0.9500 1.0024 2.1409 76.7147 0.9514 1.0017 0.8942 0.105822

    0.9750 1.0006 2.2425 77.4477 0.9796 1.0262 0.9432 0.056777

    1.0000 1.0000 2.3530 78.2982 1.0132 1.0552 1.0000 0.0000

  • 35

    Table 6.A.8. Results of T xy calculations at P = 1.01325 bar using the Wilson Model

    x1 T (C) y1

    0.0000 2.5160 1.0000 77.0629 0.9647 1.0132 0.0000

    0.0250 2.4022 1.0006 76.0993 0.9282 0.9815 0.0550

    0.0500 2.2970 1.0023 75.2986 0.8988 0.9557 0.1019

    0.0750 2.1995 1.0052 74.6282 0.8748 0.9345 0.1424

    0.1000 2.1092 1.0093 74.0635 0.8549 0.9170 0.1780

    0.1250 2.0253 1.0145 73.5861 0.8385 0.9023 0.2095

    0.1500 1.9474 1.0209 73.1814 0.8247 0.8901 0.2378

    0.1750 1.8749 1.0284 72.8382 0.8132 0.8798 0.2633

    0.2000 1.8073 1.0371 72.5473 0.8035 0.8711 0.2867

    0.2250 1.7443 1.0471 72.3013 0.7954 0.8639 0.3081

    0.2500 1.6856 1.0584 72.0942 0.7887 0.8578 0.3280

    0.2750 1.6307 1.0709 71.9212 0.7831 0.8528 0.3466

    0.3000 1.5794 1.0848 71.7781 0.7785 0.8486 0.3640

    0.3250 1.5315 1.1001 71.6616 0.7747 0.8452 0.3806

    0.3500 1.4867 1.1169 71.5691 0.7718 0.8426 0.3963

    0.3750 1.4448 1.1352 71.4982 0.7695 0.8405 0.4115

    0.4000 1.4056 1.1551 71.4474 0.7679 0.8391 0.4261

    0.4250 1.3689 1.1768 71.4150 0.7669 0.8381 0.4403

    0.4500 1.3345 1.2002 71.4002 0.7664 0.8377 0.4542

    0.4750 1.3024 1.2256 71.4022 0.7665 0.8378 0.4680

    0.5000 1.2724 1.2531 71.4206 0.7670 0.8383 0.4816

    0.5250 1.2444 1.2828 71.4553 0.7681 0.8393 0.4953

    0.5500 1.2182 1.3149 71.5064 0.7698 0.8408 0.5090

    0.5750 1.1938 1.3495 71.5744 0.7719 0.8427 0.5230

    0.6000 1.1711 1.3869 71.6600 0.7747 0.8452 0.5372

    0.6250 1.1501 1.4273 71.7645 0.7780 0.8482 0.5519

    0.6500 1.1305 1.4710 71.8891 0.7820 0.8518 0.5672

    0.6750 1.1125 1.5182 72.0360 0.7868 0.8561 0.5831

    0.7000 1.0959 1.5692 72.2074 0.7924 0.8611 0.5999

    0.7250 1.0807 1.6245 72.4061 0.7989 0.8670 0.6177

    0.7500 1.0668 1.6845 72.6359 0.8065 0.8738 0.6368

    0.7750 1.0543 1.7496 72.9011 0.8153 0.8817 0.6575

    0.8000 1.0431 1.8203 73.2068 0.8256 0.8908 0.6799

    0.8250 1.0332 1.8974 73.5595 0.8376 0.9015 0.7046

    0.8500 1.0245 1.9814 73.9671 0.8516 0.9140 0.7319

    0.8750 1.0172 2.0732 74.4390 0.8681 0.9286 0.7625

    0.9000 1.0111 2.1737 74.9871 0.8876 0.9458 0.7971

    0.9250 1.0063 2.2840 75.6261 0.9108 0.9662 0.8367

    0.9500 1.0028 2.4053 76.3743 0.9385 0.9905 0.8824

    0.9750 1.0007 2.5391 77.2551 0.9721 1.0197 0.9361

    1.0000 1.0000 2.6870 78.2982 1.0132 1.0552 1.0000

  • 36

    Table 6.A.9. Results of T xy calculations at P = 1.01325 bar using the UNIFAC Model

    x1 T (C) y1

    0.0000 2.0679 1.0000 77.0629 0.9647 1.0132 0.0000

    0.0250 1.9987 1.0004 76.3821 0.9388 0.9907 0.0463

    0.0500 1.9333 1.0017 75.7953 0.9170 0.9716 0.0875

    0.0750 1.8714 1.0039 75.2882 0.8984 0.9554 0.1245

    0.1000 1.8128 1.0070 74.8495 0.8826 0.9415 0.1579

    0.1250 1.7574 1.0109 74.4722 0.8692 0.9296 0.1885

    0.1500 1.7050 1.0158 74.1441 0.8577 0.9195 0.2165

    0.1750 1.6555 1.0217 73.8593 0.8479 0.9107 0.2424

    0.2000 1.6086 1.0285 73.6155 0.8395 0.9032 0.2665

    0.2250 1.5642 1.0363 73.4066 0.8323 0.8969 0.2891

    0.2500 1.5222 1.0451 73.2292 0.8263 0.8915 0.3103

    0.2750 1.4826 1.0549 73.0799 0.8213 0.8870 0.3305

    0.3000 1.4451 1.0659 72.9542 0.8171 0.8833 0.3496

    0.3250 1.4096 1.0780 72.8526 0.8137 0.8802 0.3679

    0.3500 1.3762 1.0913 72.7706 0.8109 0.8778 0.3855

    0.3750 1.3446 1.1058 72.7090 0.8089 0.8759 0.4025

    0.4000 1.3148 1.1216 72.6653 0.8074 0.8746 0.4191

    0.4250 1.2867 1.1387 72.6394 0.8066 0.8739 0.4353

    0.4500 1.2603 1.1572 72.6294 0.8063 0.8736 0.4513

    0.4750 1.2355 1.1772 72.6345 0.8064 0.8737 0.4671

    0.5000 1.2121 1.1988 72.6558 0.8071 0.8744 0.4828

    0.5250 1.1902 1.2219 72.6935 0.8084 0.8755 0.4985

    0.5500 1.1697 1.2469 72.7449 0.8101 0.8770 0.5143

    0.5750 1.1506 1.2736 72.8129 0.8123 0.8790 0.5304

    0.6000 1.1327 1.3023 72.8980 0.8152 0.8816 0.5468

    0.6250 1.1162 1.3330 72.9991 0.8186 0.8846 0.5636

    0.6500 1.1008 1.3659 73.1201 0.8226 0.8882 0.5809

    0.6750 1.0866 1.4011 73.2608 0.8274 0.8925 0.5989

    0.7000 1.0736 1.4388 73.4221 0.8329 0.8974 0.6177

    0.7250 1.0617 1.4791 73.6076 0.8392 0.9030 0.6375

    0.7500 1.0509 1.5223 73.8183 0.8464 0.9094 0.6584

    0.7750 1.0411 1.5684 74.0598 0.8548 0.9168 0.6807

    0.8000 1.0325 1.6178 74.3305 0.8643 0.9252 0.7045

    0.8250 1.0248 1.6706 74.6400 0.8752 0.9349 0.7303

    0.8500 1.0182 1.7271 74.9887 0.8876 0.9459 0.7582

    0.8750 1.0127 1.7876 75.3814 0.9018 0.9583 0.7887

    0.9000 1.0081 1.8523 75.8286 0.9182 0.9727 0.8222

    0.9250 1.0046 1.9217 76.3328 0.9370 0.9891 0.8593

    0.9500 1.0020 1.9960 76.9073 0.9588 1.0081 0.9007

    0.9750 1.0005 2.0757 77.5577 0.9839 1.0299 0.9473

    1.0000 1.0000 2.1611 78.2982 1.0132 1.0552 1.0000

  • 37

    Table 6.A.10. Results of T xy calculations at P = 2 bar using the Margules Model x1 T (C) y1

    0.0000 2.1119 1.0000 99.2504 2.2005 2.0000 0.0000

    0.0250 2.0459 1.0004 98.1729 2.1197 1.9393 0.0542

    0.0500 1.9827 1.0016 97.2427 2.0518 1.8881 0.1017

    0.0750 1.9223 1.0037 96.4356 1.9944 1.8445 0.1438

    0.1000 1.8646 1.0066 95.7326 1.9455 1.8072 0.1814

    0.1250 1.8095 1.0105 95.1185 1.9036 1.7750 0.2153

    0.1500 1.7569 1.0152 94.5810 1.8676 1.7473 0.2461

    0.1750 1.7067 1.0210 94.1102 1.8364 1.7233 0.2743

    0.2000 1.6589 1.0277 93.6977 1.8095 1.7024 0.3002

    0.2250 1.6132 1.0355 93.3364 1.7862 1.6843 0.3242

    0.2500 1.5698 1.0443 93.0206 1.7660 1.6687 0.3465

    0.2750 1.5284 1.0543 92.7451 1.7486 1.6551 0.3675

    0.3000 1.4890 1.0654 92.5058 1.7336 1.6433 0.3872

    0.3250 1.4516 1.0779 92.2990 1.7207 1.6332 0.4059

    0.3500 1.4160 1.0916 92.1217 1.7096 1.6246 0.4236

    0.3750 1.3822 1.1066 91.9711 1.7003 1.6174 0.4407

    0.4000 1.3502 1.1232 91.8451 1.6926 1.6113 0.4571

    0.4250 1.3199 1.1412 91.7418 1.6863 1.6063 0.4730

    0.4500 1.2912 1.1609 91.6598 1.6813 1.6024 0.4884

    0.4750 1.2641 1.1823 91.5978 1.6775 1.5994 0.5036

    0.5000 1.2385 1.2055 91.5549 1.6749 1.5974 0.5186

    0.5250 1.2144 1.2307 91.5306 1.6734 1.5962 0.5335

    0.5500 1.1918 1.2579 91.5246 1.6730 1.5959 0.5483

    0.5750 1.1706 1.2873 91.5367 1.6738 1.5965 0.5633

    0.6000 1.1507 1.3191 91.5673 1.6756 1.5979 0.5784

    0.6250 1.1322 1.3534 91.6170 1.6787 1.6003 0.5939

    0.6500 1.1149 1.3904 91.6867 1.6829 1.6037 0.6098

    0.6750 1.0990 1.4303 91.7777 1.6885 1.6080 0.6263

    0.7000 1.0843 1.4733 91.8917 1.6955 1.6135 0.6434

    0.7250 1.0708 1.5197 92.0307 1.7040 1.6202 0.6614

    0.7500 1.0585 1.5698 92.1974 1.7143 1.6283 0.6805

    0.7750 1.0474 1.6237 92.3950 1.7266 1.6379 0.7008

    0.8000 1.0375 1.6820 92.6272 1.7412 1.6493 0.7226

    0.8250 1.0288 1.7448 92.8987 1.7583 1.6626 0.7462

    0.8500 1.0212 1.8127 93.2148 1.7784 1.6783 0.7718

    0.8750 1.0147 1.8860 93.5820 1.8020 1.6966 0.8000

    0.9000 1.0095 1.9652 94.0081 1.8297 1.7181 0.8312

    0.9250 1.0053 2.0509 94.5023 1.8623 1.7433 0.8659

    0.9500 1.0024 2.1437 95.0754 1.9007 1.7728 0.9050

    0.9750 1.0006 2.2441 95.7409 1.9461 1.8076 0.9493

    1.0000 1.0000 2.3530 96.5146 2.0000 1.8487 1.0000

  • 38

    Table 6.A.11. Results of T xy calculations at P = 2 bar using the Wilson Model x1 T (C) y1

    0.0000 2.1119 1.0000 99.2504 2.2005 2.0000 0.0000

    0.0250 2.0446 1.0004 98.1738 2.1197 1.9394 0.0542

    0.0500 1.9804 1.0017 97.2459 2.0521 1.8882 0.1016

    0.0750 1.9193 1.0038 96.4416 1.9949 1.8448 0.1436

    0.1000 1.8611 1.0067 95.7417 1.9462 1.8076 0.1811

    0.1250 1.8056 1.0106 95.1307 1.9044 1.7757 0.2149

    0.1500 1.7528 1.0154 94.5961 1.8686 1.7481 0.2456

    0.1750 1.7025 1.0211 94.1280 1.8376 1.7242 0.2737

    0.2000 1.6547 1.0279 93.7178 1.8108 1.7034 0.2996

    0.2250 1.6091 1.0356 93.3585 1.7876 1.6854 0.3236

    0.2500 1.5658 1.0445 93.0443 1.7675 1.6698 0.3460

    0.2750 1.5246 1.0544 92.7702 1.7502 1.6563 0.3669

    0.3000 1.4855 1.0656 92.5319 1.7352 1.6446 0.3866

    0.3250 1.4483 1.0779 92.3259 1.7223 1.6346 0.4054

    0.3500 1.4131 1.0915 92.1490 1.7113 1.6260 0.4232

    0.3750 1.3796 1.1065 91.9988 1.7021 1.6187 0.4403

    0.4000 1.3479 1.1229 91.8729 1.6943 1.6126 0.4568

    0.4250 1.3179 1.1408 91.7697 1.6880 1.6077 0.4727

    0.4500 1.2895 1.1603 91.6876 1.6830 1.6037 0.4883

    0.4750 1.2626 1.1815 91.6255 1.6792 1.6007 0.5035

    0.5000 1.2373 1.2045 91.5824 1.6765 1.5987 0.5186

    0.5250 1.2135 1.2294 91.5579 1.6750 1.5975 0.5336

    0.5500 1.1911 1.2563 91.5515 1.6747 1.5972 0.5485

    0.5750 1.1700 1.2854 91.5633 1.6754 1.5978 0.5636

    0.6000 1.1503 1.3169 91.5935 1.6772 1.5992 0.5788

    0.6250 1.1319 1.3509 91.6427 1.6802 1.6016 0.5943

    0.6500 1.1148 1.3876 91.7118 1.6844 1.6049 0.6103

    0.6750 1.0990 1.4271 91.8021 1.6900 1.6092 0.6268

    0.7000 1.0843 1.4698 91.9151 1.6969 1.6147 0.6440

    0.7250 1.0709 1.5159 92.0531 1.7054 1.6213 0.6621

    0.7500 1.0587 1.5657 92.2185 1.7157 1.6293 0.6811

    0.7750 1.0476 1.6194 92.4146 1.7279 1.6389 0.7014

    0.8000 1.0377 1.6775 92.6450 1.7423 1.6502 0.7232

    0.8250 1.0289 1.7402 92.9143 1.7593 1.6634 0.7467

    0.8500 1.0213 1.8081 93.2281 1.7793 1.6790 0.7723

    0.8750 1.0149 1.8815 93.5927 1.8027 1.6972 0.8004

    0.9000 1.0096 1.9611 94.0161 1.8303 1.7185 0.8315

    0.9250 1.0054 2.0473 94.5075 1.8627 1.7435 0.8661

    0.9500 1.0024 2.1409 95.0781 1.9009 1.7729 0.9051

    0.9750 1.0006 2.2425 95.7417 1.9462 1.8076 0.9493

    1.0000 1.0000 2.3530 96.5146 2.0000 1.8487 1.0000

  • 39

    Table 6.A.12. Results of T xy calculations at P = 2 bar using the Wilson Model x1 T (C) y1

    0.0000 2.5160 1.0000 99.2504 2.2005 2.0000 0.0000

    0.0250 2.4022 1.0006 97.8443 2.0955 1.9211 0.0629

    0.0500 2.2970 1.0023 96.6822 2.0118 1.8577 0.1155

    0.0750 2.1995 1.0052 95.7108 1.9440 1.8060 0.1604

    0.1000 2.1092 1.0093 94.8920 1.8884 1.7633 0.1991

    0.1250 2.0253 1.0145 94.1972 1.8422 1.7277 0.2332

    0.1500 1.9474 1.0209 93.6046 1.8035 1.6978 0.2634

    0.1750 1.8749 1.0284 93.0973 1.7709 1.6725 0.2905

    0.2000 1.8073 1.0371 92.6619 1.7434 1.6510 0.3151

    0.2250 1.7443 1.0471 92.2878 1.7200 1.6327 0.3375

    0.2500 1.6856 1.0584 91.9663 1.7001 1.6171 0.3582

    0.2750 1.6307 1.0709 91.6903 1.6831 1.6038 0.3774

    0.3000 1.5794 1.0848 91.4542 1.6687 1.5925 0.3954

    0.3250 1.5315 1.1001 91.2531 1.6566 1.5830 0.4123

    0.3500 1.4867 1.1169 91.0832 1.6464 1.5749 0.4283

    0.3750 1.4448 1.1352 90.9412 1.6379 1.5682 0.4437

    0.4000 1.4056 1.1551 90.8245 1.6309 1.5627 0.4585

    0.4250 1.3689 1.1768 90.7309 1.6253 1.5583 0.4728

    0.4500 1.3345 1.2002 90.6589 1.6211 1.5550 0.4868

    0.4750 1.3024 1.2256 90.6071 1.6180 1.5525 0.5005

    0.5000 1.2724 1.2531 90.5747 1.6161 1.5510 0.5141

    0.5250 1.2444 1.2828 90.5611 1.6153 1.5504 0.5276

    0.5500 1.2182 1.3149 90.5661 1.6156 1.5506 0.5412

    0.5750 1.1938 1.3495 90.5899 1.6170 1.5517 0.5550

    0.6000 1.1711 1.3869 90.6328 1.6195 1.5537 0.5690

    0.6250 1.1501 1.4273 90.6957 1.6233 1.5567 0.5834

    0.6500 1.1305 1.4710 90.7798 1.6282 1.5606 0.5983

    0.6750 1.1125 1.5182 90.8867 1.6346 1.5656 0.6137

    0.7000 1.0959 1.5692 91.0186 1.6425 1.5719 0.6300

    0.7250 1.0807 1.6245 91.1781 1.6521 1.5794 0.6472

    0.7500 1.0668 1.6845 91.3684 1.6636 1.5885 0.6655

    0.7750 1.0543 1.7496 91.5937 1.6772 1.5992 0.6852

    0.8000 1.0431 1.8203 91.8587 1.6934 1.6119 0.7066

    0.8250 1.0332 1.8974 92.1696 1.7126 1.6270 0.7299

    0.8500 1.0245 1.9814 92.5336 1.7353 1.6447 0.7556

    0.8750 1.0172 2.0732 92.9596 1.7622 1.6656 0.7842

    0.9000 1.0111 2.1737 93.4587 1.7941 1.6905 0.8163

    0.9250 1.0063 2.2840 94.0445 1.8321 1.7199 0.8527

    0.9500 1.0028 2.4053 94.7339 1.8778 1.7551 0.8945

    0.9750 1.0007 2.5391 95.5483 1.9329 1.7975 0.9430

    1.0000 1.0000 2.6870 96.5146 2.0000 1.8487 1.0000

  • 40

    Table 6.A.13. Results of T xy calculations at P = 2 bar using the UNIFAC Model x1 T (C) y1

    0.0000 2.5160 1.0000 99.2504 2.2005 2.0000 0.0000

    0.0250 2.4022 1.0006 97.8443 2.0955 1.9211 0.0629

    0.0500 2.2970 1.0023 96.6822 2.0118 1.8577 0.1155

    0.0750 2.1995 1.0052 95.7108 1.9440 1.8060 0.1604

    0.1000 2.1092 1.0093 94.8920 1.8884 1.7633 0.1991

    0.1250 2.0253 1.0145 94.1972 1.8422 1.7277 0.2332

    0.1500 1.9474 1.0209 93.6046 1.8035 1.6978 0.2634

    0.1750 1.8749 1.0284 93.0973 1.7709 1.6725 0.2905

    0.2000 1.8073 1.0371 92.6619 1.7434 1.6510 0.3151

    0.2250 1.7443 1.0471 92.2878 1.7200 1.6327 0.3375

    0.2500 1.6856 1.0584 91.9663 1.7001 1.6171 0.3582

    0.2750 1.6307 1.0709 91.6903 1.6831 1.6038 0.3774

    0.3000 1.5794 1.0848 91.4542 1.6687 1.5925 0.3954

    0.3250 1.5315 1.1001 91.2531 1.6566 1.5830 0.4123

    0.3500 1.4867 1.1169 91.0832 1.6464 1.5749 0.4283

    0.3750 1.4448 1.1352 90.9412 1.6379 1.5682 0.4437

    0.4000 1.4056 1.1551 90.8245 1.6309 1.5627 0.4585

    0.4250 1.3689 1.1768 90.7309 1.6253 1.5583 0.4728

    0.4500 1.3345 1.2002 90.6589 1.6211 1.5550 0.4868

    0.4750 1.3024 1.2256 90.6071 1.6180 1.5525 0.5005

    0.5000 1.2724 1.2531 90.5747 1.6161 1.5510 0.5141

    0.5250 1.2444 1.2828 90.5611 1.6153 1.5504 0.5276

    0.5500 1.2182 1.3149 90.5661 1.6156 1.5506 0.5412

    0.5750 1.1938 1.3495 90.5899 1.6170 1.5517 0.5550

    0.6000 1.1711 1.3869 90.6328 1.6195 1.5537 0.5690

    0.6250 1.1501 1.4273 90.6957 1.6233 1.5567 0.5834

    0.6500 1.1305 1.4710 90.7798 1.6282 1.5606 0.5983

    0.6750 1.1125 1.5182 90.8867 1.6346 1.5656 0.6137

    0.7000 1.0959 1.5692 91.0186 1.6425 1.5719 0.6300

    0.7250 1.0807 1.6245 91.1781 1.6521 1.5794 0.6472

    0.7500 1.0668 1.6845 91.3684 1.6636 1.5885 0.6655

    0.7750 1.0543 1.7496 91.5937 1.6772 1.5992 0.6852

    0.8000 1.0431 1.8203 91.8587 1.6934 1.6119 0.7066

    0.8250 1.0332 1.8974 92.1696 1.7126 1.6270 0.7299

    0.8500 1.0245 1.9814 92.5336 1.7353 1.6447 0.7556

    0.8750 1.0172 2.0732 92.9596 1.7622 1.6656 0.7842

    0.9000 1.0111 2.1737 93.4587 1.7941 1.6905 0.8163

    0.9250 1.0063 2.2840 94.0445 1.8321 1.7199 0.8527

    0.9500 1.0028 2.4053 94.7339 1.8778 1.7551 0.8945

    0.9750 1.0007 2.5391 95.5483 1.9329 1.7975 0.9430

    1.0000 1.0000 2.6870 96.5146 2.0000 1.8487 1.0000

  • 41

    APPENDIX B Properties, Constants and Parameters

    Table 6.B.1. Binary- Interaction Parameters*

    *Abstracted from James O. Maloney, Eighth Edition, 2008.

    Table 6.B.2. Volume Data*

    *Abstracted from James O. Maloney, Eighth Edition, 2008.

    Antoine equation is with in torr and T in oC.

  • 42

    Figure 6.B.1. Solvent Miscibility Chart* *abstracted from Paul Sadek. The HPLC Solvent Guide. Wiley-Interscience, 2002.

  • 43

    APPENDIX C The Modified UNIFAC Software

    Figure 6.C.1. Printscreen of the Modified UNIFAC Software used in the calculations