eth zurich

175
Research Collection Doctoral Thesis From amorphous to crystalline via vitreous cathode materials for rechargeable lithium ion-batteries Author(s): Wächter, Florian L. Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007620352 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection . For more information please consult the Terms of use . ETH Library

Upload: dinhkien

Post on 16-Jan-2017

252 views

Category:

Documents


0 download

TRANSCRIPT

  • Research Collection

    Doctoral Thesis

    From amorphous to crystalline via vitreous cathode materials forrechargeable lithium ion-batteries

    Author(s): Wchter, Florian L.

    Publication Date: 2012

    Permanent Link: https://doi.org/10.3929/ethz-a-007620352

    Rights / License: In Copyright - Non-Commercial Use Permitted

    This page was generated automatically upon download from the ETH Zurich Research Collection. For moreinformation please consult the Terms of use.

    ETH Library

    https://doi.org/10.3929/ethz-a-007620352http://rightsstatements.org/page/InC-NC/1.0/https://www.research-collection.ethz.chhttps://www.research-collection.ethz.ch/terms-of-use

  • DISS.ETHNo.20863

    FromAmorphoustoCrystallineviaVitreousCathodeMaterials

    forRechargeableLithiumIonBatteries

    Adissertationsubmittedtothe

    ETHZURICH

    forthedegreeof

    DOCTOROFSCIENCES

    presentedby

    FlorianLeonardtWchter

    Dipl.Chem.,RheinischeFriedrichWilhelmUniversittBonn

    bornAugust18,1983

    inDsseldorf,Germany

    CitizenofGermany

    Acceptedontherecommendationof

    Prof.Dr.ReinhardNesper,examiner

    Prof.Dr.HansjrgGrtzmacher,coexaminer

    2012

  • ii

    ChemikerdrfennichtnurneueMaterialherstellenundderenStrukturenaufklren,sondernsiemssenauchlernen,derenEigenschaftenquantitativzubestimmen.

    RoaldHoffmann

  • iii

    Acknowledgements

    Iwouldliketoexpressmysinceregratitudeto:

    Prof.ReinhardNesper,forgivingmetheopportunitytograduateunderhissupervision.I

    haveappreciatedthefreedomandtheverychallengingtopics.Thedeepholes,webump

    in,wereverygoodexperiencesforbecomingabetterresearcher.Furthermore,hehasa

    greatpersonalityandIlearnedmanythings,whicharenotchemistryrelated.Thankyou,

    Reinhard.

    Prof.HansjrgGrtzmacher,fortakingonthetaskofcoexaminer.

    Dr.FrankKrumeich,fordoingallSEMandTEManalysis,Iusedinthepresentedwork.

    Dr.MichaelWrle,forhishelprelatedtoallkindsofXRDexperiments.

    Dr.MihaiViciu, for the fruitfuldiscussionsabout chemistryandnot chemistry related

    topicsandforteachingmeEnglish.

    Dr.SerhiyBudnyk,forwelcomingmefriendlyandteachingmeinallsynthesismethods

    ofsolidstatechemistryandintheEastEuropeanlabvelocity.

    Christian Mensing, for the technical assistance and teaching me in property

    characterizationmethods.

    AdamSlabonandMartinKotyrba,guysitisnicetodiscussandsometimesfightagainst

    you.Ithinkweareagreatchemicalteam.Highspeed,me,realscientist.

    DominikusHeift forproviding theNaOCP and the great time.A littlebitof Klscher

    Klngelshouldbeeverywhere.

    Allotherguys fromtheNespergroupforthegreattime:Dr.XiaoJunWang,Dr.Dipan

    Kundu, Dr. Liliana Viciu, Dr. YoannMettan, Philipp Reibisch, Frederic Hilty,Matthias

    Herrmann, Dr. Barbara Hellermann,Michele Furlotti, Dr. Eduardo Cuervo Reyes, Dr.

    RiccardaCaputoandSemihAyfon.

    Lastly Iwant to thankBelenosCleanPowerAG, for financing this interesting research

    project.

  • iv

  • v

    Abstract

    One of the biggest problems of the modern society is the climate change. Electro

    mobility isconsideredtobethekeytechnologytoreducetheemissionofgreenhouse

    gases.LithiumIonBatteriesseemtobethemostpromisingenergystoragesystem for

    electric vehicle applications. In this work, I am going to present various new and

    modified cathode materials, as well as a synthesis method, which allows chemical

    lithiationandsurfacecoatingsoftransitionmetalcompoundsinhighoxidationstatesat

    thesametime.

    Inthefirstpartofthedoctoralthesis,synthesisandelectrochemicalcharacterizationof

    variousvitreousandcrystallizedmaterialsoftheLi2O*V2O5*P2O5systemarepresented.

    PureV2O5*P2O5glassesexhibitlargeirreversiblespecificcharge,correspondingtothree

    LiperPatom, in the initial insertion.These threeLiequivalentspoint to formationof

    orthophosphategroups inside theglass.The reaction irreversibly reduces theaverage

    oxidation state of the glass, and therefore the cell voltage is decreased.When using

    Li3PO4asnetworkformerandmodifier,noirreversibleprocessesoccurwithintheinitial

    cycle.Fullspecificchargeandhigh redoxpotentialarepreserved.Thecyclabilityofall

    synthesizedmaterialsisbettercomparedtopureV2O5electrodes.

    The second part of the thesis dealswith a synthesismethodwhich allows chemical

    lithiation and coatings of oxidants at the same time. Especially carbon coatings can

    stronglyimprovetheelectrochemicalpropertiesofcathodematerials.WhenusingLi2C2

    ascarbonandlithiumsource,thecarbideanionC22isoxidizedtocarbononthesurface

    of the oxidant, while lithium inserts the reduced oxidant. This new carbon coating

    method isshownonthebasisofcrystallineandamorphousLixV2O5aswellasLixMoO3,

    H2V3O8,LiFePO4,Li3PO4*V2O5glasses.

    ThisconceptisextendedtoNaOCPascoatingandinsertionreagent.Duringthereaction

    of NaOCP and V2O5 and MoO3 respectively, Na+ions insert into the oxidant and a

    polymeric shell is formedaround the reducedandmetalintercalated transitionmetal

    oxidecore.

  • vi

    In the third part permanganate based cathode materials are presented. The

    decompositionofLiMnO4wasstudiedunderthesynthesisconditionofLi3MnO4(220C

    under oxygen flow). The product is a mixture of nano crystalline Li2MnO3 and an

    amorphousphase.Electrochemicalbehaviorandstoichiometrypointtotheformationof

    anamorphousMnO2material.

    Themainproblemofusingpermanganatebasedcathodematerialsisthehighsolubility

    of LiMnO4 in common electrolytes. Therefore,mixed compounds ofMnO43 and the

    isolobal PO43were targeted inwhich the phosphate groupswould act as a kind of

    insoluble network former. The synthesized new mixed materials

    Mg3Li12(MnO4)3(MnO3)3(PO4)2 and Li9(MnO4)3(PO4) are amorphous andmost probably

    bivalent, i.e.containingboth,Mn4+andMn6+.Thematerialswereclassifiedaselectric

    isolators due to the measured conductivity of approximately 1023 S/cm2. This low

    electricconductivityleadstoapoorelectrochemicalactivityofQ

  • vii

    Kurzfassung

    DiezuknftigeEnergieversorgungundderKlimawandelsindmitdiegrsstenProbleme

    der heutigen globalen Gesellschaft. Elektromobilitt gilt als Schlsseltechnologie fr

    einen besseren Umgang mit den begrenzten fossilen Rohstoffen und somit fr

    verringerteTreibhausgasemissionen.LithiumIonenBatterienscheinendiebesteLsung

    fr die Energiespeicherung in Fahrzeugen, unter Umstnden auch in stationren

    Anwendungen, zu sein. In dieser Dissertation werden verschiedene neuartige

    Kathodenmaterialien und eine Methode zur gleichzeitigen chemischen Beschichtung

    undLithiierungvonKathodenmaterialenvorgestellt.

    Im ersten Teil dieser Arbeit werden verschiedene Glser und Glaskeramiken des

    Li2O*V2O5*P2O5 Systems auf ihre elektrochemischen Eigenschaften hin untersucht.

    Dabeizeigtesich,dassreineV2O5*P2O5Glser3LithiumquivalenteproPhosphoratom

    irreversibel in das Glasnetzwerk einbauen knnen. Dies deutet auf die Bildung von

    Orthophosphatgruppen imGlashin.Der irreversibleLithiumeinbau fhrtaufdereinen

    SeitezuirreversiblerspezifischerLadungundaufderanderenSeitezueinerAbsenkung

    der durchschnittlichen Zellspannung.DieVerwendung von Li3PO4 alsNetzwerkbildner

    undNetzwerkwandlerverhindertdiesen irreversiblenVorgang.Danachverndern sich

    weder Spannung noch spezifische Ladung nach der ersten Entladung. Die

    Zyklenstabilitten der untersuchten Glser sind deutlich erhht im Vergleich z.B. zu

    V2O5Elektroden.

    Im zweiten Teil wird eine Methode prsentiert, die chemische Lithiierung und

    gleichzeitigeKohlenstoffbeschichtungvonKathodenmaterialmitLithiumcarbiderlaubt.

    DieCarbidanionenC22werdenaufderOberflchedesOxidationsmittelszuKohlenstoff

    oxidiert, whrend die Lithiumkationen eingelagert werden. Auf dieseWeise knnen

    bergangsmetalleinhohenOxidationsstufenmitKohlenstoffbeschichtetwerden,wobei

    die Oxidationsstufe fr die weitere Batterieanwendung nicht verloren geht. Dieses

    Verfahren wurde anhand folgender kristalliner und nicht kristalliner Verbindungen

    erfolgreichdemonstriert:LixV2O5,LixMoO3,H2V3O8,Li3PO4*V2O5Glser.

    Das Konzept konnte aufdieBeschichtungsund EinlagerungssquelleNaOCP erweitert

    werden.Eswirdgezeigt,dassNa+sowohl inV2O5alsauch inMoO3eingelagertwerden

  • viii

    kann und sich gleichzeitig eine polymere Beschichtung auf den reduzierten Partikeln

    ausbildet.

    Im letzten Teil dieser Arbeit werden Kathodenmaterialen untersucht, die auf dem

    Permanganatanionaufbauen.ZuerstwurdedasZersetzungsproduktvon LiMnO4unter

    den Synthesebedingungen fr Li3MnO4 (220C unter Sauerstofffluss) untersucht. Es

    zeigtesich,dasssichalseinzigeskristallinesProduktLi2MnO3bildet.DieStchiometrie

    der Zersetzungsreaktion und die Analyse des elektrochemischen Verhaltens deuten

    daraufhin,dasseineamorpheMnO2VerbindungalszweiteHauptkomponenteentsteht.

    Das Hauptproblem bei der Verwendung von permanganatbasierenden Elektroden

    materialen, istdie sehrgute Lslichkeit von LiMnO4 inden verwendetenElektrolyten.

    Aus diesem Grund solltenMischverbindungen hergestelltwerden, die die isolobalen

    BaueinheitenMnO43undPO43enthalten.Dieneu synthetisiertenMischverbindungen

    Mg3Li12(MnO4)3(MnO3)3(PO4)2undLi9(MnO4)3(PO4)sindamorphundsehrwahrscheinlich

    bivalent,d.h.Mn4+ liegtnebenMn6+vor.DieelektrischeLeitfhigkeitdieserMaterialen

    betrgt aber nur ca. 1023 S/cm. Vermutlich deshalb sind die erzielten spezifischen

    LadungenmitQ

  • ix

    Abbreviations

    LIBs LithiumIonBatteries

    PV Photovoltaic

    XRD XrayDiffraction

    DTA DifferenceThermoAnalyses

    SEM ScanningElectronMicroscopy

    TEM TransitionElectronMicroscopy

    CV CyclicVoltammetry

    EAM ElectroActiveMaterial

    SEI Solidelectrolyteinterface

    NiMH Nickelmetalhydride

    HOMO HighestOccupiedMoleculeOrbital

    LUMO LowestUnoccupiedMoleculeOrbital

    PVC PolyvinylideneChloride

    PP Polypropylene

    OCV OpenCircuitVoltage

    Si/C Siliconcarboncomposite

    CVD Chemicalvapordeposition

    NMC Li(Ni1xzMnxCoz)O2(with:1xz=1)

    LFS Ligandfieldsplitting

  • x

  • xi

    1 Introduction...........................................................................................................................1

    1.1 ModernEnergyIssues.........................................................................................1

    1.2 RequirementsforLithiumIonBatteriesinEV.....................................................3

    1.3 ElectrochemicalStorage.....................................................................................4

    1.4 RelevantDefinitionsandConcepts.....................................................................6

    1.5 ElectrochemicalMeasurements.........................................................................9

    1.6 TheLithiumIonBattery....................................................................................10

    1.6.1 Carboncoating.....................................................................................................13

    1.6.2 AnodeMaterials...................................................................................................15

    1.6.3 CathodeMaterials................................................................................................17

    1.7 InfluencesoftheLigandFieldSplittingonCathodicMaterials.........................22

    1.8 Glasses..............................................................................................................24

    1.8.1 Introduction.........................................................................................................24

    1.8.2 Structuralcomposition.........................................................................................25

    1.8.3 Properties.............................................................................................................26

    1.9 GlassCeramics..................................................................................................27

    2 VitreousundCrystalizedMaterialsintheLi2OV2O5P2O5System........................................29

    2.1 V2O5*P2O5System.............................................................................................29

    2.1.1 ExperimentalV2O5*P2O5glasses...........................................................................32

    2.1.2 StructuralCharacterizationofV2O5*P2O5glasses.................................................33

    2.1.3 ElectrochemicalCharacterizationofV2O5*P2O5glasses........................................36

    2.2 V2O5P2O5GlassCeramics.................................................................................42

    2.2.1 ElectrochemicalCharacterizationoftheGlassCeramic........................................43

    2.3 GlassformationintheLi2OV2O5P2O5System..................................................45

    2.3.1 ExperimentalLi2OV2O5P2O5System....................................................................45

    2.3.2 StructuralCharacterizationofMaterialscontainingLiVO3....................................45

    2.3.3 ElectrochemicalCharacterizationofMaterialscontainingLiVO3..........................47

    2.3.4 StructuralCharacterizationofGlassescontainingLiPO3.......................................49

    2.3.5 ElectrochemicalCharacterizationofGlassescontainingLiPO3..............................52

    2.4 ExperimentalLi3PO4V2O5System.....................................................................57

    2.4.1 StructuralCharacterizationofV2O5*Li3PO4...........................................................57

    2.4.2 ElectrochemicalCharacterizationofV2O5*Li3PO4.................................................59

    2.5 SubstitutionofV2O5byMxOy(CeO2andCo2O3)................................................63

  • xii

    2.5.1 ExperimentalV2O5Li3PO4MxOySystem................................................................63

    2.5.2 StructuralCharacterizationofV2O5Li3PO4MxOy..................................................64

    2.5.3 Electrochemicalcharacterization..........................................................................67

    2.6 ConclusionsandOutlook...................................................................................70

    3 RedoxLi2C2Coatings.............................................................................................................71

    3.1 Introduction.......................................................................................................71

    3.2 SynthesisofLi2C2...............................................................................................73

    3.3 CarboncoatedLixV2O5.......................................................................................74

    3.3.1 SynthesisofLixV2O5...............................................................................................75

    3.3.2 StructuralCharacterizationoftheHeatCoatedSamples......................................76

    3.3.3 StructuralCharacterizationoftheTribochemicalProduct....................................83

    3.3.4 ElectrochemicalCharacterizationofLixV2O5(Pmmn).........................................85

    3.3.5 ElectrochemicalCharacterizationofLi0.3V2O5andLiV2O5................................87

    3.3.6 ElectrochemicalCharacterizationofLiV2O5PreparedbytheTribochemicalMethod 91

    3.4 CarboncoatedLiFePO4......................................................................................93

    3.4.1 Experimental.........................................................................................................93

    3.4.2 CharacterizationofCarbonCoatedLiFePO4..........................................................93

    3.4.3 ElectrochemicalCharacterizationofcarboncoatedLiFePO4................................97

    3.5 CarbonCoatedLixMoO3.....................................................................................98

    3.5.1 Experimental.........................................................................................................98

    3.5.2 StructuralCharacterizationofLixMoO3.................................................................98

    3.5.3 ElectrochemicalCharacterizationofLixMoO3......................................................101

    3.6 CarbonCoatingofH2V3O8................................................................................102

    3.6.1 Experimental.......................................................................................................102

    3.6.2 StructuralCharacterizationofcarboncoatedLiH2V3O8......................................102

    3.6.3 ElectrochemicalCharacterizationofcarboncoatedLiH2V3O8.............................105

    3.7 CarbonCoatingofV2O5*P2O5andV2O5*Li3PO4Glasses...................................106

    3.7.1 Experimental.......................................................................................................106

    3.7.2 StructuralCharacterizationoftheglasscarboncomposites...............................106

    3.7.3 ElectrochemicalCharacterizationoftheGlassCarboncomposites....................109

    3.8 ConclusionandOutlook...................................................................................111

    4 RedoxCoatingsNaOCP.......................................................................................................113

    4.1 Introduction.....................................................................................................113

  • xiii

    4.2 Experimental...................................................................................................113

    4.3 ResultsandDiscussionV2O5............................................................................114

    4.4 ResultsandDiscussionMoO3..........................................................................117

    4.5 ConclusionandOutlook..................................................................................119

    5 PermanganateBasedMaterialsasCathodeMaterialsinLIBs............................................121

    5.1 Introduction....................................................................................................121

    5.2 Experimental...................................................................................................123

    5.3 CharacterizationoftheDecompositionProductofLiMnO4............................128

    5.4 Li3MnO4andRelatedCompounds...................................................................131

    5.5 CrystalStructureDeterminationof[Ca(H2O)4(MnO4)4/2]1.............................139

    5.5.1 Experimental......................................................................................................139

    5.5.2 Discussionofthestructure.................................................................................139

    5.6 Conclusions.....................................................................................................142

    6 SummaryandOutlook.......................................................................................................143

    7 Literature...........................................................................................................................145

    8 Appendix............................................................................................................................149

    8.1 ExperimentalInfrastructure............................................................................149

    8.2 RietveldrefinementofLi0.3V2O5...................................................................151

    8.3 RietveldrefinementofLi0.5V2O5...................................................................153

    8.4 CrystallographicDataofCa(MnO4)2*4H2O.....................................................155

    9 Curriculum Vitae..............................................................................................................159

  • xiv

  • 1Introduction

    1

    1 Introduction

    1.1 ModernEnergyIssuesOneofthemostdebatedquestionsinthemodernworldis:Howwillalltheenergywe

    areconsumingbesustainablyproducedandstored?Attemptsfor integratingdifferent

    renewableenergysources likephotovoltaic (PV),wind,biogas,water,andgeothermal

    energybroughtnewchallengestotheelectricgridmanagement.The incorporationof

    inconstantorsporadicenergyproductionnecessarilyasksfornewshortand longterm

    energystoragemeans.Furthermore,theCO2emissionreductionispresumedtobethe

    key towards decelerating the climate change. One of themain producers of CO2 is

    transportation in using extensively fossil fuels. That iswhy, strong efforts are being

    undertakentoreplacethecombustionenginevehicles(CEV)byfullelectricvehicles(EV)

    orbyHybridvehicles(HV).Almostallcarcompanieshavebroughthybridvehiclestothe

    market sinceToyota launched thePrius in1997 [1]. Inhybrid vehicles, relative small

    batteries are employed (300kminastandardfamilycarand2.thenecessarylifetime.

    AnotherpotentialapplicationofhighenergyLIBs is the supportof theelectricpower

    grid.Wind turbinesandphotovoltaic (PV)produceenergy inconstantly.Thus thegrid

    management has to equalize the up and downturns by switch on/off conventional

    powersources.Theseconventionalpowersourcesneedtimetorunup.Butthevoltage

  • 1.4RelevantDefinitionsandConcepts

    2

    and the frequencyof thegridhave tobe stable in the runupphase.For these short

    timescales (t

  • 1Introduction

    3

    1.2 RequirementsforLithiumIonBatteriesinEVToreachthegoalofadriverfriendlycar,thebatterypackofanEVhastostoreatleast

    50kWh(better100kWh).Thiscorrespondstoabatterypackofaround416kg(832kg),

    calculated for the specific energy of the at present, most reliable system

    LiFePO4/Graphite(120Wh/kg)[4].Reliabilityisaverychallengingpoint,becauseideally

    the life timeof thebatterypackshouldbe intherangeofthe life timeof thecar for

    severalreasonsbutmostly intermsofcostrequirements. In2010theaveragecarage

    was8.5yearsbyanyearlyaverageof18693kmtraveledforGermany[5].Therefore,an

    EVbatterypackhastobeabletopowerafamilycarover158890km,correspondingto

    530 fulldischarge/charge cycles (300 km/fulldischarge).AnEVwillbe chargedmore

    oftenthanthese530times,becauseofthesmallermeantraveldistances.However,itis

    yet difficult to judge between lower number of deep discharge and multiple half

    charge/discharges for life time expectation. Thus thebenchmarkof 2000 cycleswith

    capacity retentionof80% isbasedon200 fullbattery charges (corresponding to200

    workingdays)over10years.

    Another issuetotarget isthepriceofanEVbattery.ThecostgoalofSAFT,oneofthe

    biggestbatteryproducers inEurope, isUS$200/kWh [6],which results inUS$10000

    perbatterypack(50kWh).Atpresentcathodematerialisinvolvedby40%concerning

    weightand45%concerningthecoststothewholesystem.Accordingtothat,theupper

    pricethresholdofafabricatedcathodematerial isaboutUS$36perkg.Areductionof

    theweightofthecathode(40%)wouldclearlyreducetheoverallweightofthebattery.

    The present target for cathodematerials is a specific energy of at least 800Wh/kg

    combinedwith theabovementioned stability.Such cathodematerials can reduce the

    overallweightbyapproximately12%,correspondingto60kgfora50kWhbattery.

  • 1.4RelevantDefinitionsandConcepts

    4

    1.3 ElectrochemicalStorageThebasis foranelectrochemicalcell isa redox reaction.Contrary toa redox reaction

    done inabeaker,theoxidationandthereductionprocessesarespatiallyseparated in

    anelectrochemicalcell.Thesesocalledhalfcellsareconnectedbyan ionicconductor

    (electrolyte)andanelectricconductorequippedwithacostumerorapotentiostat.The

    electronand the charge carrier flow aredisjoined. The cathode and anode assembly

    have to be electric and ionic conductive to achieve a recombination of the charge

    carriers and the electrons in the electrodes. One of the oldest and best known

    electrochemical cell is the Daniel Element. It is based on the observation of copper

    plating on a zinc rodwhen it is inserted into a copper sulfate solution. In this very

    simplifieddescription theelectrolyteandall interfacesareneglectedand thehalfcell

    reactionsare:

    : 2 11: 2 12

    Asmentionedabove,thetwohalfcellshavetobeseparated.Thesetupconsistsofan

    anodichalfcell (Zn/Zn2+)andacathodichalfcell (Cu2+/Cu). Interfacesarerepresented

    byaverticalbarintheelectrochemicalwriting(13).

    | | | | 13

    ThespecifichalfcellpotentialE0canbecalculatedfromthethermodynamicdataofthe

    halfcell reaction. In thermodynamic equilibrium the halfcell potential is given by

    equation14.

    14

    with: G0:StandardGibbsfreeenergy;z:numberofelectrons

    F:Faradayconstant;E0:Standardelectrodepotential.

  • 1Introduction

    5

    Halfcellpotentials cannotbemeasured in an absolute sense. Therefore,a reference

    system isneeded.The standardhydrogenelectrode (SHE) isused for thispurpose:A

    platinatedplatinumelectrode isflushedwithhydrogen ina1mol/lHClwatersolution

    (T=25C,p=1bar,allactivespeciesatunityactivity).

    FornonstandardconditionstheNernstequationisusedtodeterminethepotentialof

    thehalfcellatequilibrium:

    15

    with: R:gasconstant;T:absolutetemperature; i:stoichiometriccoefficient;ai:activity

    The cell voltageofanelectrochemical cell is calculated from theelectrodepotentials

    (reductionpotentials)ofthehalfreactions.TheoveralltheoreticalcellvoltageE0ofa

    galvaniccell isobtainedbysubtracting thehalfcellpotentialof theoxidation (anode)

    fromthereductionhalfcellpotential(cathode).

    16

  • 1.4RelevantDefinitionsandConcepts

    6

    1.4 RelevantDefinitionsandConcepts

    In this chapter some general definitions of terms used in electrochemistry are

    summarized.

    ThecellvoltagecanbetheoreticallycalculatedfromtheGibbsfreeenergyofthe

    correspondingchemicalreaction (14).Thecorrespondingthermodynamicdata

    ofcomplexsolidsareverydifficulttodeterminebecausetheydependonmany

    parameters,ascoordinationsphere,oxidationstateandchemicalenvironment.

    Thuscalculatedcellvoltagesarebasedonmanyapproximations.

    Theoverpotentialiscalculatedbydividingthedifferencesofenergiesrequired

    forchargingandgainedduringdischarging, respectively,bythespecificcharge

    ofthelithiuminsertion.

    17

    The requiredchargingpotentialhas tobehigher than thedischargepotential.

    Gabersceketal.explainedthethermodynamicoriginofthishysteresis [7].The

    intrinsicoverpotentialcanbeduetodifferentfactors:

    o Theelectroactivematerial(EAM)hasahighelectricresistivity.o TheEAMhasahighionicresistivity.o A strongSEIformation (solidelectrolyte interface) increases theoverall

    resistivity.

    o A high activation barrier has to be overcome (for instance: covalentbondshavetobebrokenup).

    Thecurrentdensity j(t) isdefinedby theamountofcurrent flowing througha

    givensurface.

    / 18

  • 1Introduction

    7

    ThecapacityQistheamountofchargeobtainablebyaparticularcell.

    19

    The theoretical specific chargeqth, respectively, the theoretical chargedensity

    QV,th,describestheamountofchargepermassunitm,respectively,pervolume

    unitV, of the electro activematerial. Each can be calculated by applying the

    stoichiometricreaction.

    110

    , 111

    The practical charge q or the practical charge density QV is the total charge

    obtained fromapractical cell,dividedby the totalmassor thevolumeof the

    complete system leading to specific gravimetric or volumetric charge,

    respectively.A system in thissensecanbeacathode (EAM+binder+carbon

    additives)orananode (EAM+binder+carbonadditives)or thecompletecell

    includingelectrolyte,packaging,etc.

    1 / 112

    1 113

    Inanidealbattery,thespecificchargeforchargingisequaltothespecificcharge

    ofdischargingthecell.Inapracticalcell,oftenirreversibleprocessestakeplace.

    A wellknown and much investigated example is the SEIformation on the

    graphite anode through electrolyte decomposition under highly reducing

    conditions. The resulting specific charge differences are called irreversible

    specificchargelosses.Theycanbedefinedinabsolutevaluesorinpercentage.

    100 % 114

    Ifq(discharge)>q(charge)irreversibleprocessesproceedontheanode.

    Ifq(charge)>q(discharge)irreversibleprocessesproceedonthecathode.

  • 1.4RelevantDefinitionsandConcepts

    8

    The theoretical specificenergyth,or the theoreticalenergydensityWV,thare

    calculatedbytheproductofaverageinsertion/extractionpotentialEandtheqth.

    115, 116

    Thepractical specific energyor thepractical energydensityWV is the total

    electricenergyobtainablefromasystemdividedbythemassorthevolume.

    1 117

    1 118

    Theenergyefficiency(Faradayefficiency)ofabatteryisgivenbythequotient

    ofgainedenergyduringdischargeandspentenergyduringthecharge.

    1 % 119

    The specificpowerp is the capability todeliverpowerpermass. The specific

    poweristheproductofdischargecurrentandvoltageofthecell.Thevoltageof

    acellisdependingonthecharginglevelandonthedischargecurrent.Thusthe

    specific power decreases during the discharge by a constant current which

    movesthesystemoffthermodynamicequilibrium.

    TheCrate isameasure for thechargingordischarging time, respectively.The

    meaning of charged/discharged at 1C means that the system is charged or

    dischargedwithinanhour,respectively.Theappliedcurrentiscalculatedbythe

    productofqthandthemassoftheactivematerialmdividedbythetime(1h).For

    instance,169Aarerequiredtocharge1kgLiFePO4inonehour:

    1kg LiFePO 169Ah/kg / 1h 169 A 120

  • 1Introduction

    9

    1.5 ElectrochemicalMeasurementsThe electrochemical measurements were carried out in homemade test cells. The

    technicaldrawingofthetestcellsisdisplayedinFig.12.Thedescriptionofallpartsand

    the used materials are given Table 11. All parts that come in contact with the

    electrolytearemadefromtitaniumorpolypropylene(PP).Theworkingelectrodeswere

    preparedonthecurrentcollector3whiletheanode,madeoflithiumfoil,issupported

    bytheLisupport8.Twoseparatorswereplacedbetweentheelectrodes:

    aPP separator (Celagard)directlyon the cathode,whichpreventsan internal

    shortcutbylithiumdendrites.

    asilicaseparatorwhichsucksuptheelectrolyteandpreventsthedryingoutof

    thecell.

    Theworking electrodewas prepared as described in the corresponding subchapters.

    Thebattery testcellswereassembled insideanargon filleddrygloveboxunder inert

    conditions.

    Fig.12:Technicaldrawingoftheinhousetestcelldesign.

  • 1.6TheLithiumIonBattery

    10

    Table11:Descriptionofthetestcellparts.Polyvinylchloride(PVC).

    Number Ele2ment Material1 ContainerTop Steel2 ContainerDown Steel3 Ballbearing;Ball Steel4 Insulation PVC5 Inwardcontainer Titanium6 CurrentCollector Titanium7 Tube PP8 LithiumSupport Titanium9 PPSealing PP

    Galvanostatic and potentiodynamic measurements were monitored by Astrol, a

    program from Astrol Electronic AG. A potentiostat (BATSMAL battery cycler) was

    connectedusingaserialcabletoapersonalcomputerviaaserial/analogconverter.All

    potentials,mentionedisthiswork,arerelatedtoLi/Li+asanode.

    1.6 TheLithiumIonBatteryLithiumisoneofthelightestelementsandhasthelowestredoxpotential.Thusitsuse

    inbatteries isobvious,andtherefore,thehistoryofLiBs is longandhasstartedabout

    1950 [8]. One of themain observationswas that Limetal is stable in nonaqueous

    electrolytesasmolten saltsororganic solvents suchaspropylene carbonate [9].This

    stability is brought about by an SEIformationwhich allows Li+ to pass and go into

    solution.Alreadyinthe late1960sandearly1970sprimaryLIBswererelativelyquickly

    brought to the market. Some of these systems are still in use and/or under

    investigation, such as the Lithium/manganese oxide (Li/MnO2) or lithium polycarbon

    monoflouride (Li/CFx) [10] systems.The commercializationof the secondaryLIBs took

    much more time. The main problems were strong SEI and dendrite formation,

    respectively,ontheLimetalanode.Inaddition,theLimetalanodesposedaninherent

    riskofathermalrunawayreaction,whichentersintoaseveresafetyproblem.Thenext

    step forwardwas introduced byA. Yoshino, assembling the so called Rocking chair

    batteryand filingapatent [3].Allmaterials,Yoshinoused,wereknownatthattime,

    butA. Yoshinowas the firstwho combined the known parts to aworking and cost

    efficientsystem:

  • 1Introduction

    11

    cathode:LiCoO2,inventedbyGoodenoughetal.in1979[11]

    Electrolyte:Propylenecarbonateassolvent,knownsincethe1960th

    Anode:carbonaceousmaterials,suchasgraphite,inventedbyYazamiin1983[12]

    Safety tests of the assembled cell were the last very important step, before the

    commercialization began. Yoshino proved the safety of the assembled battery via

    dropping an iron lump on a LIB. The battery did not ignite, and the Rockingchair

    batterywasfirstlybroughttomarketbySONYCorp.in1991,andbyajointventureof

    A.KaseiandToshibain1992.

    ThisLithiumIonBatterysetupiscalledrockingchairsystembecausethelithiumions

    are transferred back and forth between the cathodic and anodic intercalation hosts,

    theirchairs[13](Fig.13).

    Fig.13:Schematicillustrationoftherockingchairbatteryinthedischargestate.

    TheRockingchairbatteryisillustratedinFig.13inthedischargestate.Thesetupcan

    be easily assembled because LiCoO2 and Graphite are stable in air at ambient

    conditions.When a charge current is applied, the LiCoO2 is oxidized (121) and the

    Graphite is reduced (122). The Liions aremoving through the electrolytewhile the

    electrons are transported through the outer electric connection until the battery is

  • 1.6TheLithiumIonBattery

    12

    chargedtoLiC6andLi0.5CoO2.Duringthedischarge,thereactionproceeds intheother

    direction(fromrightto left)anddelivers itsenergy.Allprocesses,thedelithiationand

    the lithiationoftheanodeandcathodematerialhavetobereversibleprocesseswith

    reasonablekineticandthermodynamicparameters.

    : 121: 122

    For both, charging and discharging lithium cations and electrons have to have

    reasonable mobility, otherwise internal resistances result and polarization occurs.

    Unfortunately,mostcathodematerialsaresemiconductors,suchasLiCoO2,LiMn2O4,or

    insulators as LiFePO4. In that case an electrode compositehas tobedesignedwhich

    exhibitselectronicaswellasionicconductivitiesinsufficientmanner.Ifthecompositeis

    preparedfromsphericalparticles ithastoconsistofat least16vol.%ofelectronically

    conductiveadditives,aspredictedbypercolationtheory[14].Graphiteandnanosized

    amorphouscarbon(SuperP) ina1:3ratioarethemostcommonconductiveadditives,

    usedinLIB.Theoptimalcarbonwt.%foraLiFePO4compositeelectrodewasdetermined

    tobe1011wt.%by severalgroups.Thisamount is inaccordancewith thepredicted

    16vol.%,asdemonstratedinEquation123.

    16 .% 2.116 .% 2.1 84 .% 3.52 /100 10.2 %

    123

    Anotherprocessthathastobecontrolledisthevolumeexpansions/contractionsofthe

    electrodesduringtheinsertion/desertionprocesses.Thisvolumeworkshouldideallybe

    assmallaspossibleto inhibitcracksandcontact losses insidetheelectrodes.Abinder

    (forinstancepolyvinylidenefluoride(PVDF))isneededtoformaflexiblenetwork,which

    keeps the electrode composite together during the volumetric expansion and

    contractionoftheactivematerial.SEMpicturesofanelectrodecompositeconsistingof

    theactivematerials,SuperP,Graphite,andPVDFareshowninFig.14.

  • 1Introduction

    13

    Fig.14:SEMimageofanelectrodecomposite.

    Inaddition,theLiIonconductivityandtheelectronicconductivityofanactivematerial

    are important. These are intrinsic properties of thematerials. The reduction of the

    particlessizetotherangeofthehoppinglengthofanelectronistheonlypossibilityto

    change these intrinsicproperties.Thestrongdevelopmentof thenanotechnologyhas

    made applicable even insulators as possible cathode materials, such as LiFePO4 or

    LiFeSO4F.

    Further improvementcanbeachievedby coating theelectroactiveparticleswithan

    electronicand/orionicconductiveshell,suchasamorphouscarbon.

    1.6.1 CarboncoatingDuring thedevelopmentof thecathodematerialLiFePO4, thestrongenhancementof

    theelectrochemicalbehaviorofnanoscopicLiFePO4andonlyofthenanoscopicform

    throughacarboncoatingwasdiscoveredin2001[15].

    InFig.15 theelectrochemicalbehaviorofuncoated LiFePO4 (red curves)and carbon

    coated LiFePO4 (blue curves) are compared. Both electrodes are containing LiFePO4

    from the same batch of a LiFePO4 synthesis. Carbon coating was done via lactose

    decomposition, according to the procedure described by Fotedar [16]. After proper

    coating the capacityof thematerialmassively increases from60Ah/kg to148Ah/kg,

    correspondingto88%ofqth.Inaddition,theoverpotentialdecreasessubstantially.

  • 1.6TheLithiumIonBattery

    14

    Fig.15:Electrochemicalcyclingofpure (redcurves)andcarboncoatedLiFePO4 (bluecurves);theoreticalcapacity=170Ah/kg.

    Fourmain effects of the carbon coating have been elucidated: 1. reduction of Fe3+

    impurities to Fe2+ during synthesis, 2. prevention ofOstwald ripening, 3. increase of

    electricconductivitybetweenLiFePO4particlesandthecurrentcollector,aswellas4.

    enhancementofLiionmobility (4) [15,1721].Variouscarboncoatingmethodswere

    investigatedusingdifferentcarbonsources.Allofthemarebasedonorganicprecursor

    decomposition,suchassugars[22],polymers[23],orglycols[24]ininertatmosphere.

    Whensuchcarboncoatingmethodsareappliedtotransitionmetaloxides,theoxides

    are reduced eventually down to the elementalmetals. For example, themixture of

    Fe3O4 and PVC (1:1 by weight) reacts to carbon coated Fe above 580C [25].

    Therefore,suchreducingcarboncoatingmethodsarenotfeasibleforcathodematerials

    inhighoxidationstates.Theonlypossibleprocedureofcoatingtransitionmetaloxides

    inhighoxidationstateswasreportedbyChenetal.[26].Theyusedmesoporouscarbon

    asa template for carbon coatedV2O5nanoparticles.TheV2O5wasmelted inside the

    carbontemplate,followedbypartialremovalofthecarboninairat600C.

    Anotherapplication fieldof carbon coatedmaterials isphotocatalysis.A carbon shell

    leadstoastrongincreaseofcatalyticallyactivesurfaceareaoftheparticles.Thishigher

  • 1Introduction

    15

    surfaceareabringsaboutabetterabsorbanceofthepollutants.Asanexample,carbon

    coatedTiO2showsastronglyimprovedactivitycomparedtopureTiO2particles[2729].

    1.6.2 AnodeMaterials

    Graphite

    SincethefirstLiBhasbeenbroughttomarket,graphitewasusedastheanodematerial.

    At themoment graphite shows the best combination of the relevant properties for

    anode materials due to its low price, easy handling, reasonable specific charge

    (372Ah/kg)combinedwitha low lithiumextractionpotential (0.3V)andaverygood

    cyclingperformance(>1000cycles,[30]).However,therelativelylowspecificchargeof

    graphite compared to other possible anode materials, for instance silicon with

    4200Ah/kg, leaves enough space for improvements. Thus many alternative anode

    materialsareunderinvestigation.

    Metaloxides

    Titanium dioxide inserts up to one lithium equivalent reversibly (335 Ah/kg). The

    capacity retention (80% over 100 cycles) is good. The main drawback is the high

    average lithium extractionpotentialof 1.7V vs. Li. Thus the cell averagepotential is

    1.4V lower than in a cellwith a graphitic anode. Themain advantage of this high

    extraction potential is the possible replacement of the copper current collector by

    aluminumfoil,whichwouldlowerthewholemassofthebatterysubstantially.

    Snbasedanodematerialshavebeenintensivelystudiedinthelastyears[31,32].Inone

    route,theactiveSnmaterialcanbeformedinsitubyelectrochemicalreductionofSnO2

    (Eq.124). The thus formed Snspecies intercalates up to 4.2 lithium equivalents,

    corresponding to 900 Ah/kg (Eq.125). Carbon coated SnO2 electrodes exhibit good

    cycling properties. The capacity retention reaches 450 Ah/kg over 100 cycles (50%

    retention)[33].

    4 4 124 0 4.4 125

  • 1.6TheLithiumIonBattery

    16

    Nanoscopictransitionmetaloxides(MxOy;M=Fe,Co,Mo,etc.)canundergoconversion

    reactions (126). The reversibility of these reactions is provided due to the high

    reactivityoftheinsituformedmetalandLi2Onanoparticles.Hematite(Fe2O3)shows

    a reversible insertion capacity of up to 1000Ah/kg in the 2.5 to 0.5 V range [34].

    AnotherrepresentativeoftheseconversionmaterialsisCo3O4thatexhibits1000Ah/kg

    over50cycles[35].

    2 126

    Siliconbasedanodes

    Siliconhasthehighestknowntheoreticalspecificcharge(4200Ah/kg)duetoitsability

    of forming a series of alloysup to Li21Si5. Thus intensive researchhasbeendoneon

    siliconbasedanodematerialsinthelastthirtyyears[36].Butstrongcapacityfadinghas

    prevented thecommercialization, so far.One reason is thehighvolumeexpansionof

    400%during lithium insertion.Siliconpowderanodeswithmicrometersizedparticles

    showaspecific insertionchargeclose tothe theoreticalvalue,but the firstextraction

    yieldsbackonly1/3ofthespecificchargeoftheloadinghalfcycle[37].Usageofnano

    scalesiliconpowdersreducesthe irreversiblespecificchargestrongly,butthecapacity

    fadingwasnotimproved[38].Inactivematrixmaterialswithahighmechanicalstrength,

    suchasTiN,TiB2,SiC,couldnotresistthevolumeexpansion forceofLixSi,theanodes

    werepulverizedandfadingremainedsimilartothatofpuresiliconelectrodes[39].SiOx

    compoundsshowamorestablecyclingbehavior(800Ah/kgover25cycles),butmostof

    the specific charge is gained only above 1.5V against lithiummetal [40]. The actual

    focus liesonSilicon/carboncomposites (Si/C) [41].Manydifferentsynthesis routesof

    Si/Ccompositeshavebeendescribed:pyrolysis [42],solgelsynthesis[43],mechanical

    milling[44]andchemicalvapordeposition[45].A.Magasinskidemonstratesthatsilicon

    anodescanactasthenextgenerationofanodicmaterials.HetestedaSi/Ccomposite

    electrodewith1600Ah/kgover100cycles.Theactivematerialwasprocessedinatwo

    stepCVDprocess:(1)Sidepositedonannealedcarbonblack,(2)carbonCVDonthefirst

    composite[46].

  • 1Introduction

    17

    1.6.3 CathodeMaterialsNaFeO2

    LiCoO2 is themost employed compound of the layered NaFeO2 structure type in

    batteryrelatedapplications.Furthermore, itstill isthemostusedcathodematerials in

    commercialLIBs.Thelithiuminsertion/desertionreactioniswellcharacterized.Thehigh

    reversibility isbasedon its layeredstructure(spacegroupR3m),because lithium ions

    can intercalate/deintercalate between/from the interlayer spaces. Its high discharge

    voltage(4.2V)incombinationwithaspecificchargeof140Ah/kgleadstoaquitehigh

    specificenergyof590Wh/kg.But,thehighvoltagecausessafetyconcerns,becausean

    overchargecan leadtoan ignitionofthebattery [47,48]. Inaddition,LiCoO2 iscostly

    whichmakesbigbatterypackshighlyexpensive.Furthermore,thecyclingperformances

    of LiCoO2 cathodes are not good enough for car applications (2000 cycleswith 80%

    energy retention areby farnot reached). The electrode degradationwas thoroughly

    investigatedandhasmanyreasons.Twomainpointsare:(1)duringdeepdischargeCo2+

    cations can dissolve in the electrolyte [49]; (2) LiCoO2 shows a strong volumework

    during thedesertion/insertionprocess.Thisexpansionappliesaphysicalstress to the

    cathode,whichcausescracksandcontactlossesintheelectrodecomposite[50].

    LiNiO2alsocrystallizeswiththeNaFeO2structure.Itselectrochemicalperformanceis

    worsethanthatoftheCobaltoxide.Itexhibitsstrongcapacityfadingwhichoriginates

    fromadisorderingoftheNications intothe interlayerspace[51].However,the lower

    costs and the higher specific capacity of the material make it attractive for

    commercialization.

    ThemostpromisingcandidatesoftheNaFeO2structurefamilyaretheNMCmaterials

    (Li(Ni1xzMnxCoz)O2 (with: 1xz=1)with energy densities up to 850Wh/kg [52]. These

    compoundsclasswasinventedbyM.ColucciaatETHZrichin2000[53].Manygroups

    work on the improvement of their cyclability. Surface treatment like coatings with

    CoPO4[54]orpartialreplacementofthetransitionmetalsbymaingroupelements(Al)

    [55]resultinamorestablecathodematerial.Furtherimprovementcanbeachievedby

    using themixed cathode0.4Li2MnO3*0.6LiMn0.4Ni0.2Co0.2O2 [34].The specific charge

    increasesto200250Ah/kgwithacapacityretentionof100%after50cycles.

  • 1.6TheLithiumIonBattery

    18

    Spinel

    The spinel LiMn2O4 is another well investigated cathode material. The lithium ions

    occupythetetrahedralpositionsandthusthestructureremainsstableduringtheredox

    process.Themainadvantageisthe lowpriceofthematerial.Onthenegativesiteare,

    thelowenergydensity(300Wh/kg)andtheoccurrenceofirreversiblephasetransitions

    duringcycling[56],whichcausesirreversiblecapacitylosses.Carboncoatingviasucrose

    decomposition improves the rate capability strongly so that chargingwithinminutes

    becomespossible [57].Replacementofmanganesebynickel [58]and chromium [59]

    increasesthecyclingstability,too.Inaddition,chromiumsubstitutionraisestheaverage

    voltageto4.5VagainstLimetal(590Wh/kg).

    Phosphates

    At present, LiFePO4 exhibits promising characteristics for large scale battery

    applications, such as grid support or powering electric vehicles, but suffers from

    relatively lowspecificcapacity.SincecarboncoatingmethodsofLiFePO4areavailable,

    itselectrochemicalperformance(170Ah/kgat3.4V,Fig.15) iscomparabletothatof

    LiCoO2.(Thestronginfluenceofthecarboncoatinganddifferentpreparationmethods

    are discussed in Chapter 1.6.1) In addition, its low production costs (25 US$ per

    kilogram), nontoxicity, environmental friendliness and very good electrochemical

    cyclabilitycombinedwithitsreasonablespecificenergy(560Wh/kg),pusheditintothe

    focus ofmany scientists and battery companies [60]. The described syntheses vary

    from: (1) classical solidstatemethods (cheap, larger particles, lower electrochemical

    activity)[61];(2)solgelroutes(highquality,verypurematerial,difficultscaleup)[62];

    (3) microwave assisted syntheses (costefficient, insitu carbon coating via glucose

    decomposition,goodqualitymaterial)[63];(4)hydrothermalmethods(timeconsuming,

    less output, high quality) [64]; (5) carbothermal reduction strategies (cheap iron

    precursorsFe2O3, insitucarboncoatingviaglucosedecomposition, lowspecificcharge

    133 Ah/kg, due to Fe3+ impurities)[65]; and (6) Spray pyrolysis approaches (costly,

    difficultconditionadjustment,highquality)[66].

    LiCoPO4 and LiNiPO4 exhibit higher discharge voltages at 4.8V respectively 5.1V

    compared to LiFePO4.Thus theymaybecome interesting cathodesmaterials forhigh

  • 1Introduction

    19

    power applications [67].Many pyrophosphates andmixed phosphate/pyrophosphate

    compounds of V,Mn, Fe, Co and Ni have been characterized and electrochemically

    tested.Inthepyrophosphatecompounds(P2O74),thelithiuminsertionvoltageisclearly

    increased [68],but theworkingpotential is touching the thresholdof theelectrolyte

    stabilitywindow(upto5.2V).

    Vanadiumoxides

    Vanadiumoxides,especiallyV2O5and LiV3O8,arewell characterizedpossible cathode

    materials[69].In1992Westetal.reportedthatelectrochemicallithiumintercalationof

    up to three Li equivalentsper formulaunit ispossible in thehostV2O5(space group

    Pmmn)[70]. Inaddition, several intercalated lithiumvanadiumoxides canbeusedas

    cathodematerials: LixV2O5 (0.3

  • 1.6TheLithiumIonBattery

    20

    Fig.16:Discharging/chargingpotentialcurvesofV2O5.

    LiV2O5 (space group A12/m1) cycles reversibly in the x = 0.15 to 2.0 range. Two

    distinctplateausoccurat3.6and2.4V.Thespecificchargeretentionishigh(97%)over

    thefirst15cycles.Onfurthercycling,degradationoftheelectrodetakesplace[72].

    Li0.3V2O5 (space group Pnma) exhibits five different lithium insertion processes,

    correspondingtoanequalnumberofphasetransitions,inthe4.5to1.5voltagerange.

    Theobservedcapacityof320Ah/kgcorresponds toanexchangeofabout2.5 lithium

    equivalentsperformulaunit[73].

    The electrochemical behavior of LiV3O8 has very thoroughly been investigated. It

    exhibitsaspecificchargewith280Ah/kgatanaverageinsertionvoltageof2.8V.Four

    very characteristic reductionprocessesareobservable in the small2.9 to2.5 voltage

    window[74].

    Allvanadiumbasedcathodematerialsdoesnotshowhighcapacity retentionsmainly

    duetoastrongSEIformationonthecathode`ssurface.ThiscapacityfadingduetoSEI

    growth,wasnicelyillustratedonthebasisofthecathodematerialLi1.1V3O8byTanguyet

    al[75].

  • 1Introduction

    21

    Othercathodematerials

    Transitionmetalfluorosulfatesarebeing intensively investigatedascathodematerials.

    Thesematerialsshowhigherdischargepotentialsthanthecorrespondingphosphatesor

    oxides. But the specific charges are significantly lower due to the largermolecular

    weight[76].Transitionmetalsilicateshavebeenattractedsignificantattentioninrecent

    years.ThehighlyLichargedsilicateopensthepossibilitytousemorethanoneoxidation

    state,asitistheoreticallypredictedforLi2FeSiO4[77].

  • 1.8Glasses

    22

    1.7 InfluencesoftheLigandFieldSplittingonCathodicMaterialsThe ligand field splitting (LFS)hasa strong influenceofmaterials`properties, suchas

    crystalstructures,colorsandredoxpotentials.Itiswellknownthat,theholeoccupation

    in a transition metal spinel can be explained by the ligand field theory, and the

    formation of an inverse or a normal spinel can be predicted [78]. Furthermore, the

    redoxpotentialsof complexes are affected stronglybydifferent ligand environments

    [79].

    The ligand fieldsplittinghas thestrongesteffectontheHOMOLUMOgap.Theredox

    potentialofanycompound isgivenbytherequiredenergy forremovingoneelectron

    outoftheHOMOofthereducedspecies.Duringthereductionprocess,theHOMOof

    thereducedspeciesisconvertedtotheLUMOoftheoxidizedspeciesandconsecutively

    filledduringthereductionprocess.Theexplanationoftheredoxpotentialsofdissolved

    complexes by LFS is established, but the influence on solid materials is not often

    mentioned. In Fig. 17 the LFS of the redox processes Mn3+ to Mn5+ octahedral

    coordinated(left)andMn5+toMn7+tetrahedralcoordinated(right)arecompared.The

    oxidationofoctahedrallycoordinatedMn3+toMn4+ leads toa removalofanelectron

    from the antibonding eg orbitals. The required potential has experimentally been

    determinedtobeabout4VagainstLimetalinmanycompounds,suchasLiMn2O4[56].

    Thenextoxidation step (Mn4+/Mn5+,octahedral) requires the removalofan electron

    outofthedeeper lyingt2gorbital.That iswhytheexpectedpotentialofthisoxidation

    step(Mn4+/Mn5+,octahedral)hastobemuchhigherthanthe4Vcorrespondingtothe

    Mn3+/Mn4+pair.Thisoxidation isnot feasible inhithertoknownelectrolytes,because

    the oxidation potential,Mn4+/Mn5+ in octahedral coordinated, has to be above the

    stabilitywindowofsuchcommonelectrolytes.

    A tetrahedral ligand field originates a lower splitting. The HOMO of Mn5+,6+,7+

    (tetrahedral) has a higher energy compared to the HOMO ofMn4+ (octahedral), as

    shown inFig.17right.TheredoxpotentialofMnO4insolution(3.85V)iswellknown

    [79]. This value arises to the removalof the last electronoutof the egorbitals. The

    redoxpotentialofMn5+/Mn6+isexpectedtobesimilarbecausetheelectronisremoved

    from the identicalorbital set. For comparison, the solution redoxpotential is 3.75V

    [79]. Consequently, the oxidation of Mn5+ tetrahedrally coordinated to Mn6+

  • 1Introduction

    23

    tetrahedrallycoordinatedhasaslightly lowerpotentialthantheoxidationMn+6/Mn7+.

    ThesepotentialsarefeasibleinthestandardLIBelectrolytes.Insummary,tetrahedrally

    coordinatedmanganese compoundshave tobe considered, ifhigheroxidation states

    thanMn4+,shouldbeemployed.TheseconsiderationscanbeappliedtotheCr3+/4+to6+

    redoxcouples,too.

    Thesocalledfloatingvoltage,thealmost linearvoltagedropduringelectrochemical

    lithium insertionofnoncrystallinematerials, canbealso explained via LFS theory.A

    slightshiftofthecoordinationgeometryofthecation leadstoadistortionandthusa

    changeofbindingenergyoftheelectronicvalencestates.Astrongerdistortioncausesa

    lower LUMO of the orbital set, which brings about a slightly reduced reduction

    potential.

    Fig. 17: Ligand field splitting and redox processes: leftMn3+ toMn5+ in octahedralcoordination; right: transition Mn5+ to Mn7+ in tetrahedral coordination. Forconvenience,theenergybarycenterisdepictedasthesame,althoughitmaynotbeforthe two typesof coordination.Thehorizontaldotted linedisplays thehypothetical Lipotential.

  • 1.8Glasses

    24

    1.8 Glasses

    1.8.1 IntroductionTheborderbetween vitreousandamorphousmaterials isnot consistentlydefined in

    literature. For clarification of the glossary, I present the mostly used definition in

    literatureinthissubchapter.

    One of the pioneers of glass researchwasG. Tammanwho studied this field in the

    beginningofthe20thcentury[80].Hestartshisbookwiththefollowingdefinition:

    ImGlaszustandbefindendiefesten,nichtkristallisiertenStoffe

    Theglassystateconcernssolidbutnotcrystallizedmaterials.

    Obviously,thediscriminationbetweenvitreousandamorphousmaterialsisnotpossible

    by thisdefinition. In the followingyears thebehaviorof theviscosityvs. temperature

    was included in some definitions. But theywere so difficultly constructed that they

    couldnotsucceedasageneraldefinition.Untilthisdaythevaliddefinition isgivenby

    theAmericanSocietyforTestingMaterials:

    Aglassisaninorganicproductwhichmeltsandresolidifiesmainlywithout

    crystallization.

    The Deutsches Intstitut fr Normen (DIN) adopted this definition, too. But this

    definitionexcludesorganicglassesandthose inorganicglassessynthesizedviathesol

    gelmethod,becausetheyareneither inorganicnorcooledfromamelt.Todistinguish

    betweenthevitreousmaterials,presentedinChapter2,andtheamorphousmaterials,

    presentedinChapter5,Iwouldliketorefertothisofficialdefinitionbutmodifyitto:

    Avitreousmaterialisanamorphoussolidthatexhibitsaglasstransitiontemperature.It

    isfurthermorecharacterizedbyacollectivesurfacetension.

    This definition also includes all vitreous materials, which are synthesized by low

    temperaturemethods,but itexcludesamorphousmaterials, forexample thosewhich

    decomposebeforetheymelt.Thisgeneraldefinitionallowsthediscriminationbetween

    vitreous(presentedinChapter2)andamorphouscompounds(discussedinChapter5).

  • 1Introduction

    25

    1.8.2 StructuralCompositionThe network theory given by W. J. Zachariasen and corroborated by B.E. Warren

    discriminatesbetweenthreedifferentbuildingunits[81].

    Networkformers,suchasSi,B,Ge,As,(aschalkogenides)andBe(asBeF2)etc.

    Theirtypicalcoordinationnumbersare3or4.Thesematerialsshouldbeableto

    form polyhedral building unitswhich do not allow for denser packing in the

    crystallinestate.

    Networkmodifiers:Na,K,Ca,Baetc.TypicalcoordinationnumbersareZ6,but

    coordination can change easily. These cations loosen the network up and

    saturatetheterminaloxygens.

    Metaloxides,suchasMxOyM=Al,V,Mg,Zn,Pb,Be,Nb,Ta.Theirtypicalmetal

    coordinationnumbersare46.Theseoxidescanacteitherasnetworkformeror

    network modifier, but they cannot form a glass only by themselves, as the

    networkformerscando.

    In Fig. 18 crystalline SiO2, amorphous SiO2 glass and a sodium silicate glass are

    compared.Socalledhigh (spacegroupP6222)and lowquartz (spacegroupP3221)

    arecrystallineorderedphaseswithtetrahedraloxygencoordinationofsilicon.The

    change from the crystalline to the glassy state is due to a denser packing in the

    glassy stateaccompaniedby introductionof irregularitiesof theSiOring systems

    eitherbydistortionorby ringextensionorsizereduction. Incontrast,thesodium

    silicate glasses do not contain ring arrangements but their local structures are

    dominatedby silicate chainsand their terminaloxygenatomsare coordinatedby

    sodium cations (networkmodifier). As alreadymentioned, translation symmetry

    doesnotexistinvitreousmaterials.Theabsenceoftranslationsymmetryaffectsthe

    habitusofaglassstrongly,because itcanadaptanygeometry.Consequentlythey

    aremissinglongrangeorderandabsenceofBraggreflections.

  • 1.8Glasses

    26

    Fig. 18: Comparison of the interlayer structure of crystalline quartz, SiO2 glass andsodiumsilicateglass.

    1.8.3 PropertiesTwopropertiesofglassesareverycharacteristic:thespecificheatandtheviscosity.The

    specificheatcpisgivenby

    127

    The specific heat vs. temperature relations of a glass (continuous line) and its

    correspondingcrystalphase(dottedline)areshowninFig.19.Abovethemeltingpoint

    an identicalmeltformsfromboth,glassandcrystalphase.Thetwocpcurvesare lying

    on topofeachother.At themeltingpointFp, the curvesdiffer strongly.The specific

    heatofthecrystalphaseshowsastep,asit istypicalforafirstorderphasetransition.

    Unlike,thespecificheatoftheglasscontinuesthelineardecrease,anundercooledmelt

    is formed (FpTb). In the softening interval (TbTa) theundercooledmelt freezesunder

    continuousdecreaseof the specificheat.The inflectionpoint`s temperature is called

    glasstransitiontemperatureTg.Notuntiltemperatureclosetotheabsolutezeropoint,

    thespecificheatsoftheglassandcrystallinephasereach thesamevalueandcomply

    with theDebyeT3 law.Thehigher specificheatof the glass causes ahigher intrinsic

    energy and therefore, the glass is always ametastable compound compared to the

    correspondingcrystalphase.

  • 1Introduction

    27

    Fig.19:Comparisonofthespecificheatvs.temperaturerelationsofaglass(continuousblack line) and the corresponding crystalphasewith a sharpphase transition (x). Ta:Startofthesofteninginterval,Tg:glasstransitiontemperature,Tb:endofthesofteninginterval,Fp:meltingpointofthecrystallinephase.

    Onheating,inthesofteningintervalbetweenTaandTbtheviscosityofaglassdecreases

    with increasing temperature. That iswhy one can form glasses already below their

    meltingpoints.Thedecreaseofviscositycanbeexplainedbyacontinuousmaceration

    of the network, because fixed atom positions do not exist (contrary to the crystal

    phase).Thesedifferentviscositiesoftheglassescanbefrozen inbyfastquenching,so

    that the same glass can show different densities, depending on the conditions of

    quenching. This property is called influence of the glass history and it is very

    characteristicofvitreousmaterials.

    1.9 GlassCeramicsGlass ceramics consistofat leastoneormore crystallinephasesandat leastoneor

    moreglassphases.Thecompositeresultsfromacontrolledcoolingprocesswithpartial

    crystallizationinmeltorglassmatrix[82].Theaimofthecontrolledcrystallizationisthe

    segregation of crystals out of the noncrystalline matrix. Thus an arrangement of

    crystallites and vitreous particles can be achieved that shows unique properties

    differentfromjustamixtureofthesamecrystallitesandthesameglassyparticles.The

  • 1.8Glasses

    28

    keyvariablesarecrystallitesizes,theirhabitusandthetypeofthecrystallitesplusthe

    interconnectednessbetweenglassyandcrystallineareas.Thecrystallizationofaglass

    startsattheglasstransitiontemperatureTg(Fig.110).Themaximumofthenucleation

    rate Ioccursata temperature lower than themaximumof thecrystalgrowth rateV.

    Thenucleation is impossiblewithintheOswaldMiersarea,becausenonucleuscanbe

    formed here.With the help of this information an optimized furnace profile can be

    planed.For Instance: ifmanynanometercrystallitesarerequired,atemperatureclose

    toTgandashortreactiontimeshouldbechosentoyieldahighnucleationrateatalow

    crystalgrowthrate.

    Fig.110:CrystalgrowthrateVandnucleationrateIasafunctionofthetemperature.

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    29

    2 VitreousundCrystalizedMaterialsintheLi2OV2O5P2O5System

    2.1 V2O5*P2O5SystemThemain challenge in using V2O5 as positive electrodematerial for LIBs is the poor

    cyclability,asmentionedinChapter1.6.3.Manyresearcherswerefocusedoncrystalline

    materials, but the approach of embedding V2O5 into a glass were not studied

    intensively, yet. E.Roscoe described the glass formation in the V2O5*P2O5 system in

    1868forthe firsttime.Hereportedglassformation inmeltswithat least1wt.%P2O5

    [83,84].

    G. Tamman and E. Jenckel investigated this system intensively and observed glass

    formationwithatleast5wt.%P2O5.Inaddition,theydiscussedthattheglassformation

    isaccompaniedbyoxygen lossand consequentlybyapartial reductionofV5+ toV4+.

    Furthermore, they described a positive dependency between the applied pressure

    duringquenchingandtheresultingdensityoftheglass[85].Aroundthirtyyears later,

    P.L.Bayntonetal.determinedtheelectricpropertiesandobservedsemiconductivity,

    as it was shown for molten V2O5 by Yurkov before [86]. The measured electric

    conductivitieswereinthe4.8*104to5.6*105Scm1rangeforcomposition7090mole

    percentage V2O5 [87, 88]. A common condition for an increase of conductivity and

    occurrenceof semi conductingbehavior is the coexistenceofmore thanone valence

    statesofthetransitionmetalionsinsuchaglass.Suchdifferentoxidationsstatescanbe

    causedbyoxygen lossduring theannealingprocess,asdescribedbyTamman.These

    early findings of semi conductivity were the basis of intensive investigation of the

    thermopowerofglassesbymanyresearchgroupsinthe50sand60s[8991].

    In 1985, Sakurai et al. published a short communication about the electrochemical

    behavioroftheV2O5*P2O5glassesinLIBs[92]andpatentedthesevitreouscompounds

    in1987 [93].Theyalsopublisheda reportabout thexV2O5*yP2O5glasses inLIBs,and

    explained the almost linear voltagedevelopmentduringdischarges and charges.This

    behaviorisverycharacteristicofnoncrystallinematerialsandarisesfromthestructural

    randomness (lack of long range order, [94]). Also ligand field splitting helps to

    understand this phenomenon of gradual voltage change. Any change of the

    coordinationspherewillcauseacorrespondingchangeoftheelectrochemicalpotential.

  • 2.1V2O5*P2O5System

    30

    Suchchangesasfoundinglassesmaybeadvantageousforelectrochemicalapplications,

    because there are no defined lattice sites, the host network can adjustmore easily

    during the lithium insertion/desertion.Consequently,potential changes appear tobe

    almostlinearwiththeongoinginsertion.

    Sakuraietal.describedanirreversiblecathodicspecificchargeduringthefirstcycledue

    to trapped lithium ions in the vitreous network. They claim that these ions act as

    additional networkmodifiers [5] and reported a specific charge of 500Ah/kg in the

    rangeof1.04.0VversusLi/Li+forthefirstdischarge.Thespecificchargeofthesecond

    cyclereachedonly350Ah/kgandthecapacityretentionwasverypoorinthisextended

    voltage range. However, the same glassy electrodematerial tested in the 2.0 3.5

    voltagerangedisplayed100%specificcharge retentionof150Ah/kg fromthe10thto

    the600thcycle.

    Inthefollowingyears,manyresearcherswereagainfocusedontheexactdetermination

    oftheglassformingregionaswellastheelectronicandionicconductivitiesofthepure

    xV2O5*yP2O5,relatedglassescontainingnetworkmodifiersuchasLi2O,Na2O,Ba2Oetc.

    [95]andnanocrystallizedglassceramics[96,97].

    Takahashietal.exploredtheglassformingregionandtheelectricalconductivityinthe

    vitreousandcrystallizedLi2OV2O5P2O5system.Theyreportedonlyasmallinfluenceon

    theelectricalconductivitybythelithiumcontent,iftheV2O5/P2O5ratioiskeptconstant.

    Theymeasuredconductivitiesof5*103S/cm(10mol%Li2O)and9*103S/cm(20mol%

    Li2O)ataV2O5/P2O5ratio9:1[96,98].

    Vanadium pentoxide and vanadiumoxiderich vanadophosphates have been often

    testedascathodematerials inLIBsdue to theirhigh theoreticalenergydensities [99]

    butwith lowcyclingstabilities.TheembeddingofV2O5 inphosphateglassescouldbe

    thekeytostabilizetheV2O5electrode.ThetheoreticalspecificchargeofV2O5basedon

    the insertion of three equivalents lithium per formula unit V2O5 is 441Ah/kg.

    Accordingly,thetheoreticalspecificchargesoftheglassesarecalculatedviatheproduct

    ofwt.%V2O5oftheglassandthetheoreticalspecificchargeofpureV2O5.Forexample,

    the theoretical specific charge of a glass with 80 wt.% V2O5 is calculated to be

    350Ah/kg. The average discharge voltage is expected to be similar to the average

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    31

    dischargevoltage2.7VofpureV2O5.Consequently,thetheoreticalspecificenergy(945

    Wh/kg)ofsuchglassesdoesalmostdoublethespecificenergyofLiFePO4(560Wh/kg).

    This iswhy, theycould serveas thenextgenerationofcathodematerials inLIBsand

    consequentlyhavebeeninvestigatedinthisworkwhichreportsonthemicrostructure

    aswellasontheelectrochemicalbehaviorofglassesandglassceramicsofthenominal

    systemxV2O5*yP2O5*zLi2O. It isshown that the irreversiblespecificcharge in the first

    cycle,reportedbySakurai,canberelatedtotheformationofanorthophosphatephase.

    Intheendof thischapter, itwillbeshownthat theuseofLi3PO4asnetwork forming

    agentpreventsthisirreversibleprocess.

  • 2.1V2O5*P2O5System

    32

    2.1.1 ExperimentalV2O5*P2O5glassesSeveralV2O5P2O5glassesinthecompositionrangeof79to91mol%(correspondingto

    83to96wt.%)V2O5weresynthesized.Thethoroughlymixedrawoxides(V2O5,99.2%

    AlfaAesar;P2O5,AcrosOrganics98%)weremeltedinquartzcruciblesforfourhoursat

    700Cinair.

    4 13 21

    The lowreactiontemperature isnecessarytopreventthereductionofV5+cationsdue

    to oxygen loss during annealing at high temperatures. The vitreous samples were

    quenchedinsidethecruciblesinwater.Thecolorsoftheglassesarebrownredbutthe

    formationofpolyvanadatecationsonthesurface leadstoadarkvioletsurfacecolor.

    Unfortunately, the quenching ofmelts inside the crucibles generates compact glass

    fragments. Thus all materials had to be crashed firstly, followed by grinding in a

    planetaryballmilltwotimes1hat550rpminreversedirection(FritschPulverisette4).

    TheamorphousstateofallsampleswasprovenbypowderXRaydiffraction(XRD).The

    XRDdatawerecollectedinthe2rangebetween10and90.Thedifferentialthermal

    analysis(DTA)measurementsoftheamorphouscompoundswereperformedbetween

    25Cto700Cataheatingrampof10C/minundernitrogenflow.Themicrostructures

    ofthesampleswereinvestigatedbyscanningelectronmicroscopy(SEM).

    Electrodes forelectrochemical testingconsistof82wt.%activematerial,2wt.%PVDF

    (Polvniylidene fluoride, Sigma Aldrich M.W. 534.000), 12 wt.% amorphous carbon

    (SuperP,Timcal)and4wt.%graphite (Timcal). Ina firststep,200mgactivematerial,

    29.3mgSuperPand9.7mggraphitewereground intheballmill in3mltoluenetwo

    times30minat530rpm in reversedirection.Thissuspensionwasdried invacuumat

    roomtemperatureforthreehours.4.9mgPVDFand2mlsolvent(tolune:THF;4:1)were

    added and ultrasonicated for 15min (a longer ultrasonication in THF leads to a

    reductionof the vanadium).The resulting slurrywasdispersedona titanium current

    collector,driedat room temperature (approx.10min) followedbydryingat80C for

    another 12 hours in vacuum. Drying at temperatures above 100C under reduced

    atmosphere leads to an oxygen loss and consequently to a lower electrode

    700C;4hQuenching

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    33

    performance.Thetwoelectrodecellswereassembled inanargonfilleddryglovebox.

    Limetal foil (SigmaAldrich,0.5mm)servedascounterelectrodeand1molarLiPF6 in

    ethylencarbonat/dimethylcarbonat (1:1) (Merck LP30) functioned as electrolyte. The

    cellsweretestedinthe1.5to4.2resp.4.3voltagerangeatdifferentcurrents.

    2.1.2 StructuralCharacterizationofV2O5*P2O5glassesIn Fig. 21, the XRDpattern of the vitreous sample with a nominal composition

    8V2O5*2P2O5are representatively shown forallXRDpatternsandDTAdiagrams (Fig.

    22)measuredofvitreoussamples.Asforanamorphousmaterialexpected,reflections

    could not bemeasured in the XRD powder experiment. The background of the XRD

    powder pattern is extremely high due to the strong absorption of the amorphous

    compound. Since the amorphousmaterial is synthesized from amelt, it has to be a

    glass.ThusadditionalDTAanalysesarenotnecessarytoconfirmthevitrification.

    Fig.21:XRDpowderpatternofassynthesizedvitreous8V2O5*2P2O5.

    InFig.22, theDTA curveof8V2O5*2P2O5 ispresented.The first thermaleffect isan

    endothermic baseline shift belonging to the glass transformation point Tg at 229.5C

    (inflectionofthecurve).Theonsetoftheglasstransitionindicatesthebeginningofthe

    softening interval between 216.9 and 229.5C. The next following strong exothermic

    STOE Powder Diffraction System

    2Theta10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.00.0

    20.0

    40.0

    60.0

    80.0

    100.0

    Rel

    ativ

    e In

    tens

    ity (%

    )

    8 V2O5 * 2 P2O5

  • 2.1V2O5*P2O5System

    34

    complexpeakat254.5CarisesfromthecrystallizationheatofV2O5orV2xPxO5crystals.

    Coincidentally, the endothermic baseline shift of the glass transition is exactly

    compensatedbytheexothermicbaselineshiftofthecrystallization,sothatthebaseline

    reaches the same level after the crystallization peak as it had before the softening.

    Finally,thelastendothermicpeakat655.3Cillustratesthemeltingpointofthenewly

    formedglassceramic.Consequently,theDTAanalysisconfirmsthevitrificationdueto

    the characteristic glass behavior, including softening interval, glass transition point,

    crystallizationheatandmeltingpointofthenewlyformedcrystals.

    Fig.22:DTAcurveofassynthesizedvitreous8V2O5*2P2O5.

    Thegrindingof theglass led toa resultingaverageparticle sizearound2m (cf.Fig.

    23).Alongermillingtime(12h)didnotfurtherreducetheparticlesize.Unfortunately,

    thissize isstillattheupper limitofactivematerialswith lesserelectronicconductivity

    forLIBs.IncaseofyV2O5*xP2O5glassesthegrindingresultisindependentofthesample

    composition.Incontrary,themicrostructuresdifferstronglywithcomposition.

    100 200 300 400 500 600Temperature /C

    -0.1

    0.0

    0.1

    0.2

    0.3

    DTA /(uV/mg)

    Complex Peak: Area:Peak:Onset:End:Width:

    -31.45 Vs/mg655.3 C636.7 C663.7 C

    23.4 C(37.000 %)

    Complex Peak: Area:Peak:Onset:End:Width:

    35.55 Vs/mg254.5 C252.5 C269.7 C

    15.3 C(37.000 %)

    Glass Transition: Onset:Mid:Inflection:End:Delta Cp*:

    216.9 C232.1 C229.5 C247.2 C

    0.371979 mVs/(gK)[1]

    exo

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    35

    Fig.23:SEMimageofthesynthesized8V2O5*2P2O5.

    In Fig. 24, the microstructures of two samples with different compositions are

    compared:left86V2O5*14P2O5andright89V2O5*11P2O5.AllsampleswithP2O5content

    larger than 14mol% have a similar texture, as the shown glass with 14mol%. The

    sampleof11mol%P2O5 is representative forallglassescontaining less than11mol%

    P2O5.

    Fig.24:SEMimagesofsamples86V2O5*14P2O5(left)and89V2O5*11P2O5(right),respectively.

  • 2.1V2O5*P2O5System

    36

    Inbothsamples,thegrainsdonothaveanypreferredshape,asexpectedforvitreous

    particles. Inallsamples,the2mparticlesconsistofgrains inthe100300nmrange.

    Nevertheless,thetexturesofglasseswithdifferentcompositionarestronglydissimilar.

    In the P2O5 richer sample, the grains are covered with a shell, so that the grain

    boundariescannotbeseenclearlyand theparticlessurfaceappearstobedense.The

    P2O5 poorer glass obviously exhibits grain boundaries and accordingly the particle

    surfacesaremoreporous.

    Densestructurescauselongerdiffusionpathwaysbecausethediffusionpathwaysinside

    the electro activematerial are long and the electron transport is, at least partially

    blockedduetothelowelectronicconductivity.Theresultinglongerdiffusionpathways

    for the phosphorus richer samples are expected to enter intohigherover potentials

    combinedwithlowerelectrochemicalactivities.

    2.1.3 ElectrochemicalCharacterizationofV2O5*P2O5glassesAredoxprocessof theactivematerial isanessential featureduring lithium insertion

    desertion reactions tosustain thechargeneutrality (asexplained inChapter2.1).The

    phosphategroupsareactingonlyasnetworkformersandtheyarenotparticipating in

    the redox process. Consequently, the theoretical specific charges of these glasses

    depend only on the vanadium concentrations of the electro active glasses. The qth

    valuesaregiveninTable21.Allsamplesweretestedundergalvanostaticconditionsat

    aconstantcurrentof20A/kg(C/20)inthe1.5to4.2Vrange.

    Theopencircuitvoltages(OCV)ofallglassesreachedvaluesbetween3.68Vand3.7V

    and accordingly the OCV is independent of the vanadium concentration for the

    investigatedconcentrationrange (Table21). Inthepreviouschapter,thedependency

    ofthecompositiononthemicrostructurewasdiscussed.Thequestion,whetherthese

    different microstructures are reflected in the electrochemical behavior, will be

    discussedinthenextparagraph.

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    37

    Table21:SelectedelectrochemicaldataofV2O5*P2O5glasses:theoreticalspecificchargesqth;practicalspecificchargesQandcorrespondingpercentagesofthetheoreticalvalues;overpotentials;opencircuitvoltagesOCV.

    InTable21,selectedelectrochemicaldataoftheV2O5*P2O5glassesaresummarized.A

    cleartendencycanbeidentified:ahigherpercentageofthetheoreticalspecificcharge

    isreachedas lowertheP2O5content.Theglasscontaining79mol%V2O5reachesonly

    76%of itsqthcomparedtothetwosamplescontaining lessthan11mol%,whichgain

    91% respectively96%ofqth. Furthermore,ahigherP2O5 content increases theover

    potentialmarkedlyfrom0.146V(9mol%P2O5)to0.383V(21mol%P2O5).Thesmall

    differenceoftheelectronicconductivity,describedbyTakahashi (Chapter2.1),canbe

    neglected. Consequently, the poorer electrochemical performance of the P2O5 richer

    samplescanbeexplainedbythedenserglassmicrostructures,showninFig.23.

    Representatively,theelectrochemicalbehavioroftheglasscontaining9mol%P2O5will

    be discussed based on its differential specific charge plot and its dischargecharge

    profileindetail(Fig.25).

    The first electrical discharge reaches 396Ah/kg, which corresponds to 96% of the

    theoretical capacity (411 Ah/kg). The unstructured voltage change of the electrode

    confirms the amorphous state giving rise to quasi straight lineswhich occur as very

    broadpeaks in thedifferentialspecificchargeplotbetween1.6Vand3.5V (Fig.25).

    Themaxima of the anodic 2.6V and cathodic 2.4V curves are shifted against each

    other. Another indication for the over potential is the intersection of the

    insertion/desertion,whichshould ideallybeathalfof the totalspecificcharge. In the

    discussedsample,the intersection isat1/3ofthetotalcapacity.Oneshouldexpecta

    high over potential from these indicators. The overpotentialof =0.4V, calculated

    accordingtoequation17,confirmsthesefindings.

    mol%V2O5

    wt.%V2O5

    qth[Ah/kg]

    Q(1stcycle)[Ah/kg]

    (2ndcycle)[V]

    OCV[V]

    79 83 367 281(76%) 0.383 3.6986 89 393 280(71%) 0.361 3.6889 91 402 363(91%) 0.315 3.6891 93 411 396(96%) 0.146 3.70

  • 2.1V2O5*P2O5System

    38

    A second characteristicof these glasses is thedifferencebetween the initialand the

    followingcycles.Thetworeductionpeaksofthe initial insertion,thefirstbetween3.5

    to2.7Vandthesecondinthe2.4to1.5Vvoltagerange,areirreversible.Thereduction

    peakathighvoltagedidnotarise inthesecondcycleagain.The irreversiblereduction

    peak at lower voltage disappeared during the first three cycles. The combination of

    these two irreversible reduction processes gains an irreversible specific charge of

    131Ah/kg.

    Fig.25:Left:differentialspecificchargeplot;Right:discharges/chargesof91V2O5*9P2O5.

    Asmentioned in the introduction,SakuraiandYamakiobserved thesame irreversible

    processes[94].Theyexplainedthisphenomenonbyanirreversiblelithiumintercalation

    into the vitreous network. I would like to point out another relation between this

    irreversiblecapacityandthe irreversiblereductionpeak inthevoltagerange3.52.7V

    andIliketogiveachemicalexplanationfortheobservedprocess.Underconsideration

    of the composition and the irreversible specific charge, the following assumption is

    taken:

    Thelithiuminsertioninthevoltagerange2.51.5Vleadstotheformationof

    orthophosphategroupsandpartiallyreducedV2O5x.

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    39

    Tosimplifythecorrespondingreactionweareneglectingthereductionofvanadiumby

    furtherlithiuminsertion:

    91 9 54 54 91 . 18 22

    Thisreactionwouldleadontheonehandtoanirreversiblespecificchargeof86Ah/kg

    (correspondingto0.6LiperV2O5)andontheotherhandtoanirreversiblereductionof

    vanadium.Especially,thehighpotentialarea isaffectedbya lowermaximumaverage

    oxidation state of V+4.7, as it is observed in the differential specific charge plot

    (disappearance of the reduction peakbetween 3.5 2.7V after the first discharge).

    Anotherconsequencewouldbetheformationofnaked(notembeddedintotheglass)

    V2O4.7,whichshouldbehavesimilartoV2O5.Thecolumbicefficiencyofthefirstcycleof

    pure V2O5 is around 86% (corresponding to an irreversible specific charge of

    Qir=60Ah/kg;Chapter1.6.3).All theoreticalvalues inTable42are correctedby the

    percentage portion of the theoretical specific charge yielded (corresponding to the

    amountofactiveelectrodematerial).Foran illustration,thefollowingexampleforthe

    calculationofqth,ir(V2O5)oftheglasscontaining79wt.%V2O5isgiven:

    , 60 .% 60 0.79 281 /367 / 37 /23

    The sum of these two effects the known irreversible specific charge of V2O5

    (qth,ir(V2O5);53Ah/kg,correlatedtoitswt.%)andtheirreversiblespecificchargedueto

    thereaction(qth,ir(reaction);78Ah/kg)yieldsintheobservedvalueof131Ah/kg.Thus

    theorthophosphatemodelnicelyfitstothediscussedglasscontaining9mol%P2O5.

    Vitreous compounds with higher phosphorus contents do not comply with the

    orthophosphatemodel(Table22).However,theyallshowclearlyahigher irreversible

    specificchargethanexpectedforpureV2O5.Inaddition,theaveragedischargevoltage

    is decreasing with increasing phosphorus content which is caused by a stronger

    reduction of the maximum vanadium valence state. Furthermore, the average cell

    voltage is significantly lower than the 2.7V, reported for pure V2O5. All these facts

    supportachemicalreactionsimilartotheorthophosphatemodel.

  • 2.1V2O5*P2O5System

    40

    Table 22: Comparison of electrochemical data of V2O5*P2O5 glasses: irreversiblepractical chargeQir(obs.); theoretical irreversible specific charge due to the reactionqth,ir(reaction),theoreticalirreversiblespecificchargeoriginatedbyV2O5qth,ir(V2O5);thetheoreticalvaluesarecorrectedtothepracticalspecificcharge.

    mol%V2O5

    QIr(obs.)[Ah/kg]

    qth,ir(reaction)[Ah/kg]

    qth,ir(V2O5)[Ah/kg]

    qth,ir(total)[Ah/kg]

    aver.Voltage2ndDischarge[V]

    79 100 149 37 186 2.23886 75 91 37 128 2.25189 93 90 50 140 2.30991 131 78 53 131 2.327

    Thelongercyclingdataacquiredbyglavanostaticchargedischargecyclingispresented

    inFig.26.Theelectrochemicalcyclabilitiesofglasseswith89mol%and79mol%V2O5

    are compared in this display. The specific charge of both glasses increased by 7.2%

    (89mol%) and 5.7% (79mol%) during the first 10 cycles, respectively. This effect is

    known foractivematerialswithparticles sizes in the m range [13].During theearly

    insertions/desertions, the particles or the grain boundaries break down due to the

    volume changes causedby the lithiation/delithiationprocesses. The resulting smaller

    particlesizesshortenthediffusiontimes,andconsequentlyleadtoahigheramountof

    active electrodematerial. This higher accessibility evokes an increase in the specific

    charge, accordingly. Both compounds exhibited good cyclabilities, as indicated by a

    capacity lossofonly13% (79mol%), respectively5% (89mol%)after50cycles.Both

    curves can be divided into three parts. The anodic irreversible process of lithium

    integration into the vitreous network takes place within the first eight (79mol%)

    respectively eleven (89mol%) cycles. Afterwards both electrodes cycle stablywith a

    coulombicefficiencyof>99%.However, in the25th cycle, the coulombicefficiencyof

    both samples dropped significantly. The efficiency of the vanadium poorer sample

    decreasesonlyby1.5% compared to the strongerdecreaseof4.5%of the vanadium

    richer sample.Most probably, these efficiency drops occurred due to an irreversible

    cathodicSEIformationwhichisaknownproblemofV2O5basedcathodematerials.

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    41

    Fig.26:Comparisonoftheelectrochemicalcyclingbehaviorsoftwodifferentphosphateglasses.

    89mol %V2O5

    79mol %V2O5

    anodiccathodic

  • 2.2V2O5*P2O5GlassCeramics

    42

    2.2 V2O5P2O5GlassCeramicsUnder theabovementioneddescribedconditions,glassceramicswere formed, if the

    melts contain less than 7mol% P2O5. The XRD powder pattern of a glass ceramic

    containing5mol%P2O5isshowninFig.27.Theceramic`shighvitreouscontentcauses

    the lowsignaltonoiseratio.That iswhyaRietveldrefinement isnotaccomplishable,

    andtherefore,theXRDpowderpatternisonlyqualitativelydiscussed.Allreflectionsof

    themeasuredglass ceramicmatch the literaturepatternofV2O5[100].Nevertheless,

    there isa small shift in reflectionpositionsaswellas in the intensitydistribution.All

    reflectionswithakcomponentareshiftedtohigherdiffractionangles.Intheinset,one

    clearly can see the shift of the (020) from 51.18 to 51.78 2. In addition, the

    intensitiesdidnotmatch,because theobservedmain reflection is the (110) (slightly

    shifted)comparedtothe (001)mainreflection found in literature.Thesubstitutionof

    V5+ by the smaller P5+ leads to a decrease of the cell volume. Thus the observed

    reflectionsshiftsindicateasolidsolutionformationofV2xPxO5,asmentionedbySakurai

    etal.[92].

    Fig.27:XRDpowderpatternofsynthesizedglassceramicwiththenominalcomposition95V2O5*5P2O5.

    STOE Powder Diffraction System

    2Theta10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.00.0

    20.0

    40.0

    60.0

    80.0

    100.0

    Rel

    ativ

    e In

    tens

    ity (%

    )

    96 V2O5 * 4 P2O5 Vanadium pentoxide_99808

    (020)50.0

    (020)(110)

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    43

    2.2.1 ElectrochemicalCharacterizationoftheGlassCeramicGalvanostaticchargedischargecyclinghasbeenperformed inthe1.5to4.2voltrange

    at constant current of 50A/kg. The cycling behavior and the calculated differential

    specificchargeplotaregiveninFig.28.Thefirstreductionisdominatedbythreebroad

    peaks (3.4V, 3.2V, 2.3V) and one sharp effect (1.9V), as clearly observable in the

    differential specific charge plot (plateaus in the discharge curve). Contrary, the first

    chargeisanalmoststraightline.Themaximaofthebroadpeaksandtheamorphization

    aftertheinitialdeepdischargeexactlymatchtheelectrochemicalbehaviorofpureV2O5,

    though,theinitialreductionprocessesoftheglassceramicsarediffuserthanobserved

    inV2O5electrodes.Forexample,thetworeductionpeaksat3.4and3.2Vareobserved

    astwoseparatedsharppeaks forV2O5.Theaccordingreductionsof theglassceramic

    arealmostmergedintoonebroadpeakwithtwomaximabetween3.0to3.5V.

    Fig.28:95V2O5*5P2O5:leftdifferentialspecificchargeplot;rightdischarging/chargingpotentialcurves.

    The glass ceramic reached its theoretical capacity of 425 Ah/kg exactly,which is in

    agreementwiththeargumentsdiscussedfortheglassmicrostructures(butonlyvalidif

    Crateandelectrodepreparationarekeptconstant).Theexpected irreversiblespecific

    charge, due to the orthophosphate formation during the first reduction, should be

    45Ah/kgdueto5mol%P2O5.Thesumofthiseffectandtheirreversiblespecificcharge,

    known forV2O50 (57Ah/kg), lead toanexpected valueof102Ah/kg.Therefore, the

  • 2.2V2O5*P2O5GlassCeramics

    44

    observedvalueof102Ah/kgmatchestheexpectedvalueperfectly,andconsequently,

    thediscussedglassceramicsupportsthedevelopedorthophosphatemodelstrongly.

    Theaveragedischargevoltageof2.52Visevidentlyhigherthantheobservedvaluesof

    anyvanadateglassduethelowerreductionofthemaximumvalencestate(V2O4.82).The

    overpotential=0.353V isunexpectedly largeand it is located inthesamerangeas

    observedfortheglassescontainingmorethan10mol%phosphate.Theelectrochemical

    cyclability of the glass ceramic is demonstrated in Fig. 29. The specific charge is

    decreasingalmostlinearlywiththecyclenumber(approx.0.33%percycle).Hence,the

    capacity drops to 67% within 100 cycles. The coulombic efficiency of 96% is an

    indicationofan irreversible cathodicSEI formationon the ceramic.Nevertheless, the

    phosphateenvironmentstronglyenhancesthecyclabilityoftheglassceramiccompared

    topureV2O5.

    Fig.29:Electrochemicalcyclabilityofglassceramicwith5mol%P2O5.Thespikesintheanodic curvedisplay an internal short cutdue tophysical contactbetween a lithiumdendriteandthecathode.

    anodiccathodic

  • 2VitreousandCrystalizedMaterialsintheLi2OV2O5P2O5System

    45

    2.3 GlassformationintheLi2OV2O5P2O5System

    2.3.1 ExperimentalLi2OV2O5P2O5SystemTheglass forming regionand theelectrical conductivityof the system Li2OV2O5P2O5

    wererecently investigatedbythegroupsofH.TakahashiandJ.E.Garbarczyk [15,17].

    They used Li2CO3,NH4H2PO4 and V2O5 as startingmaterials and heated themelt to

    1000C. I changed thisprocedure to avoid thehigh temperature,which causesmost

    likelyapartialreductionofvanadium.Inafirststep,LiPO3wassynthesizedfromLi2CO3

    (Fluka,98%)and(NH4)2HPO4(Fluka,99%)at500Cduring5h.TheassynthesizedLiPO3,

    respectively LiVO3 (Alfa Aesar, 99.9%) served as lithium source during the glass

    formation with V2O5 and/or P2O5 at 700C during 2h followed by quenching. The

    vitreoussampleswerequenchedinsidethequartzcruciblesinwater.Theformationof

    polyvanadatecationsisevidencedbythevioletcoloronthesurface,asopposedtothe

    brownredbulkcolor.Allmaterialshadtobecrashedtoat leastmillimetersizebefore

    theyweregroundintheballmillduringtwotimes1hat550rpminreversedirections.

    The amorphous stateof all sampleswasprovenby XRDpowdermeasurements. The

    XRDdatawerecollectedunderthesameconditionsasdescribed inChapter2.1.1.The

    micro structures were investigated using SEM. Electrodes for testing the

    electrochemicalbehaviorswerepreparedasdescribed inchapter2.1.1.Galvanostatic

    measurementswerecarriedoutinthe1.54.2voltagewindowataconstantcurrentof

    100A/kg(approx.C/4).All